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ABSTRACT

Context. MHD instabilities play an important role in the dynamics and energetics of the solar atmosphere.
Aims. An open vertical magnetic flux tube is permeated by an upflow in a stratified atmosphere with variable temperature. The stability
of the tube is investigated with respect to small-amplitude torsional perturbations generated at the footpoint by random convective
motions.
Methods. A steady state equilibrium incorporating the effects of a vertical body force, heating, and losses is derived analytically. The
governing equations for torsional motions are integrated with a fourth-order Runge-Kutta method and matched with the analytical
solutions in the upper regions to obtain a numerical dispersion relation. The dependence of the eigenmode frequencies on different
parameters is analysed. Unstable modes are found for a range of Alfvén and flow speeds in the photosphere, as well as expansion
factors of the flux tubes. Both supersonic and subsonic flows are considered.
Results. It is shown that torsional perturbations are exponentially amplified in time if a section of the tube exists where the upflowing
plasma decelerates and the tube expands. The flow speeds required for the instability are sub-Alfvénic.
Conclusions. The instability may be important for understanding the abundance of Alfvén waves seen in recent observations and the
associated heating in magnetic regions of the solar atmosphere.
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1. Introduction1

Since their discovery in the 1940s Alfvén waves have been stud-2

ied in relation to the heating of laboratory plasmas and the so-3

lar atmosphere, the formation of spicules, and the acceleration4

of the solar wind. The waves result from the competing effects5

between magnetic tension and plasma inertia. Alfvén waves6

are notoriously difficult to detect since there are no associated7

variations in density or the field strength. Recent observations8

have shown the abundance of transverse and torsional waves9

in various structures of the solar atmosphere (Nakariakov et al.10

1999; Tomczyk et al. 1998). The waves observed in the lower11

atmosphere are usually associated with field-aligned upflows12

(Peter 2000; Xia et al. 2003; Hara et al. 2008; Jess et al. 2009;13

De Pontieu et al. 2012; Morton et al. 2012). Estimates of the en-14

ergy flux carried by the waves indicate that they could power the15

solar wind and heat the corona (McIntosh et al. 2011). A the-16

oretical and observational overview of Alfvén waves in various17

structures of the solar atmosphere is presented by Mathioudakis18

et al. (2013).19

Any theory dealing with the energetic implications of Alfvén20

waves should consider their generation, propagation, and dis-21

sipation as equally important aspects of the same problem.22

However, such a unified treatment has proved to be a challenge.23

Various models have been employed to explain the gener-24

ation of waves, the energy transfer, and the dissipation in the25

atmosphere. Parker (1991) argues that photospheric convection26

is unlikely to produce Alfvén waves with sufficiently large am-27

plitudes to heat the corona or to power the solar wind, nor would28

such waves dissipate significantly in the first couple of solar 29

radii if they even existed. The generation of Alfvén waves is 30

more efficient when the fibril structure of the photospheric field 31

is taken into account but still not enough to provide adequate 32

wave flux into the corona (Muller et al. 1994; Matsumoto & Kitai 33

2010). 34

Compared to other types of waves, Alfvén waves are able 35

to carry energy over long distances along magnetic field lines. 36

They are least susceptible to shock formation and dissipation. 37

However, reflections due to temperature increase and tube ex- 38

pansion are both possible (Murawski & Musielak 2010; Routh 39

et al. 2010). The reflections may also lead to resonant cavities 40

(Hollweg 1984; Matsumoto & Shibata 2010). 41

Alfvén waves are able to dissipate their energy through var- 42

ious mechanisms, such as resonant absorption, nonlinear cou- 43

pling to slow and fast MHD shocks, and phase mixing (Ionson 44

1978; Hollweg et al. 1982; Heyvartes & Priest 1983). Parker 45

(1991), Ofman & Davila (1995) argues that in open structures 46

dissipation due to phase mixing is expected to occur only within 47

several solar radii. Belien et al. (1999) find that the efficiency 48

of resonant absorption can be very low owing to the fast rate 49

at which slow magnetosonic waves are nonlinearly generated in 50

the chromosphere and transition region. This leads to consid- 51

erable transfer of energy from the Alfvén wave to the magne- 52

tosonic waves. Antolin & Shibata (2008) find that the regimes 53

under which Alfvén wave heating produces hot and stable coro- 54

nae are rather narrow: independently of the photospheric wave 55

amplitude and magnetic field, a corona can be produced and 56

maintained only for long (>80 Mm) and thick loops. 57
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Magnetohydrodynamic (MHD) instabilities play a key role1

