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NR4 7TJ, UK.)

and SIMON COX

(Department of Mathematics and Physics, Aberystwyth University, Aberystwyth,
Ceredigion, SY23 3BZ, UK.)

[Under consideration for publication in Q. J. Mech. Appl. Math.]

Summary

A mathematical analysis is presented of the stability of a soap film with uniform
surface tension when stretched between two diameters on the inside of a circular
cylinder. The stability boundary is found as a critical twist angle θ between the
two diameters, as a function of the aspect ratio ℓ of the cylinder. Numerical and
asymptotic results agree well with previous numerical simulations and experiments
by Cox & Jones (J. Engr Math, 2014, 86, 1–7). Their hypothesis that the stability
boundary for the multiple-vane case is identical to the single film case is confirmed.
It is also shown that two distinct instability mechanisms operate. For moderate and
small θ/ℓ, the instability is driven by the decrease in area caused by the film moving to
an off-diameter position. But for larger θ/ℓ (more twisted films), the decrease in area is
dominated by an internal rearrangement of the surface. The latter mechanism is more
relevant to Plateau borders in foams, and our results indicate that straight Plateau
borders should be stable at any length provided the total twist is less than π/

√
2.

1. Introduction

Surface-tension-driven interfaces that attempt to minimize their surface area are common in
situations involving two immiscible fluids. In many cases, such as in liquid foams, there will
be multiple such surfaces interacting with one another. Plateau first laid down what are now
know as ‘Plateau’s laws’ for static configurations of interacting soap films (1). Apart from
at interfaces, the films are smooth surfaces, and each smooth piece has a uniform curvature.
The films meet in lines (known as Plateau borders), with three films meeting at equally
spaced 120◦ angles. The lines meet in fours at isolated vertices, which have tetrahedral
symmetry. These laws were subsequently proved by Taylor (2) using differential-geometry
methods.
While Plateau’s laws give necessary conditions for static equilibrium, the problem of

understanding dynamical behaviour and the instabilities that lead to topological changes
is more challenging. A review by Weaire et. al. (3) describes various instabilities in liquid
foams and the topological changes that can result. Here, we present a mathematical analysis
of one instability that is relevant to Plateau borders that are subjected to a twist.
Recently, Cox & Jones (4) studied the stability of a soap film inside a circular cylinder,
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Fig. 1 The Cartesian coordinate system (x, y, z) and the cylinder of radius R and length H that
contains the initial helicoidal surface. In the single-vane case (a), the surface is pinned between
two diameters at each end with a relative twist θ. In the multiple-vane case (b), N vanes (N = 3 is
illustrated) are pinned between equally spaced radii at each end, all with the same twist θ between
the two ends.

by conducting experiments and numerical simulations using Surface Evolver (5). They
began by considering an initially helicoidal surface that is pinned between two diameters
a distance H apart and twisted by an angle θ. The other two edges of the film make
contact with the curved wall of the cylinder, which has radius R. See Fig. 1(a). The area
of this helicoidal surface is stationary with respect to small perturbations, but was found
to be either stable or unstable depending on the values of θ and ℓ ≡ H/R. Experimentally
and numerically, Cox & Jones started from (smaller) values of θ and ℓ where the surface
was stable, and increased one or other variable until the surface became unstable. (The
instability typically manifested itself by the film bending axially off the diameter, the two
sides along the cylinder wall meeting, and then the film separating into two and collapsing
back to a semicircle at each end.)
Cox & Jones (4) went on to consider the case of multiple vanes pinned between equally

spaced radii and joined at a central singular line (a Plateau border in the case of three vanes)
that initially lay along the axis of the cylinder. See Fig. 1(b). The stability boundary they
obtained in θ–ℓ space appeared to be the same for both the single and all multiple-vane
cases. In addition, they also presented an analytical theory for the stability of a single
initially flat film (θ = 0) as ℓ is varied.
In this paper, we extend the analytic theory to the case of twisted films. We adopt

the same approach as that used by Cox & Jones (4); namely seeking perturbations that
minimize the area with respect to other nearby perturbations. These perturbations will
represent the most energetically favourable deformation. At the stability boundary, one
such perturbation will have precisely zero change in area from the original surface. For on
one side of the boundary, all perturbations must have a strictly large area, whereas on the
other, at least one perturbation must result in a strictly smaller area.
In §2 we set up the mathematical description for the single film case, and obtain the

equations that describe an area-minimizing perturbation. We show that the perturbation
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can be decomposed into axial Fourier and radial parity modes, and that the area of the
perturbed surface can be written as the sum of the area changes due to each of the modes.
In §3 we show that the behaviour of the fundamental even mode governs the stability of
the film. From the numerical solution of a second-order ODE, we are able to compute the
critical mode and the location of the stability boundary.
We also investigate the physical mechanisms that lead to the instability. We find that for

moderate twists θ, the instability arises due to the perturbed surface being able to reduce
its area by moving its contact line with the curved cylindrical walls. For larger θ a second
mechanism, involving an internal rearrangement of the surface near the axis also operates.
For θ > π/

√
2, we show that this second mechanism can lead to instability in the absence

of area saving by the curved walls.
In §4, we extend our analysis to multiple vanes and show that for any number of vanes,

the problem can be reduced to the same equations as for the single-film problem. The
problems therefore all have precisely the same stability boundary in θ–ℓ space. Finally, we
present our conclusions in §5.

2. Mathematical Formulation

The soap-film surface is modelled as a deformable membrane with uniform surface tension
and no resistance to bending or shearing. It therefore seeks to minimize its total area.

2.1 Initial surface and perturbation

We use Cartesian coordinates (x, y, z), and consider an initially helicoidal surface bounded
by the interior wall of a cylinder at x2 + y2 = R2 and pinned to two diameters at z = 0
and z = H . The diameter at z = H is rotated by an angle θ about the z axis relative to
the diameter at z = 0, giving the surface a twist as shown in Fig. 1(a). Without loss of
generality, we take R > 0, H > 0 and θ ≥ 0.
We non-dimensionalize lengths on the cylinder radius R, and define ℓ = H/R as its

dimensionless length (or aspect ratio). The initial helicoid surface is then described by
specifying the non-dimensional position x0 of a general point on the surface in terms of two
dimensionless coordinates ξ ∈ (−1, 1) and η ∈ (0, ℓ):

x0(ξ, η) =





ξ cos kη
ξ sin kη

η



 , (2.1)

where k = θ/ℓ is the helicity or pitch parameter. See Fig. 2(a).
By considering the vector cross product (∂x0/∂ξ) × (∂x0/∂η), the unit normal to this

surface is found to be

n̂ =
1

(1 + k2ξ2)
1/2





− sinkη
cos kη
−kξ



 . (2.2)

We then describe a general perturbation to the surface using a small parameter ǫ ≪ 1 and
a function ζ(ξ, η), such that ǫζ is the normal displacement from each point of the original
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Fig. 2 The geometry and coordinates associated with the initial helicoid surface and its
deformations. (a) The initial surface x0(ξ, η) parameterised by coordinates ξ and η. The surfaces
formed by the normals n̂ at the cylinder walls (ξ = ±1) are also shown, as is a ξ–ζ surface generated
by normals at a fixed η. (b) The deformations within a ξ–ζ surface, showing how the converging
cylinder walls cause the range of ξ to be diminished from (−1, 1) to (ξ−(η), ξ+(η)).

surface. The new surface is thus given parametrically by

x(ξ, η) = x0(ξ, η) + ǫ ζ(ξ, η) n̂(ξ, η)

=





ξ cos kη
ξ sin kη

η



+
ǫ ζ(ξ, η)

(1 + k2ξ2)
1/2





− sinkη
cos kη
−kξ



 . (2.3)

The pinned diameters at z = 0, ℓ require that we take

ζ(ξ, 0) = ζ(ξ, ℓ) = 0 . (2.4)

Owing to the curvature of the cylinder walls, the outer edges of the deformed surface will
no longer occur precisely at ξ = ±1. See Fig. 2(b).

2.2 Area of the perturbed surface

The area of the perturbed surface is given by

A =

∫ ℓ

0

∫ ξ+(η)

ξ−(η)

L (ξ, η; ζ) dξ dη , (2.5)

where ξ±(η) are the values of ξ at which the perturbed surface meets the cylinder wall, and

L =

∣

∣

∣

∣

∂x

∂ξ
× ∂x

∂η

∣

∣

∣

∣

(2.6)

is the surface area per unit coordinate area.
The points ξ±(η) are found using

(

x(ξ±, η) ·(1, 0, 0)
T
)2

+
(

x(ξ±, η) ·(0, 1, 0)
T
)2

= 1 . (2.7)
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Substituting from (2.3) we obtain (without approximation)

ξ2± = 1−
ǫ2
[

ζ(ξ±, η)
]2

1 + k2ξ2±
. (2.8)

So ξ± = ±1 + O(ǫ2), and thence by expanding the right-hand side of (2.8) in powers of ǫ,
we obtain

ξ± = ±
(

1−
ǫ2ζ2±

2(1 + k2)

)

+O(ǫ4) , (2.9)

where ζ± = ζ(±1, η).
We evaluate L from the expression for x(ξ, η) in (2.3). Expanding in powers of ǫ, we

obtain
L = L0 + ǫ2L2 +O(ǫ3) , (2.10)

where

L0(ξ) =
(

1 + k2ξ2
)1/2

, (2.11)

L2(ξ, η; ζ) =
1

2

(

1 + k2ξ2
)1/2

(

∂ζ

∂ξ

)2

+
1

2

(

1 + k2ξ2
)−1/2

(

∂ζ

∂η

)2

−
(

1 + k2ξ2
)−3/2

k2ζ2 . (2.12)

There is no O(ǫ) term in the expansion (2.10) because the area of the original helicoid
surface is stationary with respect to small perturbations.
Using the expressions (2.9) and (2.10)–(2.12), We can now write the area (2.5) as

A = A0 + ǫ2
(

A
(s)
2 + A

(w)
2

)

+ O(ǫ3) , (2.13)

where the base-state area is

A0 =

∫ ℓ

0

∫ 1

−1

L0(ξ) dξ dη = ℓ

(

sinh−1 k

k
+
(

1 + k2
)1/2

)

, (2.14)

the leading-order perturbation due to area changes within the surface is

A
(s)
2 =

∫ ℓ

0

∫ 1

−1

L2(ξ, η; ζ) dξ dη , (2.15)

and the leading-order perturbation due to the curved walls causing a change in the domain
for ξ is

A
(w)
2 = − 1

ǫ2

[

∫ ℓ

0

∫ −1+ 1
2 ǫ

2ζ2
−
/(1+k2)

−1

L0(−1) dξ dη

+

∫ ℓ

0

∫ 1

1− 1
2 ǫ

2ζ2
+/(1+k2)

L0(1) dξ dη

]

,

= −1

2

∫ ℓ

0

(

1 + k2
)−1/2 (

ζ2+ + ζ2−
)

dη . (2.16)
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2.3 Euler–Lagrange equations for a minimal perturbed surface

We now look for perturbed surfaces x(ξ, η) that minimize the area A , relative to other

nearby perturbations. This requirement means that the integral for A
(s)
2 in (2.15) must be

minimal with respect to variations in ζ. We impose this using the Euler–Lagrange equations:

d

dξ

(

∂L2

∂ζξ

)

+
d

dη

(

∂L2

∂ζη

)

− ∂L2

∂ζ
= 0 , (2.17)

⇒ ∂

∂ξ

(

(

1 + k2ξ2
)1/2 ∂ζ

∂ξ

)

+
∂

∂η

(

(

1 + k2ξ2
)−1/2 ∂ζ

∂η

)

+ 2
(

1 + k2ξ2
)−3/2

k2ζ = 0 (2.18)

⇒ (1 + k2ξ2)
∂2ζ

∂ξ2
+

∂2ζ

∂η2
+ k2ξ

∂ζ

∂ξ
+

2k2ζ

1 + k2ξ2
= 0 . (2.19)

We now multiply equation (2.18) by ζ, and integrate over ξ ∈ (−1, 1), η ∈ (0, ℓ). Using
integration by parts, we can relate the integral to that in (2.15), and hence show that

A
(s)
2 =

1

2

∫ ℓ

0

[

(

1 + k2
)1/2

ζ
∂ζ

∂ξ

]ξ=1

ξ=−1

dη . (2.20)

The O(ǫ2) change in area can then be written as

A2 = A
(s)
2 + A

(w)
2 =

[

∫ ℓ

0

(

1 + k2
)1/2

ζ

(

∂ζ

∂ξ
− ξζ

1 + k2

)

dη

]ξ=1

ξ=−1

. (2.21)

2.4 Separation of variables

We now express the solution for ζ of (2.19) in terms of axial Fourier modes, and decompose
the radial functions into their even (symmetric) and odd (antisymmetric) components.
Noting the boundary conditions (2.4), we therefore write

ζ(ξ, η) =

∞
∑

n=1

(

an Sn(ξ) + bn An(ξ)
)

sin
(nπη

ℓ

)

, (2.22)

where Sn(ξ) = Sn(−ξ) are the symmetric parts, normalised by Sn(0) = 1; and An(ξ) =
−An(−ξ) are the antisymmetric parts, normalised by A′

n(0) = 1. The constants an and bn
are thus the values of the displacement and the radial displacement gradient of each axial
Fourier mode at ξ = 0.
Substituting (2.22) into (2.19), the different modes decouple, and each must satisfy

(1 + k2ξ2)X ′′ + k2ξX ′ +

(

2k2

1 + k2ξ2
− n2π2

ℓ2

)

X = 0 , (2.23)

where X = Sn or X = An as appropriate. Using the parity of the functions, we need only
consider ξ ∈ (0, 1). Appropriate boundary conditions at ξ = 0 are then

Sn(0) = 1 , S′
n(0) = 0 ; An(0) = 0 , A′

n(0) = 1 . (2.24a–d)
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We now substitute (2.22) into (2.21) and perform the integration over η. The orthogonality
of the Fourier modes means that only the diagonal terms in the double sums survive. The
area change at O(ǫ2) is then given by

A2 =
ℓ

2

(

1 + k2
)1/2

{ ∞
∑

n=1

a2n Sn(1)

(

S′
n(1)−

Sn(1)

1 + k2

)

+

∞
∑

n=1

b2nAn(1)

(

A′
n(1)−

An(1)

1 + k2

)

}

. (2.25)

For a given helicity k, length ℓ, axial mode n, and parity, there will be a unique solution
to (2.23) subject to (2.24), which is an area-minimising perturbation. The appropriate term
in (2.25) gives the area change for the for that perturbation. Critical modes occur at certain
values of k and ℓ when the area change is precisely zero. To find the critical lengths ℓ for
each k, axial mode and parity, we therefore look for values of ℓ which allow us to solve
equation (2.23) subject to the appropriate conditions from (2.24), together with either

X ′(1) =
X(1)

1 + k2
or X(1) = 0 , (2.26a,b)

to give zero contribution to A2 in (2.25). This can be achieved numerically, either using a
shooting algorithm, or with a finite-difference solver.
We note in passing that the condition (2.26a) is, to O(ǫ), equivalent to requiring that the

perturbed surface meets the cylinder wall orthogonally. This can be seen by considering the
scalar product of (∂x/∂ξ)× (∂x/∂η) (which is proportional to the normal to the surface)
and the projection of x onto the x–y plane (which is proportional to the normal to the
cylinder wall).

3. Finding the stability boundary

3.1 Numerical results

In equation (2.23), the mode number n can be absorbed into a single parameter L = ℓ/n,
so we need only find the critical values of L for each parity and each value of k.
For the even modes Sn(ξ) a numerical shooting routine finds one critical value L∗(k) of L

for each k ∈ [0,∞) where condition (2.26a) can be satisfied. As k → 0 we find L∗ → 2.61.
As k → ∞ we see L∗ ∼ 3.14/k. We also find a second critical value L0(k) for k ∈ (1.51,∞)
where condition (2.26b) can be satisfied. As k → 1.51 we find L0 → ∞. As k → ∞ we
again see L∗ ∼ 3.14/k. For k < 1.51 we were unable to find any values of L where where
condition (2.26b) could be satisfied.
To avoid the divergence in these critical values of L as k → ∞, we define Θ∗ = kL∗(k)

and Θ0 = kL0(k), and then plot Θ∗ and Θ0 against L in Fig. 3. The critical curves for
the nth even mode are then given by θ = nΘ∗(ℓ/n) and θ = nΘ0(ℓ/n). From (2.25), the
O(ǫ2) area change A2 is positive for θ < nΘ∗(ℓ/n) and for θ > nΘ0(ℓ/n), and negative for
nΘ∗(ℓ/n) < θ < nΘ0(ℓ/n).†

For the odd modes An(ξ), we are unable to find any finite values of L that give A2 = 0

† We adopt the convention when Θ∗(ℓ) is not defined for a particular value of ℓ, we take Θ∗ = −∞ to
make sense of any inequalities.
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Sn(1)
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Fig. 3 The boundaries in θ–ℓ space dividing regions of different behaviour of the even modes
Sn(ξ) at ξ = 1. The three thick lines are obtained using a numerical shooting technique to solve
the system (2.23)–(2.24b) for X = Sn, with either (2.26a), (2.26b) or (3.4a). The thin dotted lines
are the asymptotic results as ℓ → ∞. λ ≈ 1.1997 is the positive real root of λ = cothλ.

for any k. Numerically solving the equation (2.23) for An(ξ) subject to (2.24c) and (2.24d)
at numerous points in (k, ℓ) parameter space suggests that A2 is always strictly positive,
and certainly this would seem to be the case for θ < Θ∗(ℓ).