in a number of processes occurring in the Sun and in2

the solar-terrestrial environment: small perturbations become3

exponentially amplified, leading to large scale changes in the4

system. Well-known examples include the Rayleigh-Taylor and5

the Kelvin-Helmholtz instabilities.6

Taroyan (2008) established the possibility of a new MHD7

instability associated with incompressible Alfvénic disturbances8

in compressible plasma flows. It does not require a shear and9

may arise at rather moderate sub-Alfvénic flow speeds ow-10

ing to the compressibility of the plasma flow. In a two-layer11

semi-infinite model, small-amplitude Alfvénic disturbances be-12

come exponentially amplified because they subtract energy from13

the flow and become over-reflected – a concept introduced by14

Acheson (1976) in the context of Kelvin-Helmholtz instability.15

In the case of the Alfvén instability, a cavity is set up within16

which the Alfvénic perturbations grow as they bounce back and17

forth.18

An application of the instability to coronal loops with siphon19

flows was presented by Taroyan (2009). It was shown that20

in asymmetric loops with siphon flows, linear torsional per-21

turbations driven at the footpoints may become exponentially22

amplified for arbitrary flow speeds.23

The magnetic field outside sunspots is concentrated in flux24

tubes with kilogauss field strengths and widths of a few hun-25

dred kilometers (Stenflo 1989). Gabriel (1976) argued that the26

expansion of flux tubes above the photosphere is so rapid that27

field lines at the edges are nearly horizontal, leading to a mag-28

netic canopy at a height of about 500 km. More recently, Tsuneta29

et al. (2008), Verth et al. (2011), and Morton et al. (2012) have30

explored the expansion of flux tubes above the photosphere at31

chromospheric heights.32

Taroyan (2011) analysed the instability in gravitationally33

stratified expanding flux tubes. It was assumed that the equi-34

librium quantities, such as the flow and the magnetic field,35

are smooth functions of height. This analysis was limited to36

isothermal flows.37

The present paper extends the analysis by Taroyan (2011) to38

a wider class of flux tubes with nonisothermal flows by includ-39

ing a full equation of energy and a body force in the momen-40

tum equation. The equilibrium is derived analytically; an ana-41

lytical criterion for the instability is obtained; the behaviour in42

supersonic and subsonic flows is compared; rapidly and mod-43

erately expanding flux tubes are treated separately; the depen-44

dence of the instability on the expansion factor is analysed; and45

a schematic illustration of the instability conditions is presented46

in Fig. 8.47

2. Model and governing equations48

We use the axisymmetric magnetic flux tube model introduced49

by Hollweg et al. (1982). The distance along a single field line50

is denoted by s. The photospheric boundary is placed at s = 0.51

The distance from the axis of symmetry is denoted by r = r(s),52

i.e., any radial expansion or contraction of the flux tube in time53

are assumed to be negligible. The azimuthal angle about the axis54

of symmetry is denoted by θ. In the azimuthal direction, only55

axisymmetric motions are considered, so ∂/∂θ = 0.56

The model was developed by different authors to include57

various source terms. In particular, the effects of heating, radi-58

ation, and conduction were first studied by Mariska & Hollweg59

(1985), and the effects of a body force were originally discussed60

by Sterling & Hollweg (1988). The model has been applied to61

both linear and nonlinear problems in various solar and stellar 62

contexts (Sterling & Hollweg 1984; Mariska & Hollweg 1985; 63

Kudoh & Shibata 1997; Moriyasu et al. 2004; Fujita et al. 2007; 64

Musielak et al. 2007; Antolin & Shibata 2008). 65

With the assumptions made above the following nonlinear 66

equations of conservation of mass, momentum, energy and in- 67

duction for the mass density ρ, pressure p, the s and θ compo- 68

nents of the magnetic field, (Bs, Bθ), and velocity, (us, uθ) are 69

derived: 70

∂

∂t

(
ρ

Bs

)
+
∂

∂s

(
ρus

Bs

)
= 0, (1)

∂

∂t

(
ρruθ
Bs

)
+
∂

∂s

(
ρruθ
Bs

us

)
=

1
μ0

∂

∂s
(rBθ) , (2)

∂

∂t

(
ρus

Bs

)
+
∂

∂s

(
ρus

Bs
us

)
= − 1

Bs

∂p
∂s
+
ρ

Bs
(gs + F )

+
1
Bs
×

⎡⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎝ρu2

θ −
B2
θ

μ0

⎞⎟⎟⎟⎟⎠ ∂ ln r
∂s
− ∂
∂s

⎛⎜⎜⎜⎜⎝ B2
θ

2μ0

⎞⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎦ , (3)

∂

∂t

(
p

Bs

)
+
∂

∂s

(
p
Bs

us

)
= −(γ − 1)p

∂

∂s

(
us

Bs

)

+
γ − 1

Bs

[
H + 1

r2

∂

∂s

(
r2κT 5/2 ∂T

∂s

)
− R

]
, (4)

∂

∂t

(
Bθ
rBs

)
+
∂

∂s

(
Bθ
rBs

us

)
=
∂

∂s

(uθ
r

)
, (5)

where gs is the s component of the gravitational acceleration, γ 71

is the adiabatic index, and F is a prescribed body force acting on 72

the plasma. In the energy Eq. (4), the termsH ,R represent heat- 73

ing and radiative losses, respectively, while κ is the coefficient of 74

themral conduction. In the above equations, Bs is a function of s 75

and does not depend on t. The condition for the conservation of 76

magnetic flux can be reduced to 77

Bs(s)r2(s) = const. (6)

provided the chosen field line is near the axis of the flux tube. 78

The body force term is borrowed from Sterling & Hollweg 79

(1988) who used this source term to model granular buffeting 80

of a flux tube and the subsequent generation of spicules. In our 81

study, the body force could be due to granular buffeting or any 82

other mechanism which combined with the source terms in the 83

energy equation supports the upflows. 84

No assumptions are made about the exact form of the ra- 85

diative loss function or the phenomenological heating term H . 86

The following Eqs. (14)–(18) are derived for arbitrary radiative 87

losses and heating which may also depend on density and tem- 88

perature. The equilibrium quantities of interest are expressed in 89

terms of the flow speed, temperature and the body force. 90

2.1. Steady state 91

The existence of a steady state equilibrium is determined by the 92

body force F and the heating rate H . An equilibrium will exist 93

ifF andH are time-independent. In a realistic solar atmosphere, 94

the above assumptions can be justified if the latter two quantities 95

change slowly compared to the wave period. The equilibrium 96

structure of the flux tube is shown in Fig. 1. The equilibrium 97

quantities are denoted by a subscript 0. The magnetic field B0 is 98

untwisted, i.e., only the s component is present. The flux tube is 99

permeated by a field-aligned mass flow u0. We consider field 100
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Fig. 1. Cartoon of an expanding flux tube in which plasma flows along
the field lines. The s = 0 level represents the footpoint which is twisted
by convective motions.

lines near the tube axis for which gs = −g (Hollweg et al.1

1982). The steady equilibrium is determined by the conservation2

equations of mass (1), momentum (3) and energy (4):3

d
ds

(
ρ0u0

B0

)
= 0, (7)

d
ds

(
ρ0u0

B0
u0

)
=

1
B0

(
−dp0

ds
− ρ0g + ρ0F

)
, (8)

d
ds

(
p0u0

B0

)
= −(γ − 1)p0

d
ds

(
u0

B0

)

+
γ − 1

B0

[
H + 1

r2

d
ds

(
r2κT 5/2

0

dT0

ds

)
− R0

]
, (9)

where the subscript 0 denotes the corresponding equilibrium4

quantity along a field line.5

According to the ideal gas law, pressure is determined6

through density and temperature. Therefore Eqs. (7)–(9) contain7

six unknowns: ρ0, T0, u0, B0,H ,F . Three of those can be ex-8

pressed in terms of the heating rate, H , the body force, F , and9

the magnetic field strength, B0. Note that according to Eq. (6)10

the magnetic field is determined by the cross-sectional area of11

the axisymmetric flux tube since B0 = Bs. Thus the steady state12

is determined by the heat input and the shape of the flux tube.13

From a mathematical point of view, it is more convenient to de-14

rive analytical expressions for the equilibrium quantities in terms15

of the flow speed, u0, the body force, F , and temperature T0.16

Equation (9) can be rewritten as17

1
c2

s

dc2
s

ds
=
γ − 1
ρ0

dρ0

ds
+

(γ − 1)γB0

ρ0u0c2
s
S, (10)

where c2
s = γp0/ρ0 = const.× T0 is the sound speed and S is the18

sum of sources and sinks of energy in Eq. (9):19

S ≡ 1
B0

[
H + 1

r2

d
ds

(
r2κT 5/2

0

dT0

ds

)
− R0

]
. (11)

The equilibrium pressure p0 can be eliminated from Eq. (8) us-20

ing the definition of the sound speed. The result is21

u0
du0

ds
= − c2

s

γρ0

dρ0

ds
− 1
γ

dc2
s

ds
− g + F . (12)

The sum of the sources and sinks of energy is defined through22

Eq. (11). The explicit form of this term is given by Eq. (13)23

where it is expressed through temperature (sound speed), flow 24

speed, and the body force. It shows that either S or F must be 25

positive when the flow and the temperature are constant, i.e., 26

either heating or body force are required to sustain the equilib- 27

rium flow against gravitational attraction. However, the balance 28

between the body force F , the source term S and the terms in- 29

cluded in S through Eq. (11) has no influence on the behaviour 30

of the Alfvénic perturbations. 31

The first term in the right-hand side of Eq. (12) can be sub- 32

stituted from Eq. (10). This results in the following expres- 33

sion for S in terms of the flow speed, the sound speed (or 34

temperature), and the body force: 35

S = u0ρ0

B0

⎡⎢⎢⎢⎢⎣1
2

du2
0

ds
+

1
γ − 1

dc2
s

ds
+ g − F

⎤⎥⎥⎥⎥⎦ . (13)

From Eq. (12) we obtain the following expressions for the equi- 36

librium quantities in terms of the flow speed and temperature: 37

ρ0(s) = ρ0(0)
λ(0)
λ(s)

exp

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝−
s∫

0

ds
Λ(s)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (14)

p0(s) = p0(0) exp

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝−
s∫

0

ds
Λ(s)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (15)

B0(s) = B0(0)
u0(s)
u0(0)

ρ(s)
ρ(0)
, (16)

cA(s) = cA(0)
u0(s)
u0(0)

(
ρ(s)
ρ(0)

) 1
2

, (17)

where 38

λ =
c2

s

γg
and Λ = λ

/ ⎛⎜⎜⎜⎜⎝1 + 1
2g

du2
0

ds
− F
g

⎞⎟⎟⎟⎟⎠ (18)

represent the local pressure scale height in a force-free static 39

equilibrium and the local pressure scale height in a steady state, 40

respectively. The scale height λ is determined by temperature. 41

Variations in the scale heightΛ can be due to changes in the flow 42

speed, temperature and the body force. Expressions (14)–(17) 43

extend the well-known results for static equilibria derived by 44

Roberts (2004) to steady states. In the special case of a force- 45

free isothermal atmosphere (γ = 1), the steady state solutions 46

were derived by Taroyan (2011). 47

Alternatively, Eq. (12) can be integrated to express the sound 48

speed and other equlibrium quantities in terms of the flow speed, 49

u0, the magnetic field, B0, and the body force, F : 50

c2
s(s) =

u0(s)B0(s)
u0(0)B0(0)

×
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝c2

s (0) +

s∫
0

γu0(0)B0(0)
u0(s̃)B0(s̃)

[
F − g − u0

du0

ds̃

]
ds̃

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

2.2. Linearised equations for torsional perturbations 51

Equations (1)–(5) can be linearised when small ampli- 52

tude perturbations are considered. Incompressible torsional 53

perturbations are governed by the equations: 54

ρ0r
B0

∂vθ
∂t
+
∂

∂s

(
ρ0ru0

B0
vθ

)
=

1
μ0

∂

∂s
(rbθ) , (19)

1
rB0

∂bθ
∂t
+
∂

∂s

(
u0

rB0
bθ

)
=
∂

∂s

(
vθ
r

)
, (20)
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Eqs. (19) and (20) can be Fourier analysed with respect to t and1

presented in the following canonical form (Taroyan 2011):2

dx
ds
=

1

c2
A − u2

0

(u0C1 x + C2z) , (21)

dz
ds
=

1

c2
A − u2

0

(
c2

AC1 x + u0C2z
)
, (22)

where3

x = r

∞∫
−∞

bθ exp(iωt)dt, z = B0r

∞∫
−∞
vθ exp(iωt)dt, (23)