3.2 Stability boundary

We now argue that the curve θ = Θ∗(ℓ), as shown in Fig. 4, forms the stability boundary
for the system. To accomplish this, we will show that the helicoid surface is stable for
θ < Θ∗(ℓ), and unstable for θ > Θ∗(ℓ).
First suppose that Θ∗(ℓ) < θ < Θ0(ℓ). Then the n = 1 even mode S0(ξ) corresponds to a

deformation that yields a strictly smaller area at O(ǫ2). Since there are no area changes at
O(ǫ), this perturbation results in a decrease in surface area, and hence the original helicoid
is unstable to this perturbation.
Now suppose θ ≥ Θ0(ℓ). We are still able to construct a deformation that results in a

strictly smaller area, as follows. Consider the n = 1 even mode for the same value of k = ℓ/θ
but with smaller values ℓ′ of ℓ and θ′ of θ such that Θ∗(ℓ′) < θ′ < Θ0(ℓ′). (e.g. draw a
straight line from the origin to the point (θ, ℓ) in Fig. 3, and then choose a point (θ′, ℓ′) on
it that lies in the A2 < 0 region.) For 0 < ξ < ℓ′ we impose the deformation implied by
this mode, while for ℓ′ ≤ ξ < ℓ we impose zero deformation. The area change at O(ǫ2) is
simply the area change under the mode, which is negative. Hence the helicoid is unstable
to this perturbation.
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Fig. 4 The stability boundary θ = Θ∗(ℓ). Numerical results from the present work (continuous
line) are shown alongside numerical simulations of the full surface (circles) as described in
Appendix B. The dotted lines are the asymptotic solutions for large and small k, as described
in §3.3.

Finally suppose that θ < Θ∗, which also implies θ < Θ0. For any deformation ζ(ξ, η),
we now construct a related deformation ζ∗(ξ, η) which satisfies (2.4) and has the same
linearised contact line with the cylinder wall at ξ = ±1, but is a solution of (2.23). This is
achieved by taking Fourier series of ζ(±1, η) and using the Fourier coefficients to determine
the coefficients an and bn in (2.22). (This is possible, since Sn(1) and An(1) are always
non-zero for θ < Θ0.)
We show in Appendix A that for θ < Θ0, solutions of (2.23) and (2.4) have the global

minimal area for given Dirichlet boundary conditions at ξ = ±1. Hence the area of the ζ
surface will be greater than or equal to that of the constructed ζ∗ surface.
The net area change for ζ∗ is given by (2.25) and is simply the sum of the changes for

each individual mode. Since θ < Θ∗, all the modes give a strictly positive change, and
hence net area change under ζ∗ must be strictly positive. Thus, the area change under ζ
must be strictly positive, and therefore the helicoid is stable to all perturbations.
The stability boundary was also obtained using numerical simulations conducted with the

surface minimization software Surface Evolver (5). These simulations are a refined version
of the results presented by Cox & Jones (4), and further details can be found in Appendix B.
The simulation results are shown alongside the theoretical boundary θ = Θ∗(ℓ) in Fig. 4,
and we see excellent agreement.
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Fig. 5 The transverse functions S1(ξ) in the neutral perturbations ζ = ǫ S1(ξ) sin(πη/ℓ) at the
stability boundary, for different values of k. The k = 0 and k = ∞ solutions are given analytically
in (D.6) and (C.16). The other solutions are found numerically from the results in §3.1. Panel
(b) shows the same curves with a rescaled horizontal axis, to demonstrate the self-similar form as
k → ∞.
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3.3 Limiting behaviour for small ℓ and θ

The system (2.23)–(2.26a) for the even modes at the stability boundary can be analysed
asymptotically in the limits k ≫ 1 and k ≪ 1, which correspond to small ℓ and small θ
respectively. The detailed calculations can be found in Appendices C and D, where we
obtain the following results for the stability boundary:

θ ∼ π

(

1− ℓ2

π2

)

for ℓ ≪ 1 (3.1)

θ ∼
√

6πλ

2 + λ2

(π

λ
− ℓ

)1/2

for
π

λ
− ℓ ≪ 1 (3.2)

where λ ≈ 1.1997 is the positive real root of λ = cothλ. These two asymptotic limits are
shown in Fig. 4 alongside the full numerical solutions and the simulations.

3.4 Instability mechanisms

The most unstable perturbations are given by the n = 1 even modes. The radial shapes
S1(ξ) of these modes at the critical (neutral-stability) point for different values of k are
shown in Fig. 5.
For small k (small θ) the instability mechanism is the obvious one, involving the contact

lines with the cylinder wall moving away from the diameter to take advantage of the smaller

distance across the cylinder. This loss of area at the wall (A
(w)
2 < 0) has to be balanced

against the increase in area caused by the curvature in the axial direction (A
(s)
2 > 0).

A critical length must be exceeded for the increase in A
(s)
2 to be sufficiently small to

be overcome by the decrease in A
(w)
2 . The form of the most unstable perturbation is

qualitatively similar to the k = 0 solution, in which ζ = ǫ cosh(λξ) sin(πη/ℓ) (derived in
Appendix D).
For larger k, however, a different mechanism applies. We can see from Fig. 5 that the

critical modes for k ≫ 1 are localised towards the centre of the cylinder at ξ = 0 and have
negligible displacements at ξ = 1. The majority of the area reduction to offset the increases
due to the axial profile therefore occurs due to the central displacements and not due to the
displacement of the contact line at the boundary. The deformations around the centre-line
allow an area saving on their own, without needing help from the external boundaries.

We can confirm that the area loss A
(w)
2 caused by the movement of the contact point on

the cylinder wall is unnecessary for instability, by removing that area-loss term from (2.21).
The expression (2.25) for the O(ǫ2) area change then becomes

A2 = A
(s)
2 =

ℓ

2

(

1 + k2
)1/2

∞
∑

n=1

{

a2n Sn(1)S
′
n(1) +An(1)A

′
n(1)

}

. (3.3)

Hence, when solving (2.23) with (2.24), the appropriate boundary conditions to consider
for each mode at ξ = 1 are

X ′
n(1) = 0 , or Xn(1) = 0 , (3.4a,b)

in place of (2.26).
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0.7 π

0.8 π

0.9 π

1.0 π

0 2 4 6 8

θ

ℓ

Stable

Unstable

π√
2

Fig. 6 The stability boundary for the case where there is no area saving from the cylindrical
wall, i.e. the boundary condition (2.26a) is replaced by (3.4a). The theoretical boundary θ = Θ†(ℓ)
is shown by the solid line. The dotted lines show the asymptotic results (C.29) and (E.15) for
large and small k. Results from numerical simulations (see Appendix B) are also shown; circles
representing configurations found to be stable, and crosses those found to be unstable. The thin
dashed line shows the original stability boundary from Fig. 4.