C1(ω, s) =
du0

ds
− iω, C2(ω, s) = c2

A
d
ds

⎛⎜⎜⎜⎜⎝ u0

c2
A

⎞⎟⎟⎟⎟⎠ − iω, (24)

and ω is the complex frequency. Small amplitude perturbations4

generated at the footpoint by photospheric motions propagate5

along the flux tube. The propagation of torsional motions is gov-6

erned by the set of Eqs. (21), (22). A driver usually excites7

transient driver specific perturbations in addition to the eigen-8

modes and those perturbations are not captured by the govern-9

ing equations. In order to establish the stability of the steady10

equilibrium state with respect to arbitrary torsional motions, we11

have to examine the eigenmodes of the system. For simplic-12

ity, it is assumed that there are no variations in the azimuthal13

magnetic field at the footpoint. In other words, the filed lines14

are vertically anchored in the photosphere. The imposed con-15

dition bθ(s = 0, t) = 0 remains the same for the transformed16

variable: x(s = 0) = 0. Motions arise due to azimuthal twists of17

the footpoint which can be arbitrary. A twist will evolve along18

the tube disturbing the eigenmodes of the flux tube. Since the19

system (21), (22) is linear, vθ at s = 0 can be an arbitrary non-20

trivial function of omega corresponding to arbitrary azimuthal21

twists. A similar approach in different contexts has been applied22

by other authors (for example, Ruderman et al. 2010).23

3. Analytical results24

The governing Eqs. (21), (22) can be solved analytically for25

some special cases. These cases are treated separately in the26

present section.27

3.1. B0 = const., u0 = const.28

According to the equation of continuity (7), the density and the29

Alfvén speed are constant. The derivatives in expressions (24)30

become zero and Eqs. (21), (22) are reduced to a second order31

ODE with constant coefficients:32

(
c2

A − u2
0

) d2x
ds
+ 2iωu0

dx
ds
+ ω2x = 0. (25)

The general solution is33

x = a1 exp

(
iωs

cA + u0

)
+ a2 exp

( −iωs
cA − u0

)
(26)

where a1, a2 are arbitrary constants.34

3.2. B0 = const., du0
ds = const.35

The condition B0 = const. combined with the continuity equa-36

tion implies u0/c2
A = const.. Therefore, C1 = C2 = −iω.37

Equations (21), (22) are reduced to a second order ordinary 38

differential equation with variable coefficients: 39

d
ds

([
c2

A−u2
0

] dx
ds

)
− d

ds

([
du0

ds
−iω

]
u0x

)
+ iω

d
ds

(u0x)+ω2x=0,

(27)

We introduce a new variable τ: 40

τ =
u2

0

c2
A

so that
d
ds
=

d
dτ

dτ
ds
=

u0

c2
A

du0

ds
d
dτ
· (28)

In terms of the new variable τ, Eq. (27) can be represented as a 41

hypergeometric differential equation 42

τ(1 − τ)d2x
dτ2
+ (c − [a + b + 1] τ)

dx
dτ
− abx = 0 (29)

with parameters 43

a = b = 1 − iω
du0/ds

, c = 1. (30)

The general solution of Eq. (29) is 44

x = a1 × 2F1 (a, b; a + b + 1 − c; 1 − τ)
+a2(1 − τ)c−a−b

2F1 (c − b, c − a; c − a − b + 1; 1 − τ) , (31)

where 2F1 is the hypergeometric function and a1, a2 are arbi- 45

trary constants (Abramowitz & Stegun 1972). Note that the solu- 46

tion (31) is singular at τ = 1 because the real part of the exponent 47

c − a − b is negative. 48

3.3. T0 = const., u0 = const., F = 0 49

The magnetic field strength is no longer constant and changes in 50

the cross sectional area are possible. Expressions (14)–(18) are 51

simplified due to a constant sound speed and Eqs. (21), (22) are 52

reduced to 53

u2
0 − c2

A

c2
A

d
ds

(
c2

A
dx
ds

)
+

(u0

λ
− iω

) (
−iωx + 2u0

dx
ds

)
= 0. (32)

Similar to the treatment in the preceding section, a new 54

variable τ is introduced: 55

τ =
u2

0

c2
A

and
d
ds
=

d
dτ

dτ
ds
=
τ

λ

d
dτ
· (33)

The change of variable leads to a hypergeometric Eq. (29). 56

The solutions are expressed through the same hypergeometric 57

functions (31) with different parameters: 58

a = −i
ωλ

u0
, b = a + 1, c = 0. (34)

3.4. Unstable modes 59

The obtained analytical results can be used to establish the pres- 60

ence of unstable modes. It would be instructive to find explicit 61

expressions that reveal the dependence of the growth rate on 62

various parameters. 63

Our first simplifying assumption is that the magnetic field 64

strength is constant throughout. We also assume that the flow 65

speed is a linear function for 0 < s < L. The solution is therefore 66

given by Eq. (31). The flow is continuous at s = L and constant 67

for s > L. The corresponding solution for s > L is expressed 68
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through Eq. (26). The first term of Eq. (26) represents propaga-1

tion along the flow with phase speed cA + u0. The second term2

represents propagation against the flow with phase speed cA−u0.3

We set a2 = 0 as there are no sources of propagation for s > L.4

Note that the described equilibrium with constant magnetic5

field implies variable temperature, according to Eq. (12). In the6

present study specifying the force term and the temperature is7

not necessary as this has no influence on the behaviour of the8

Alfvén waves.9

The analytical treatment is facilitated when a small parame-10

ter exists. Equations (21), (22) and the solution (31) suggest that11

such a small parameter could be 1 − τ which represents the dif-12

ference between the flow and the Alfvén speeds. Hence our final13

assumption: u0 ∼ cA.14

The hypergeometric functions in Eq. (31) are expressed15

through the hypergeometric series (Abramowitz & Stegun16

1972):17

2F1(a, b; c; 1 − τ) =
∞∑

n=0

(a)n(b)n

(c)n

(1 − τ)n

n!
· (35)

Because 1 − τ is small we can retain only the first term in the18

series. The general solution (31) in the interval 0 < s < L is then19

approximated by20

x ≈ a−1 + a−2 (1 − τ)c−a−b. (36)

The coefficient a−2 is expressed through a−1 using the boundary21

condition x(s = 0) = 0. Substituting the expressions (30) for the22

parameters a, b, c we obtain23

x
a−1
= 1 −

(
1 − τ(s)
1 − τ(0)

) 2iω
u′0
−1

where u′0 =
du0

ds
· (37)

The counterpart z is found from Eqs. (21) and (37):24

z
a−1
= −u0 − u0

(
1 +

iu′0
ω

) (
1 − τ(s)
1 − τ(0)

) 2iω
u′0
−1

for 0 < s < L. (38)

The solutions for s > L are25

x = a+1 exp

(
iωs

cA + u0

)
, z = −u0x. (39)

The continuity of the solutions at s = L gives the desired disper-26

sion relation:27

x(L−)z(L+) − x(L+)z(L−)
a−1 a+1

≈ u0

(
2 +

iω
u′0

) (
1 − τ(s)
1 − τ(0)

) 2iω
u′0
−1

≈ 0.

(40)

The complex frequency is therefore given by the following28

expression:29

ω ≈ 2iu′0. (41)

The real part of the frequency is small because the phase speed30

of the backward propagating wave, cA − u0, is small.31

Equation (41) provides a simple criterion for the instability:32

the imaginary part of the frequency is positive when the flow33

speed has a negative gradient in the interval 0 < s < L. The34

perturbations grow exponentially leading to an instability. In the35

case of a positive flow speed gradient, the perturbations gen-36

erated at the footpoint are damped. Of course, an equilibrium37

with B0 = const. is not a very good representation of the solar38

atmosphere where the magnetic field is known to change with39

height. On the other hand, the analytical treatment is facilitated. 40

A steady state flux tube of constant cross-section is unstable if it 41

contains a segment where the flow decelerates. 42

In summary, analytical solutions are derived in 43

Sects. 3.1–3.3. The solutions are necessary to match the 44

numerical solutions at the boundary s = L. Two of the solutions 45

with a constant flow and a constant temperature/magnetic field 46

are used for the subsequent numerical treatment. The analytical 47

approach in Sect. 3.4 is based on a simplified model in order to 48

facilitate the treatment. Only physically acceptable solutions are 49

selected. The main purpose of this section is to find an analytical 50

criterion for the instability. We find that the instability requires a 51

negative gradient in the flow profile, i.e., deceleration along the 52

flux tube. This finding is later confirmed numerically for certain 53

particular cases. 54

4. Numerical results 55

The analytical treatment in the preceding section leads to a sim- 56

ple and transparent instability criterion (41). However the results 57

are obtained when the magnetic field is constant and a small pa- 58

rameter τ exists. A numerical treatment is required for a more 59

realistic solar atmospheric model with variable magnetic field. 60

We consider a vertically expanding flux tube along which 61

all equilibrium quantities are continuous. The equilibrium 62

field strength is a decreasing function of height in the 63

interval 0 < s < L. 64

The continuity of the variable x at the boundary s = L 65

follows from the continuity of the field lines. The following 66

equation can be derived from the governing Eqs. (21), (22): 67

∂z
∂s
= −iωx +

∂

∂s
(u0x) , (42)

The continuity of z follows from Eq. (42). The shooting method 68

is applied to find the eigenfrequencies. Linear torsional perturba- 69

tions are driven at s = 0 and the solutions at s = L are obtained 70

by numerically integrating the governing equations with a fourth 71

order Runge-Kutta method. The obtained solutions are matched 72

with the analytical solutions in s > L and the resulting numerical 73

algebraic equation is solved for ω. 74

A boundary condition at s = L must be specified through 75

one of the solutions derived in Sect. 3. In the photosphere and 76

chromosphere, the solar magnetic field is highly structured. At 77

photospheric levels the field appears to be clumped into intense 78

(1–2 kilogauss) bundles with diameters of a few hundred kilo- 79

meters. The gas pressure inside these flux tubes is lower than 80

the outside pressure, which provides the confining force. The 81

gas pressure declines with increasing height, and the flux tubes 82

necessarily expand (e.g., Hollweg 1981). 83

It has been argued that when the flux tubes fan out the 84

average field strength is 5–10 Gauss in coronal holes, and 85

some 50–100 Gauss in the active regions (Hollweg 1990). Using 86

simultaneous photospheric and chromospheric magnetograms, 87

no evidence of expansion was found by Zhang & Zhang (2000). 88

On the other hand, with spectropolarimeter data from the SOT, 89

Tsuneta et al. (2008) estimated an upper limit area expansion 90

for flux tubes between the photosphere and lower corona in the 91

southern polar region of the Sun to be 345. We separately con- 92

sider rapid and moderate expansion of flux tubes in the context 93

of the Alfvén instability. 94
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4.1. Rapidly expanding flux tubes1