Solving this new system numerically, we again only find solutions for the even modes.
Solutions for the Sn(1) = 0 condition have already been obtained in §3.1. The new S′

n(1) = 0
condition results in a new boundary θ/n = Θ†(ℓ/n), which is shown in Fig. 3. The new
stability boundary is shown in more detail in Fig. 6, along with asymptotic solutions for
large and small k, and the results of numerical simulations (see below). The shape of the
new neutrally stable n = 1 modes are shown in Fig. 7.
For k ≫ 1, the asymptotic behaviour of the system is the same as for the previous case,

as described in Appendix C. (Specifically, the leading-order and first-order corrections to
θ in (C.29) are found to be independent of the area change at the outer wall.) The critical
angle tends to nπ as ℓ → 0 as before, and the displacements in the critical modes become
localised near ξ = 0.
For k ≪ 1, the new calculations are presented in Appendix E. We find that the critical

angle asymptotes to a constant nθ∞ as ℓ → ∞, where θ∞ = π/
√
2. Therefore, with these

boundary conditions, arbitrarily long helicoids are stable provided that the total twist θ is
not greater than θ∞. The radial functions Sn(ξ) for the critical modes are almost uniform,
but with a slightly larger displacement near ξ = 0 than towards ξ = 1.
As with the original problem, the stability boundary is also estimated using numerical

simulations performed with Surface Evolver. The change in boundary conditions is
equivalent to replacing the curved cylinder wall by a pair of walls generated by the normals
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0

0.5

1
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2

0 0.2 0.4 0.6 0.8 1

S1

ξ

k = 0
k = 1.0
k = 2.0
k = 4.0
k = 10
k = 30
k = 100

Fig. 7 The transverse functions S1(ξ) at the stability boundary, as in Fig. 5(a), but for the case
where there is no area saving from the cylindrical wall. Different behaviour is seen for k ≤ O(1),
but as k → ∞, the solutions become asymptotically equal to those with the wall present; as shown
in Fig. 5(a).

to the initial helicoid surface at ξ = ±1. Full details of the simulations are provided in
Appendix B, and the results can be seen in Fig. 6.
This new system may actually be more relevant to the stability of films in a larger system,

because it removes the external instability mechanism, namely the effect of the curved
cylinder walls. From the form of the critical modes, we can see that the perturbations are
localised along the centre-line, i.e. the most twisted part of the surface.

4. Stability with multiple vanes

Suppose that in the base state we now have N equally spaced helicoidal vanes emanating
from a central singular line at x = y = 0, as depicted in Fig. 1(b). For N = 3, this is the
standard configuration of a Plateau border. For N = 2 we return to the case of a single
film as studied above.
Using the same dimensionless coordinate system as before, each vane is pinned to a

cylinder radius at z = 0 and z = ℓ, and the remaining edge lies on the cylinder wall
x2 + y2 = 1 as before. At z = 0, the pinned radii lie at equally spaced angles θj = 2jπ/N ,
where 0 ≤ j ≤ N − 1. At z = ℓ, we have equally spaced angles θ + θj , so that each vane
is subject to the same twist angle θ = kℓ. The base-state location of the jth vane is thus
given by

x
(j)
0 (ξ, η) =





ξ cos(θj + kη)
ξ sin(θj + kη)

η



 (4.1)
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(a)
ǫφ

ǫq(0)

ǫh(0)
kz

x

y

(b)

1

ξ

≈φ(j)

ζ (j)

0

0 ξ
(j)
0 ξ

(j)
+

≈ (ǫq(j), h(j))

Fig. 8 The geometry of the film near the central singular line for the case of multiple vanes. (a)
The central region at axial position z with N = 3 vanes. The singular line is originally at x = y = 0
with the the vanes shown by thick dashed lines. It is then displaced by ǫ(q(0), h(0)) and the vanes
each rotated by an additional angle ǫφ. The vanes in this displaced and rotated configuration are
shown by thick solid lines. (b) The coordinates for describing the perturbation to the jth vane of

the film, between the singular line at ξ = ξ
(j)
0 (η) and the cylinder wall at ξ = ξ

(j)
+ (η).

where η ∈ (0, ℓ) and ξ ∈ (0, 1).
The perturbed position of the jth vane is then described by a function ζ(j)(ξ, η) in the

same way as in (2.3), namely

x
(j)(ξ, η) =





ξ cos(θj + kη)
ξ sin(θj + kη)

η



+
ǫ ζ(j)(ξ, η)

(1 + k2ξ2)
1/2





− sin(θj + kη)
cos(θj + kη)

−kξ



 . (4.2)

The range of ξ is now restricted to ξ ∈ (ξ
(j)
0 (η), ξ

(j)
+ (η)), where ξ

(j)
0 is the point where the

vane joins the (potentially displaced) singular line, and ξ
(j)
+ is (as before) the point where

the vane meets the cylinder wall. See Fig. 8(b).
Suppose that under the perturbation (4.2), the central singular line at dimensionless axial

position z is displaced in the x–y plane by ǫq(0)(z) and ǫh(0)(z) in the directions parallel
and perpendicular to the unperturbed j = 0 vane. Suppose also that the vanes are rotated
through an angle ǫφ(z) as they meet at the line. These perturbations are depicted in
Fig. 8(a). (Note that the singular line may no longer lie parallel to the z axis, and that φ
is measured in the plane perpendicular to the border.) All vanes are assumed to be rotated
by the same angle ǫφ(z) at a given value of z. For if not, the angles that the surfaces meet
at would not be equal, and we would be able to displace the border slightly to obtain a
lower total surface area.

4.1 Boundary conditions on ζ(j)

We must now relate the functions q(0)(z), h(0)(z) and φ(z) that describe the displacement
and rotation of the singular line, with the functions ζ(j)(ξ, η) that describe the perturbation
to each vane, in order to obtain boundary conditions on ζ(j). But first we must define
appropriate displacements and rotations relative to each vane.
Geometrically, the displacements ǫq(j)(z) and ǫh(j)(z) parallel and perpendicular to the
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unperturbed jth vane are given in terms of those for the 0th vane by

q(j)(z) = q(0)(z) cos θj + h(0)(z) sin θj , (4.3)

h(j)(z) = −q(0)(z) sin θj + h(0)(z) cos θj (4.4)

Since the angle ǫφ is measured in the plane normal to the deformed singular line (rather
than the x–y plane) we must also consider the rotation angles ǫφ(j)(z) projected back to
the x–y plane. The deformation of the singular line is by an O(ǫ) amount, and this leads
to O(ǫ2) changes in the projected angles. Hence

φ(j)(z) = φ(z) + O(ǫ) , (4.5)

which is sufficient for our purposes.

At ξ
(j)
0 (η) (the point near ξ = 0 where the jth vane meets the singular line), the jth vane

is perturbed axially by an amount

δ(j)(η) =
(

x
(j)(ξ

(j)
0 , η)− x

(j)
0 (ξ

(j)
0 , η)

)

·





0
0
1



 = − ǫ k ξ
(j)
0 ζ(j)(ξ

(j)
0 , η)

(

1 + k2ξ
(j)
0

2)1/2
. (4.6)

This means that points on the jth perturbed vane parameterised by η will meet the singular

line at z = η + δ(j)(η). Since we expect ξ
(j)
0 = O(ǫ) and ζ(j) = O(1), (4.6) implies that we

will have δ(j) = O(ǫ2).
For each j, we now equate the two expressions for the parallel displacement of the singular

line at z = η + δ(j); one from the vane displacement x
(j), and one from the singular-line

displacement q(j). We obtain

x
(j)

(

ξ
(j)
0 , η

)

·





cos
(

θj + k(η + δ(j))
)

sin
(

θj + k(η + δ(j))
)

0



 = ǫq(j)(η + δ(j)) . (4.7)

Substituting from (4.2) and expanding in powers of ǫ, we find

ξ
(j)
0 = ǫq(j)(η) +O(ǫ3) . (4.8)

Equating the equivalent pair of expressions for the perpendicular displacements of the
singular line at z = η + δ(j), we have

x
(j)

(

ξ
(j)
0 , η

)

·





− sin
(

θj + k(η + δ(j))
)

cos
(

θj + k(η + δ(j))
)

0



 = ǫh(j)(η + δ(j)) . (4.9)

Substituting from (4.2) and expanding in powers of ǫ, we find

ζ(j)(0, η) = h(j)(η) +O(ǫ) . (4.10)

The condition on the rotation angle at z = η + δ(j) is obtained by requiring that the
normal to the perturbed vane makes the appropriate angle in the x–y plane, thus

(

∂x(j)

∂ξ

(

ξ
(j)
0 , η

)

× ∂x(j)

∂η

(

ξ
(j)
0 , η

)

)

·





cos
(

θj + kz + ǫφ(j)(z)
)

sin
(

θj + kz + ǫφ(j)(z)
)

0



 = 0 . (4.11)
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Substituting from (4.2) and expanding in powers of ǫ, we find

∂ζ(j)

∂ξ
(0, η) = φ(j)(η) +O(ǫ) = φ(η) +O(ǫ) . (4.12)

4.2 Solution for the surface perturbations ζ(j)

The condition for the perturbed vanes to be minimal is that each ζ(j) satisfies the same
equation (2.19) that we derived for the previous case. As before, we can construct solutions
as the sum of orthogonal modes.
Noting that the functions q(j), h(j) and φ must vanish on η = 0 and η = ℓ (to satisfy the

pinned boundary conditions), we represent them as Fourier series, thus

q(j)(η) =

∞
∑

n=1

q(j)n sin
(nπη

ℓ

)

, (4.13)

h(j)(η) =

∞
∑

n=1

h(j)
n sin

(nπη

ℓ

)

, (4.14)

φ(η) =

∞
∑

n=1

φn sin
(nπη

ℓ

)

. (4.15)

The solution to (2.19) subject to the boundary conditions (4.10) and (4.12) is then given
by

ζ(j)(ξ, η) =

∞
∑

n=1

(

h(j)
n Sn(ξ) + φnAn(ξ)

)

sin
(nπη

ℓ

)

+O(ǫ) (4.16)

where the Sn and An are as before, being solutions of (2.23) subject to (2.24).