A set of boundary conditions describing rapid expansion is pro-2

vided by the conditions u0, T0 = const. in the region s > L.3

The corresponding wave solutions are provided in Sect. 3.3. The4

magnetic field becomes an exponentially decreasing function of5

height and the speed of the decrease is determined by the inverse6

of the scale height. Provided the flow is sub-Alfvénic in the re-7

gion s > L there will be a point where the decreasing Alfvén8

speed becomes equal to the constant flow speed also known as9

the Alfvén point. Equations (31) and (34) show that in order to10

have a finite solution at the Alfvén point the constant a2 must be11

zero. The solution in the upper region then becomes12

x = a1 × 2F1

⎛⎜⎜⎜⎜⎝−iω
λ

u0
, 1 − iω

λ

u0
; 2 − 2iω

λ

u0
; 1 − u2

0

c2
A(s)

⎞⎟⎟⎟⎟⎠ , (43)

where λ is the constant scale height for s > L. The counterpart z13

in the region s > L is determined from Eqs. (42), (21), (28)14

using the differentiation formula for hypergeometric functions15

(Abramowitz & Stegun 1972):16

z =
a1

2
· λiω

1 − iωλ/u0

×
⎡⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎜⎝1 − u2

0

c2
A

⎞⎟⎟⎟⎟⎠ × 2F1

⎛⎜⎜⎜⎜⎝1 − iω
λ

u0
, 2 − iω

λ

u0
; 3 − 2iω

λ

u0
; 1 − u2

0

c2
A

⎞⎟⎟⎟⎟⎠
+ 2 × 2F1

⎛⎜⎜⎜⎜⎝−iω
λ

u0
, 1 − iω

λ

u0
; 2 − 2iω

λ

u0
; 1 − u2

0

c2
A

⎞⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎦ · (44)

In the region 0 < s < L, the equilibrium quantities are functions17

of distance, s, flow speed, u0, and temperature, T0. In the follow-18

ing numerical results, distance and speed are normalised with re-19

spect to the scale height λ(0) and the sound speed cs(0). As an20

example, a sound speed of cs(0) = 7.5 km s−1 at a photospheric21

level of s = 0 corresponds to a scale height of λ(0) = 125 km.22

For simplicity, no body force is added in the momentum equa-23

tion. The upflow in the region s > L = 2 is maintained by a pos-24

itive source term S due to heating. The density and the Alfvén25

speed are both decreasing functions above s = L as a conse-26

quence of the prescribed constant flow and temperature profiles.27

4.1.1. Subsonic flows28

Figure 2 shows an equilibrium with rapid expansion where the29

normalised magnetic field decreases by a factor of 260 over a30

distance of 4λ(0). The temperature is kept constant over a dis-31

tance 4λ(0). The equilibrium flow profile which results in rapid32

expansion remains subsonic and is shown in the upper panel of33

Fig. 2. Two different profiles of the Alfvén speed corresponding34

to different values of cA(0) are plotted with dashed lines.35

The real and imaginary frequencies are plotted as functions36

of the photospheric Alfvén speed, cA(0), in the lower panels of37

Fig. 2. The real and imaginary parts of an eigenfrequency are38

shown with a same linestyle. There is a damped mode with zero39

frequency (dotted) and a mode with an imaginary frequency that40

remains positive until about cA(0) = 4. Other modes are heavily41

damped and not shown. The presence of a growing mode indi-42

cates an instability. Figure 2 shows that the Alfvén instability43

may set in for subsonic flows and supersonic Alfvén speeds.44

The purely damped does not oscillate. This mode could45

be a feature of the rapid tube expansion as it does not ap-46

pear in the case of moderately expanding tubes (Sect. 4.2).47

Purely damped modes have been found in previous studies (for48

example, De Moortel & Hood 1999).49

Fig. 2. Profiles of a subsonic equilibrium flow (solid) and a decreasing
magnetic field (dashed). The segment of the tube with decelerating flow
corresponds to rapid expansion of the flux tube. Smooth profiles of the
Alfvén speed with cA(0) = 1.5 and cA(0) = 4 are plotted with dotted
lines. The lower two panels display the continuous variation of cA(0)
from to 1.5 to 4 and the corresponding real and imaginary frequencies of
the eigenmodes. The dashed lines represent an unstable mode. Strongly
damped modes are not shown.

The mechanism of amplification is over-reflection and the 50

mechanism of damping is partial reflection of the Alfven waves 51

in the region of negative flow gradient and rapid expansion. The 52

process is discussed analytically in a simplified geometry by 53

Taroyan (2008). 54

4.1.2. Supersonic flows 55

Another rapidly expanding flux tube is shown in the upper panel 56

of Fig. 3. The magnetic field decreases by a factor of 120 over 57

four scale heights λ(0). The main difference with Fig. 2 is that the 58

flow starts off supersonically and gradually becomes subsonic 59

with height. The sound speed remains constant throughout. The 60

lower panels show the presence of unstable modes for a range 61
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Fig. 3. Profile of a supersonic equilibrium flow (solid) corresponding to
a rapidly expanding flux tube with decreasing magnetic field (dashed).
Smooth profiles of the Alfvén speed for cA(0) = 2 and cA(0) = 6 are
plotted with dotted lines. The lower two panels display the continu-
ous variation of cA(0) from to 2 to 6 and the corresponding real and
imaginary frequencies of the eigenmodes. The solid and dashed lines
correspond to unstable modes. Strongly damped modes are not shown.

of photospheric Alfvén speeds. Similar to the previous case, a1

purely damped mode is always present.2

Figure 4 displays the dependence of the instability on the3

upflow speeds at the photospheric level, where an Alfvén speed4

of cA(0) = 3 is set. Only flows with u0(0) < 1.5 are consid-5

ered. For higher speeds the magnetic field becomes an increasing6

function of height. The upper panel of Fig. 4 shows two differ-7

ent equilibria with subsonic and supersonic flows at the photo-8

sphere. The lower panels show the presence of a purely damped9

mode and two modes which become unstable as the flow speed10

changes from u0(0) = 0.5 to u0(0) = 1.5.11

The spatial structure of the real and imaginary parts of the12

eigenmodes bθ is plotted in Fig. 5. The corresponding frequen-13

cies are plotted in Fig. 2. An Alfvén speed of cA(0) = 314

is selected. The solid, dotted and dashed lines correspond to15

Fig. 4. Equilibrium flow profiles (solid) for a rapidly expanding tube
with u0(0) = 0.5 and u0(0) = 1.5. The corresponding decreasing mag-
netic field is plotted with dashed lines and the profiles of the Alfvén
speed are shown with dotted lines. For values of u0(0) higher than 1.5
the magnetic field is no longer a decreasing function of height. The
lower two panels display the continuous variation of u0(0) from 0.5
to 1.5 and the corresponding real and imaginary frequencies of the
eigenmodes. Unstable modes appear with increasing flow speed (solid
and dashed lines).

ωr = 0, 2.4, 5 and ωi = −0.5, 0.5,−0.3, respectively. The 16

variation in these frequencies with the Alfvén speed is plotted in 17

Fig. 2. There is strong amplitude increase in the region of over- 18

reflection where the flow decelerates. In the upper region s > 2, 19

the amplitudes tend to decrease, but remain much higher than 20

in the lower region. It is also worth noting that the amplitudes 21

corresponding to modes with higher frequencies are larger. 22

4.2. Moderately expanding flux tubes 23

For moderately expanding tubes the flow and the magnetic field 24

are constant in the upper region s > L. The solutions are given 25
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Fig. 5. Dependence of the eigenmodes on the spatial coordinate s cor-
responding to Fig. 2. The Alfvén speed is fixed at cA(0) = 3. The two
panels display the continuous variation of the real and imaginary parts
of the eigenmodes. The solid, dotted and dashed lines represent corre-
sponding frequencies in Fig. 2. Strongly damped modes are not shown.

by the Eqs. (26), where a2 = 0 is set as there are no sources of1

energy when s > L . The result is2

x = a1 exp

(
iωs

cA + u0

)
, z = −cA(L)x. (45)

At lower heights when 0 < s < L the coefficients of the govern-3

ing Eqs. (21), (22) are functions of height, the flow speed, and4

the magnetic field strength. The dispersion relation is solved by5

matching the numerical solutions in the region 0 < s < L with6

the analytical solution in the region s > L.7

The temperature profile depends on height, the flow speed,8

the magnetic field strength and the body force. Once u0 and B09

are fixed, there is no need to specify the body force. It will af-10

fect the temperature profile, the source term S and vice versa.11

However, the relationships between these quantities have no in-12

fluence on the behaviour of the linear Alfvenic perturbations be-13

cause the coefficients in the wave equations only depend on u014

and B0.15

Firstly, we study the dependence of the instability on the16

deceleration of the flow along the tube. The equilibrium pro-17

files and the corresponding eigenmode frequencies are plotted in18

Fig. 6. Similar to the case of rapidly expanding tubes, distance19

and speed are normalised with respect to the scale height λ(0)20

and the sound speed cs(0), respectively. The magnetic field is21

measured in arbitrary units. It decreases by a factor of 10 within22

a distance of 10 scale heights. As an example, a sound speed of23

cs(0) = 7.5 km s−1 at a photospheric level of s = 0 corresponds24

to a scale height of λ(0) = 125 km and a reflection height of25

10λ(0) = 1250 km: a pulse generated at s = 0 propagates up26

and becomes either partially reflected, leading to damping, or27

over-reflected, leading to exponential growth and instability. A28

Fig. 6. Equilibrium flow profiles (solid) for a moderately expanding
tube with u0(L) = 1 and u0(L) = 4. The corresponding magnetic field is
plotted in arbitrary units with dashed lines and the profiles of the nor-
malised Alfvén speed are shown with dotted lines. The lower two panels
display the continuous variation of u0(L) from to 1 to 4 and the corre-
sponding real and imaginary frequencies of the eigenmodes. An unsta-
ble mode (solid) is shown. The remaining modes are heavily damped.
The real and imaginary parts of one such mode are plotted with a dotted
lines.

strong negative gradient in the flow favours the amplification of 29

the waves. 30

Continuous equilibrium profiles with two different values of 31

the flow speed at the interface s = L (u0(L) = 1 and u0(L) = 32

4) are plotted in the top panel of Fig. 6. A zero level Alfvén 33

speed of cA(0) = 3 is chosen. The flow accelerates within a short 34

distance from a photospheric value of u0(0) = 0.2 and continues 35

to increase until a maximum of u0(s) = 10 is reached at a height 36

of s = 5λ(0). As a result, a maximum Alfvén speed of cA = 22 is 37

reached. The tube expands between s = 5 and s = 10 where the 38

flow continues to remain sub-Alfvénic due to deceleration with 39

height. 40

The corresponding variations of the real and imaginary fre- 41

quencies between u0(L) = 1 and u0(L) = 4 are plotted in the 42

two lower panels. An unstable mode represented by a solid line 43

is present. The mode eventually becomes stable as the flow 44
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Fig. 7. The different magnetic field profiles for a moderately expanding
tube are plotted in the upper panel with dashed lines. The first profile is
constant, the second one decreases by a factor of 25. The corresponding
Alfvén speeds are plotted with dotted lines. The flow profile is fixed.
The lower two panels display the eigenmode frequencies as functions of
the expansion factor which is reciprocal to the magnetic field strength.
An unstable mode appears as the tube begins to expand.