4.3 The area of the perturbed surfaces

In a manner analogous to (2.6), we define the surface area per unit coordinate area for the
perturbed jth vane by

L
(j) =

∣

∣

∣

∣

∂x(j)

∂ξ
× ∂x(j)

∂η

∣

∣

∣

∣

, (4.17)

and expand it in powers of ǫ by writing L (j) = L
(j)
0 + ǫ2L

(j)
2 +O(ǫ3) as in (2.10)–(2.12).

(As before there is no O(ǫ) term because the original helicoidal surfaces are extremal.)
The area of the perturbed surface of the jth vane is then given by

A
(j) =

∫ ℓ

0

∫ ξ
(j)
+

ξ
(j)
0

L
(j)(ξ, η; ζ(j)) dξ dη = A

(j)
0 + ǫA

(j)
1 + ǫ2A

(j)
2 +O(ǫ3) . (4.18)

The leading-order term in the expansion is

A
(j)
0 =

∫ ℓ

0

∫ 1

0

L
(j)
0 (ξ) dξ dη =

ℓ

2

(

sinh−1 k

k
+
(

1 + k2
)1/2

)

, (4.19)
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which gives the base-state area, as before. The first-order term is

A
(j)
1 =

1

ǫ

∫ ℓ

0

∫ ǫq(j)

0

L
(j)
0 (0, η; ζ(j)) dξ dη =

∫ ℓ

0

q(j)(η) dη , (4.20)

which gives the correction due to the displacement of the central singular line. The second-
order term is

A
(j)
2 =

∫ ℓ

0

∫ 1

0

L
(j)
2 (ξ, η; ζ(j)) dξ dη − 1

ǫ2

∫ ℓ

0

∫ 1

1− 1
2 ǫ

2ζ
(j)
+

2
/(1+k2)

L
(j)
0 (1, η; ζ(j)) dξ dη ,

=
1

2

∫ ℓ

0

[

(

1 + k2
)1/2

ζ(j)
∂ζ(j)

∂ξ

]1

0

dη − 1

2

∫ ℓ

0

(

1 + k2
)−1/2

ζ
(j)
+

2
dη ,

=
1

2

∫ ℓ

0

(

1 + k2
)1/2



ζ
(j)
+

∂ζ(j)

∂ξ

∣

∣

∣

∣

ξ=1

− h(j)φ−
ζ
(j)
+

2

1 + k2



 dη , (4.21)

which gives the combined effect of changes within the surface and changes due to the
movement of the contact line with the outer wall.
We now substitute the series expansions (4.13)–(4.16) into the area expressions (4.19)–

(4.21). We then sum over the N vanes, and perform the integration over η. For future use,
we note the results that

N−1
∑

j=0

h(j)
n = 0 ,

N−1
∑

j=0

q(j)n = 0 , (4.22a,b)

which are derived in Appendix F.
From (4.19), the total base-state area is simply

A0 =
N−1
∑

j=0

A
(j)
0 =

Nℓ

2

(

sinh−1 k

k
+
(

1 + k2
)1/2

)

. (4.23)

From (4.20), the total O(ǫ) area change is

A1 =
N−1
∑

j=0

A
(j)
1 =

∞
∑

n=1

N−1
∑

j=0

q(j)n

(

1− (−1)n
) ℓ

nπ
= 0 , (4.24)

owing to the vanishing sum (4.22b) of the q
(j)
n ’s over j.

From (4.21), the total O(ǫ2) area change becomes

A2 =

N−1
∑

j=0

A
(j)
2 =

ℓ

4
(1 + k2)1/2

∞
∑

n=1

[

H2Sn(1)

(

S′
n(1)−

Sn(1)

1 + k2

)

+Nφ2
nAn(1)

(

A′
n(1)−

An(1)

1 + k2

)]

, (4.25)

where we have used (4.22a) and defined

H2 =

N−1
∑

j=0

h(j)
n

2
=







2h
(0)
n

2
: N = 2

1
2N

(

h
(0)
n

2
+ q

(0)
n

2)

: N ≥ 3
(4.26)
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as derived in Appendix F. (As before, only the diagonal terms survive the integration
owning to the orthogonality of the axial Fourier modes.)
We have already seen in §3.1 that the quantity multiplying φ2

n is always positive. So the
critical case of A2 = 0 is first achieved for each Fourier mode when φn = 0 and

S′
n(1) =

Sn(1)

1 + k2
or Sn(1) = 0 . (4.27a,b)

These conditions are independent of N , and are the same as for the single-film case studied
above. Hence the multiple-vane system has the same stability boundary as the original
system.

5. Conclusions

In this paper, we have presented a mathematical theory to describe the surface-tension-
driven stability of helicoidal surfaces inside a circular cylinder, as shown in Fig. 1. The key
parameters are the aspect ratio ℓ (height H divided by radius R) and the total twist angle
θ between the two ends.
The method we use in §2 and §3 is to find the most unstable perturbation to the surface

and then to look for the critical cases in which this perturbation results in no change to
the overall surface area. By using separation of variables, the problem is reduced to solving
a one-dimensional second-order ODE in the radial coordinate, which can be carried out
numerically. Our results for the stability boundary in θ–ℓ space are in good agreement with
those obtained previously by Cox & Jones (4) via full numerical simulations (Fig. 4).
Asymptotic expansions of the stability boundary and the critical perturbation surfaces

have also been obtained for large and small pitch parameters k = θ/ℓ. These show that
two different instability mechanisms operate as the total twist θ varies. For small and
moderate θ, the obvious mechanism of normal displacements that save area due to the
converging cylindrical walls operates. But for larger θ, internal perturbations to the surface
are sufficient, even in the absence of any savings from the cylinder walls.
This second mechanism is confirmed by computing the stability boundary for

perturbations where there is no area saving from the walls (Fig. 6). The critical angle
is close to the previous case for ℓ ≪ 1, but behaves differently as ℓ increases, varying
monotonically between θ = π as ℓ → 0 and θ = π/

√
2 as ℓ → ∞.

We also consider the case of multiple vanes, arranged symmetrically about a central axis,
as studied by Cox & Jones (4) (Fig. 1b). Their numerical and experimental results suggested
that the stability boundary was the same as (or at least very close to) that of the single vane
case. In §4, we have proved mathematically that the stability problem for the multiple-vane
case is equivalent to the single-vane case, and hence the stability boundaries are identical.
Physically this is due to the fact that O(ǫ) changes in area due to the displacement of the
central singular line (a Plateau border for the case N = 3) all cancel out to sufficiently
high accuracy. The overall area changes are still dominated by deformations in the film
surfaces and the moving contact line with the cylinder walls, which are described by the
same equations.
The stability boundary for the case of no wall area saving is likely to be more relevant to

the case of Plateau borders in foams (the original motivation for the work of Cox & Jones
(4)) as there will be no such savings as each surface from the Plateau border in question
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joins other Plateau borders elsewhere in the form. The effect of the neighbouring borders
should act to increase the stability as they provide an anchoring effect. Applying the no-
wall-area-saving boundary to the three-vane problem suggests that Plateau borders will
always be stable for total twists θ ≤ π/

√
2. Above this limit, it will depend on the length

of the border (longer borders being more unstable) and the detailed interactions with the
neighbouring borders. But internal instabilities are at least possible for θ > π/

√
2.
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APPENDIX A

Proof that solutions to (2.19) have minimal area for θ < Θ0

In this appendix, we prove that when θ < Θ0(ℓ), perturbations that satisfy (2.19) and (2.4)
attain the minimum surface area at O(ǫ2) of any perturbation that satisfies the same Dirichlet
boundary conditions at ξ = ±1 and η = 0, ℓ. This result is used in the proof of the stability
boundary in §3.2.

Let ζ∗(ξ, η) be a perturbation that satisfies the pinned diameter conditions (2.4) and the field
equation (2.19). Now consider a general perturbation ζ(ξ, η) which satisfies (2.4) and has ζ(±1, η) =
ζ∗(±1, η). We now define ζ′(ξ, η) by writing

ζ(ξ, η) = ζ∗(ξ, η) + δ ζ′(ξ, η) , (A.1)

where δ > 0 is an arbitrary scale. We therefore have ζ′(ξ, 0) = ζ′(ξ, ℓ) = 0 and ζ′(±1, η) = 0. We

now consider the O(ǫ2) area change A2 ≡ A
(w)
2 +A

(s)
2 under the general perturbation ζ, and relate

it to the same change under ζ∗.
The area change A

(w)
2 is defined in (2.16). With the boundary conditions ζ± ≡ ζ(±1, η) fixed,

A
(w)
2 for the ζ surface is constant, and equal to that for the ζ∗ surface. We therefore need only

consider A
(s)
2 , as defined in (2.15), where L2 is given by (2.21). Expanding ζ using (A.1) we find

that

A
(s)
2 =

∫ ℓ

0

∫ 1

−1

L2(ξ, η; ζ) dξ dη = I0 + δI1 + δ2I2 , (A.2)
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where

I0 =

∫ ℓ

0

∫ 1

−1

L2(ξ, η; ζ
∗) dξ dη , (A.3)

I1 =

∫ ℓ

0

∫ 1

−1

[

∂ζ′

∂ξ

∂L2

∂ζξ
+

∂ζ′

∂η

∂L2

∂ζη
+ ζ′

∂L2

∂ζ

]

ζ=ζ∗
dξ dη ,

=

∫ ℓ

0

∫ 1

−1

ζ′
[

− d

dξ

(

∂L2

∂ζξ

)

− d

dη

(

∂L2

∂ζη

)

+
∂L2

∂ζ

]

ζ=ζ∗
dξ dη , (A.4)

(using integration by parts), and

I2 =
1

2

∫ ℓ

0

∫ 1

−1

[

(

∂ζ′

∂ξ

)2
∂2

L2

∂ζ2ξ
+

(

∂ζ′

∂η

)2
∂2

L2

∂ζ2η
+ ζ′

2 ∂2
L2

∂ζ2

]

ζ=ζ∗

dξ dη ,

=

∫ ℓ

0

∫ 1

−1

L2(ξ, η; ζ
′) dξ dη . (A.5)

The first integral I0 is simply the value of A
(s)
2 under the perturbation ζ∗. The second integral

I1 vanishes because ζ∗ satisfies the Euler–Lagrange equation (2.17) as it is equivalent to (2.19).
The difference in area between the ζ and ζ∗ surfaces is therefore controlled entirely by the third
integral I2. This is seen to be equal to the O(ǫ2) area change under ζ′, where ζ′ is regarded as a
direct perturbation from the base state.

For ζ∗ to attain the minimum area over all surfaces ζ satisfying ζ(±1, η) = ζ∗(±1, η), we must
show that I2 is always positive for any ζ′ satisfying ζ′(±1, η) = 0. This is certainly the case at
θ = 0, for then we are dealing with perturbations to a rectangular planar surface with all four
edges fixed.

Now consider the region of θ–ℓ space where this continues to hold. On the boundary of this
region, we must have a deformation ζ′ which has zero area change, and no deformations with a
strictly negative area change. Hence the ζ′ which has zero area change must be minimal, and
therefore must satisfy (2.19). We have already seen above that the only solutions of (2.19) with
ζ(±1, η) = 0 are composed of symmetric modes that lie on the lines θ = nΘ0(ℓ/n).

Continuing upwards from θ = 0, we see from Fig. 3 that the first boundary we meet is the n = 1
curve θ = Θ0(ℓ). Thus for θ < Θ0(ℓ), all perturbations ζ′ satisfying ζ′(±1, η) = 0 result in positive
area changes. Hence within this region I2 is positive, and the solution ζ∗ has the minimal area.

APPENDIX B

Numerical Simulations

The numerical simulations of the stability of a single film inside a cylinder, shown in Fig. 4, were
performed using Surface Evolver (5). Following Cox & Jones (4), the two ends of the surface are
fixed on diameters at z = 0 and z = ℓ with relative twist θ = kℓ, and the two sides are constrained
to move on a cylinder x2 + y2 = 1. Minimizing the area of the film causes the film to meet the
curved cylinder wall normally when a stable configuration exists. The stability boundary was found
by fixing ℓ and gradually increasing θ from zero in small steps, minimizing area at each step, until
the lowest eigenvalue of the Hessian became negative, indicating instability.

The data shown in Fig. 4 were generated with a higher level of refinement (more triangles
representing the surface) and smaller steps in twist angle between each minimization than in (4),
evident in the better agreement with the theory at low ℓ.

To simulate the case of a single film without the area saving from the curved cylindrical wall,
the constraint of contact with the cylindrical wall must be replaced by a constraint of contact with
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a new wall. The shape of this will must ensure that there is no area losses or gains at the edge
when the film is displaced from its initial helicoidal configuration. Such a wall must therefore be
normal to the initial helicoidal surface at its edges. See Fig. 2.

The two walls (one for each edge of the initial helicoid) can be described parametrically, with the
equations deduced from (2.3). We take ξ = ±1 to place us on the two edges of the initial helicoid,
and (without loss of generality) we set ǫ = 1. Then varying η and ζ moves x along the edge and
normal to the helicoid respectively. Hence the walls are given parametrically by

x(η, ζ) = ± cos(kη)− ζ sin(kη)

(1 + k2)1/2
(B.1)

y(η, ζ) = ± sin(kη) +
ζ cos(kη)

(1 + k2)1/2
(B.2)

z(η, ζ) = η ∓ kζ

(1 + k2)1/2
. (B.3)

For computational efficiency, the wall surfaces are each written as a one-parameter family of curves,
with η parameterizing the family member and ζ parameterizing the position along each curve. Each
edge vertex of the surface tessellation is then constrained to move on one curve from the family,
i.e. with its value of η fixed.

The shape of the boundary walls now depends on the parameter k = θ/ℓ, so if θ is varied while
ℓ is held fixed, the shape will change. When determining the stability boundary, it was therefore
more convenient to fix k and vary ℓ, with θ = kℓ varying accordingly. The simulation results for
this case are shown in Fig. 6.

APPENDIX C

Asymptotic solution for k ≫ 1

As k → ∞, our numerical results for the stability boundary (see §3.1) suggest that ℓ → 0 and θ
tends to a finite limit, close to π. We verify that these limits are exact by calculating an asymptotic
solution for k ≫ 1.

For ξ = O(1) in the ODE (2.23), the dominant terms as k → ∞ are O(k2), which suggests we
would need to take ℓ = O(k−1) to retain any ℓ-dependence in the equation. There is also another
distinguished length scale, namely ξ = O(k−1). On this scale, the dominant terms are again O(k2),
and we need to take ℓ = O(k−1) to retain the ℓ-dependence.

We now consider a matched asymptotic expansion for k ≫ 1. We guess that the limiting value
of the critical θ is nπ, and thus write

ℓ =
θ

k
=

nπ

k

(

1 + αk−2 + . . .
)

, (C.1)

for some constant α. We now consider separate solutions to (2.23) for ξ = O(1) and ξ = O(k−1).

C.1 Outer solution for ξ = O(1)

The governing equation (2.23) can be written as

(ξ2 + k−2)X ′′ + ξX ′ + 2k−2(ξ2 + k−2)−1X − (1 + αk−2 + . . .)−2X = 0 , (C.2)

and, from (2.26a), we have the outer boundary condition

X ′(1) = k−2(1 + k−2)−1X(1) . (C.3)

We then write

X(ξ) =
1

k

(

X1(ξ) + k−2X3(ξ) + . . .
)

(C.4)
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(The initial factor of k−1 is to aid matching with the O(1) inner solution for X, which, as we shall
see below, decays like (kξ)−1 as ξ → ∞.)