speed u0(L) becomes large. A strongly damped mode with a1

higher frequency is also plotted.2

Finally, we study the dependence of the instability on the3

expansion factor of the flux tube which is reciprocal to the mag-4

netic field ratio B0(L)/B0(0). Two equilibria with different values5

of B0(L) are shown in the top panel of Fig. 7. The upper dashed6

line represents a flux tube with constant radius, the lower dashed7

line represents a tube with an expansion factor of 25. The corre-8

sponding Alfvén speed profiles are plotted with dotted lines. In9

both cases, a photospheric value of cA = 3 is selected. The flow10

profile is fixed with a photospheric speed of u0(0) = 0.2. An in-11

crease in the expansion factor leads to a decrease in the Alfvén12

speed cA(L) as a consequence of the continuity equation.13

Two eigenmode frequencies are displayed in Fig. 7. The first14

one plotted with a solid line has approximately constant fre-15

quency and becomes exponentially amplified is tubes with larger16

expansion factors. For comparison, a second mode with variable17

Fig. 8. Comparison of three tubes in a gravitationally stratified atmo-
sphere. The arrows denote the flow speed. The first two tubes remain
stable. The third tube is unstable due to rapid expansion and decelera-
tion of the flow.

frequency and damping rate is plotted with a dotted line. The 18

remaining strongly damped modes are not shown. 19

5. Discussion and summary 20

A vertical open magnetic flux tube in a gravitationally strati- 21

fied atmosphere is considered. The tube is permeated by a ver- 22

tical upflow driven by heating or a body force. Equilibria incor- 23

porating the effects of a vertical force, heating, and losses are 24

derived analytically. Analytical solutions for torsional perturba- 25

tions in the upper regions for different types of equilibria are 26

derived. The governing equations for torsional motions are in- 27

tegrated with a fourth order Runge-Kutta method and matched 28

with the analytical solutions in the upper regions to obtain a nu- 29

merical dispersion relation which is solved for the eigenmode 30

frequencies. Analytical treatment of the dispersion relation be- 31

comes possible when the flux tube has a constant cross-section. 32

A steady state flux tube of constant cross-section is unstable if it 33

contains a segment where the flow decelerates. 34

A numerical analysis is carried out for flux tubes with vari- 35

able cross-sections which are permeated by subsonic or super- 36

sonic plasma flows. The results show that, in general, the in- 37

stability favours lower Alfvén speeds and higher flow speeds at 38

the photosphere. On the other hand, the instability is suppressed 39

when the flow does not decelerate in the upper regions or when 40

the flux tube does not expand. Figure 8 illustrates this by com- 41

paring three tubes two of which remain stable, whereas the third 42

one is unstable due to expansion and deceleration of the flow. 43

The equilibrium is unstable due to the presence of Alfvénic 44

perturbations. However the equilibrium does exist and it is an- 45

alytically constructed in Sect. 2. In the case of an initial static 46

background the model has been tested by Hollweg et al. (1981) 47

and others. In the linear regime, the equilibrium quantities de- 48

rived in Eqs. (14)–(17) remain constant in time. Figures 2–7 49

show that the perturbations are damped when the negative flow 50

gradient or the expansion factor are not large enough. The re- 51

quirement of a negative flow gradient is somewhat similar to the 52

requirement of a flow shear in the Kelvin-Helmholtz instability. 53

Of course, the mechanisms are different. 54

The decelerating flow and the tube expansion essentially 55

set up a cavity between the photosphere and the height of 56

reflection/over-reflection. The generated torsional perturbations 57

exponentially grow as they bounce back and forth within the 58

cavity. It is important to emphasise that the amplifying cavity 59

is different from resonant cavities discussed by where certain 60
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frequencies are required for growth and the growth itself is not1

necessarily exponential (Hollweg 1984; Matsumoto & Shibata2

2010). Instead, an arbitrary pulse will always grow exponentially3

as long as the equilibrium satisfies the instability criteria.4

The amplified perturbations should subsequently couple to5

longitudinal shocks or dissipate their energy through another6

process as they become nonlinear. This may have important im-7

plications for solar atmospheric heating and wind acceleration.8

We have already mentioned about the abundance of Alfvén9

waves in recent observations. An observational signature of the10

Alfvén instability would be the presence of standing or both up-11

ward and downward propagating large amplitude Alfvén waves12

in the lower solar atmosphere. Above the reflection height only13

upward propagating waves are expected to exist.14

The equation of continuity (7) can be rewritten as u0 B0

c2
A
=15

const. This shows that the tube expansion or the deceleration16

of the flow are both equivalent to a decreasing Alfvén speed.17

Hence over-reflection becomes possible when the Alfvén speed18

decreases in a section of the tube.19

For example, according to Fig. 6, for a photospheric sound20

speed of 7.5 km s−1 and a flow speed of u0(0) = 1.5 km s−121

the maximum Alfvén speed for which over-reflection still oc-22

curs is 30 km s−1 at a height of 1250 km. The reported Alfvén23

speeds at those heights have similar values (Hollweg 1981).24

The Alfvén speed is expected to be lower in spicular regions25

compared with nonspicular regions due to enhanced densities.26

On the other hand, higher Alfvén speeds would require unre-27

alistically strong magnetic fields and high flow speeds at higher28

altitudes. It must be added that the present model considers equi-29

libria that are unstable with respect to the Alfvénic perturba-30

tions. Therefore, a comparison between an unstable equilibrium31

and the physical parameters in the solar atmosphere is not very32

meaningful. Analysis of the nonlinear evolution of the instability33

is therefore required.34

Another important question to address is the validity of a35

time-independent flow. This assumption can be justified if the36

periods of the waves are small compared with the lifetime of the37

flow. A typical lifetime of a spicule is 10–20 min. On the other38

hand, the predicted periods of the unstable waves are less than39

a minute. The role of time-dependent flows should be addressed40

in the future.41
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