At O(k−1), (C.2) and (C.3) become

ξ2X ′′
1 + ξX ′

1 −X1 = 0 , X ′
1(1) = 0 . (C.5a,b)

Since the equation is linear and homogeneous in ξ, we look for solutions that are the sum of terms
proportional to powers of ξ. The particular solution that satisfies the equation and boundary
condition (C.5) is found to be

X1 = A

(

1

ξ
+ ξ

)

, (C.6)

where A is an unknown constant that will be determined later by matching.
At O(k−3) we have

ξ2X ′′
3 + ξX ′

3 −X3 = −
[

X ′′
1 + 2ξ−2X1 + 2αX1

]

= −4Aξ−3 − 2A(1 + α)ξ−1 − 2αAξ , (C.7)

subject to

X ′
3(1) = X1(1) ⇒ X ′

3(1) = 2A . (C.8)

Since ξ±1 are solutions of the homogeneous equation, we seek a solution of the form

X3(ξ) =
(

Cξ−1 +Dξ
)

+
(

Eξ−3 + Fξ−1 log ξ +Gξ log ξ
)

. (C.9)

The constants E, F , and G are found by insisting the solution satisfies (C.7), while the boundary
condition (C.8) gives a relationship between C and D. We find

X3(ξ) = C
(

ξ−1 + ξ
)

− 1
2
Aξ−3 + (1 + α)Aξ−1 log ξ − αAξ log ξ − 1

2
Aξ . (C.10)

The remaining constant C will be determined by matching with the inner solution.

C.2 Inner solution for ξ = O(k−1)

We write ξ = k−1ξ̂ and X(ξ) = X̂(ξ̂). The governing equation (2.23) then becomes

(1 + ξ̂2)X̂ ′′ + ξ̂X̂ ′
n +

(

2

1 + ξ̂2
− (1 + αk−2 + . . .)−2

)

X̂ = 0 . (C.11)

From (2.24a) and (2.24b), the boundary conditions at ξ̂ = 0 are

X̂(0) = 1 , X̂ ′(0) = 0 . (C.12a,b)

We then write

X̂(ξ̂) = X̂0(ξ̂) + k−2X̂2(ξ̂) + . . . . (C.13)

At O(1) in k, (C.11) and (C.12) become

(1 + ξ̂2)X̂ ′′
0 + ξ̂X̂ ′

0 +

(

2

1 + ξ̂2
− 1

)

X̂0 = 0 , (C.14)

subject to

X̂0(0) = 1 , X̂ ′
0(0) = 0 . (C.15a,b)
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We notice that this system has an exact solution

X̂0(ξ̂) =
(

1 + ξ̂2
)−1/2

. (C.16)

Since we have a second-order equation with two independent boundary conditions, this solution
is unique. The fact that this solution decays as ξ̂ → ∞ (which enables matching with the outer
solution) validates our choice of leading-order constant in the expansion (C.1).

At O(k−2), (C.11) and (C.12) become

(1 + ξ̂2)X̂ ′′
2 + ξ̂X̂ ′

2 +

(

2

1 + ξ̂2
− 1

)

X̂2 = −2α2X̂0 ,

= − 2α

(1 + ξ̂2)1/2
(C.17)

subject to
X̂2(0) = 0 , X̂ ′

2(0) = 0 . (C.18)

We can make progress here by writing

X̂2(ξ̂) =
(

1 + ξ̂2
)−1/2

f(ξ̂) (C.19)

Substituting (C.19) into (C.17), the equation for f(ξ̂) is then

f ′′ − ξ̂

1 + ξ̂2
f ′ = − 2α

1 + ξ̂2
(C.20)

subject to f(0) = f ′(0) = 0. An integrating factor can be employed to transform the equation to

d

dξ̂

[

1

(1 + ξ̂2)1/2
f ′(ξ̂)

]

= − 2α

(1 + ξ̂2)3/2
, (C.21)

and thence

f ′(ξ̂) = −2α(1 + ξ̂2)1/2
∫ ξ̂

0

1

(1 + t2)3/2
dt = −2α(1 + ξ̂2)1/2

[

t

(1 + t2)1/2

]ξ̂

0

= −2αξ̂ , (C.22)

where we applied the boundary condition f ′(0) = 0 to arrive at the definite integral. Integrating
once more, and applying the condition f(0) = 0, we obtain

f(ξ̂) = −αξ̂2 . (C.23)

Hence

X̂2(ξ̂) = − αξ̂2
(

1 + ξ̂2
)1/2

. (C.24)

C.3 Matching at intermediate ξ

We introduce an intermediate variable x = k−1/2ξ̂ = k1/2ξ, and consider the expansion of both the
inner and outer solutions at x = O(1). The outer solution (C.4) is asymptotically

X ∼ k−1/2

(

A

x

)

+ k−3/2

(

Ax− A

2x3

)

+O(k−5/2) , (C.25)
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while the inner solution (C.13) is

X̂ ∼ ξ̂−1
(

1 + ξ̂−2
)−1/2

− αk−2ξ̂
(

1 + ξ̂−2
)−1/2

+ . . .

∼ k−1/2

(

1

x

)

+ k−3/2

(

− 1

2x3
− αx

)

+O(k−5/2) . (C.26)

Matching at O(k−1/2) we must take A = 1, and matching at O(k−3/2) we find α = −1. (The
constant C would be found by matching at O(k−5/2), but it is not needed for our purposes.)

C.4 Asymptotic expression for θ(ℓ)

Putting α = −1 in (C.1) we have

θ = nπ
(

1− k−2 +O(k−4)
)

. (C.27)

Now

k =
θ

ℓ
=

nπ

ℓ

(

1 +O(k−2)
)

=
nπ

ℓ

(

1 +O(ℓ2)
)

, (C.28)

and so we obtain

θ = nπ
(

1− ℓ2

n2π2
+O(ℓ4)

)

. (C.29)

APPENDIX D

Asymptotic solution for k ≪ 1

As k → 0, the numerical results for the stability boundary suggest that L = ℓ/n tends to a
constant, with an O(k2) residual. We therefore assume expansions of the form

X(ξ) = X0(ξ) + k2X2(ξ) + k4X4(ξ) + . . . , ℓ =
nπ

λ

(

1 + αk2 + . . .
)

, (D.1a,b)

where the functions Xn(ξ) and coefficients λ and α are to be found.
We substitute these expressions in to the governing equation (2.23) and boundary conditions

(2.24a), (2.24b) and (2.26a) and expand in powers of k. We obtain

(1 + k2ξ2)
(

X ′′
0 + k2X ′′

2 + . . .
)

+ k2ξ
(

X ′
0 + . . .

)

+ 2k2(1 + . . .) (X0 + . . .)

− λ2(1− 2αk2 + . . .)
(

X0 + k2X2 + . . .
)

= 0 , (D.2)

subject to

X0(0) + k2X2(0) + . . . = 1 , X ′
0(0) + k2X ′

2(0) + . . . = 0 , (D.3a,b)

X ′
0(1) + k2X ′

2(1) + . . . = (1− k2 + . . .)
(

X0(1) + k2X2(1) + . . .
)

. (D.3c)

D.1 The leading-order system for X0(ξ)

At O(k0), the governing equation (D.2) becomes

X ′′
0 − λ2X0 = 0 , (D.4)

subject to

X0(0) = 1 , X ′
0(0) = 0 , X ′

0(1) = X0(1) , (D.5a–c)

from (D.3).
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The solution of (D.4) subject to (D.5a,b) is

X0(ξ) = coshλξ . (D.6)

Applying (D.5c) we find that we must have

λ = cothλ . (D.7)

This equation defines λ, and is the same condition as found by Cox & Jones (4). There is a single
positive solution, which is found numerically to be

λ = 1.19968 . . . . (D.8)

D.2 The first-order system for X2(ξ)

At O(k2) the governing equation (D.2) becomes

X ′′
2 − λ2X2 = −

[

ξ2X ′′
0 + ξX0 + 2X0 + 2αλ2X0

]

= −
[

λ2ξ2 coshλξ + λξ sinhλξ + 2(1 + αλ2) cosh λξ
]

, (D.9)

subject to

X2(0) = 0 , X ′
2(0) = 0 , X ′

2(1)−X2(1) = −X0(1) = − coshλ , (D.10a–c)

from (D.3).
From (D.10b) and the forcing in (D.9), X2 must be even in ξ. Motivated by the complementary

function for (D.9) and the inhomogeneous forcing, we seek a solution of the form

X2(ξ) = Aξ3 sinhλξ +Bξ2 coshλξ +Cξ sinhλξ +D coshλξ . (D.11)

To satisfy the equation (D.9) and the first boundary condition (D.10a), we find that we need to
take

A =
λ

6
, B = 0 , C = − 1

λ
− αλ , D = 0 . (D.12a–d)

Applying the final boundary condition (D.10c), we obtain

α = −2 + λ2

6λ2
= −0.39827 . . . (D.13)

D.3 Asymptotic expression for θ(ℓ)

Using the value (D.13) for α in (D.1b) we have

ℓ =
nπ

λ

(

1− 2 + λ2

6λ2
k2 +O(k4)

)

(D.14)

Now

k =
θ

ℓ
=

λθ

nπ

(

1 +O(k2)
)

=
λθ

nπ

(

1 +O(θ2)
)

. (D.15)

Hence

ℓ =
nπ

λ

(

1− (2 + λ2)

6n2π2
θ2 +O(θ4)

)

, (D.16)

or alternatively

θ = nπ

√

6

2 + λ2

(

1− λℓ

nπ

)1/2

+O
(

(

1− λℓ
nπ

)5/2
)

. (D.17)
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APPENDIX E

Asymptotic solution for k ≪ 1 when there is no area saving at the wall

Our numerical results suggest that as k → 0 we have ℓ → ∞ and θ → θ∞, a constant. To
construct an asymptotic solution for k ≪ 1, we therefore pose expansions of the form

X(ξ) = X0(ξ) + k2X2(ξ) + k4X4(ξ) + . . . , ℓ =
nθ∞
k

(

1 + αk2 + . . .
)

. (E.1a,b)

We substitute these expressions in to the governing equation (2.23) and boundary conditions
(2.24a,b) and (2.26a) and expand in powers of k. We obtain

(1 + k2ξ2)
(

X ′′
0 + k2X ′′

2 + k4X ′′
4 + . . .

)

+ k2ξ
(

X ′
0 + k2X ′

2 + . . .
)

+ 2k2(1− k2ξ2 + . . .)
(

X0 + k2X2 + . . .
)

− k2π2

θ2∞
(1− 2αk2 + . . .)

(

X0 + k2X2 + . . .
)

= 0 , (E.2)

together with

X0(0) + k2X2(0) + . . . = 1 , X ′
0(0) + k2X ′

2(0) + . . . = 0 , X ′
0(1) + k2X ′

2(1) + . . . = 0 . (E.3a–c)

E.1 The leading-order system for X0(ξ)

At O(k0), the governing equation and boundary conditions (E.2)–(E.3) become

X ′′
0 = 0 , (E.4)

subject to

X0(0) = 1 , X ′
0(0) = 0 , X ′

0(1) = 0 . (E.5a–c)

Despite there being too many boundary conditions, there is solution of (E.4) which satisfies all of
(E.5), namely

X0(ξ) = 1 . (E.6)

The ability to find a solution to this over-determined system validates the proposed form (E.1) of
our asymptotic expansion.

E.2 The first-order system for X2(ξ)

At O(k2) the governing equation and boundary conditions (E.2)–(E.3) become

X ′′
2 = −

[

ξ2X ′′
0 + ξX ′

0 + 2X0 −
π2

θ2∞
X0

]

=
π2

θ2∞
− 2 , (E.7)

subject to

X2(0) = 0 , X ′
2(0) = 0 , X ′

2(1) = 0 . (E.8a–c)

By integrating (E.7) and applying (E.8), we see that the system has a solution if and only if θ∞
takes a specific value. We find

θ∞ =
π√
2
, X2(ξ) = 0 . (E.9a,b)
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E.3 The second-order system for X4(ξ)

At O(k4) governing equation and boundary conditions (E.2)–(E.3) become

X ′′
4 = −

[

ξ2X ′′
2 + ξX ′

2 + 2X2 − π2

θ2∞
X2

]

−
[

−2ξ2X0 +
2απ2

θ2∞
X0

]

= 4α− 2ξ2 , (E.10)

subject to
X4(0) = 0 , X ′

4(0) = 0 , X ′
4(1) = 0 . (E.11a–c)

By integrating (E.10) and applying (E.11), we see that the system has a solution if and only if α
takes a specific value. We find

α =
1

6
, X4(ξ) = − ξ2(2− ξ2)

6
. (E.12a,b)

E.4 Asymptotic expression for θ(ℓ)

Using the value (E.12a) for α in (E.1b) we have

θ = kℓ =
nπ√
2

(

1 +
1

6
k2 +O(k4)

)

(E.13)

Now

k =
θ

ℓ
=

nπ√
2 ℓ

(

1 +O(k2)
)

=
nπ√
2 ℓ

(

1 +O(ℓ−2)
)

. (E.14)

Finally, using (E.14) to eliminate k from (E.13), we obtain

θ =
nπ√
2

(

1 +
n2π2

12 ℓ2
+O(ℓ−4)

)

. (E.15)

APPENDIX F

Sums of singular-line displacements for multiple vanes

In this appendix, we derive the results quoted in (4.22) and (4.26) for the sums of h
(j)
n , q

(j)
n and

h
(j)
n

2 over multiple equally-spaced vanes. We evaluate the sums by expressing the trigonometric
functions as the real (ℜ) or imaginary (ℑ) part of a complex exponential, and then summing the
resulting geometric progression.

Inserting the Fourier series (4.13) and (4.14) into the expressions (4.3) and (4.4) for h(j) and q(j)

and equating coefficients, we obtain

q(j)n = q(0)n cos θj + h(0)
n sin θj , (F.1)

h(j)
n = −q(0)n sin θj + h(0)

n cos θj (F.2)

where the angle of the jth vane is given by θj = 2jπ/N .

F.1 Sums of h
(j)
n and q

(j)
n

For the evaluation of
∑N−1

j=0 h
(j)
n and

∑N−1
j=0 q

(j)
n , we need the following sums of trigonometric

functions:

N−1
∑

j=0

cos θj = ℜ
(

N−1
∑

j=0

e2πij/N

)

= ℜ
(

e2πi − 1

e2πi/N − 1

)

= 0 , (F.3)

N−1
∑

j=0

sin θj = ℑ
(

N−1
∑

j=0

e2πij/N

)

= ℑ
(

e2πi − 1

e2πi/N − 1

)

= 0 , (F.4)
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which hold for all integer values of N ≥ 2. Summing (F.1) and (F.2) over j, and using (F.3) and
(F.4), we obtain the two results quoted in (4.22).

F.2 Sum of h
(j)
n

2

For the evaluation of
∑N−1

j=0 h
(j)
n

2
, we need the following sums of trigonometric functions. For

integers N > 2 we can write:

2

N−1
∑

j=0

cos2 θj =

N−1
∑

j=0

(

1 + cos 2θj
)

= N + ℜ
(

N−1
∑

j=0

e4πij/N

)

= N + ℜ
(

e4πi − 1

e4πi/N − 1

)

= N ,(F.5)

2

N−1
∑

j=0

sin2 θj =

N−1
∑

j=0

(

1− cos 2θj
)

= N − ℜ
(

N−1
∑

j=0

e4πij/N

)

= N − ℑ
(

e4πi − 1

e4πi/N − 1

)

= N ,(F.6)

2

N−1
∑

j=0

sin θj cos θj =

N−1
∑

j=0

sin 2θj = ℑ
(

N−1
∑

j=0

e4πij/N

)

= ℑ
(

e4πi − 1

e4πi/N − 1

)

= 0 . (F.7)

When N = 2, we instead obtain

N−1
∑

j=0

cos2 θj = 2 ,
N−1
∑

j=0

sin2 θj = 0 ,
N−1
∑

j=0

sin θj cos θj = 0 . (F.8a–c)

Squaring (F.2), and summing over j, we have

N−1
∑

j=0

h(j)
n

2
= q(0)n

2
N−1
∑

j=0

sin2 θj − 2q(0)n h(0)
n

N−1
∑

j=0

sin θj cos θj + h(0)
n

2
N−1
∑

j=0

cos2 θj . (F.9)

Then, using (F.5)–(F.8), we obtain the result quoted in (4.26).


