
Aberystwyth University

On the Easiest and Hardest Fitness Functions
He, Jun; Chen, Tianshi; Yao, Xin

Published in:
IEEE Transactions on Evolutionary Computation

DOI:
10.1109/TEVC.2014.2318025

Publication date:
2014

Citation for published version (APA):
He, J., Chen, T., & Yao, X. (2014). On the Easiest and Hardest Fitness Functions. IEEE Transactions on
Evolutionary Computation, 19(2), 295-305. https://doi.org/10.1109/TEVC.2014.2318025

Copyright
2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists,
or reuse of any copyrighted components of this work in other works

General rights
Copyright and moral rights for the publications made accessible in the Aberystwyth Research Portal (the Institutional Repository) are
retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the Aberystwyth Research Portal for the purpose of private study or
research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the Aberystwyth Research Portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

tel: +44 1970 62 2400
email: is@aber.ac.uk

Download date: 30. Aug. 2021

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aberystwyth Research Portal

https://core.ac.uk/display/326669462?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1109/TEVC.2014.2318025
https://pure.aber.ac.uk/portal/en/persons/jun-he(c1817832-a830-422c-95cf-9011366bac93).html
https://pure.aber.ac.uk/portal/en/publications/on-the-easiest-and-hardest-fitness-functions(2c6ce151-f7b9-4d1b-8c5e-9c1a838a190c).html
https://doi.org/10.1109/TEVC.2014.2318025


ar
X

iv
:1

20
3.

62
86

v5
  [

cs
.N

E
]  

12
 F

eb
 2

01
5

1

On the Easiest and Hardest Fitness Functions
Jun He, Tianshi Chen and Xin Yao,

Abstract

The hardness of fitness functions is an important research topic in the field of evolutionary computation. In theory, the study
can help understanding the ability of evolutionary algorithms. In practice, the study may provide a guideline to the design of
benchmarks. The aim of this paper is to answer the following research questions: Given a fitness function class, which functions
are the easiest with respect to an evolutionary algorithm? Which are the hardest? How are these functions constructed? The
paper provides theoretical answers to these questions. Theeasiest and hardest fitness functions are constructed for anelitist (1+1)
evolutionary algorithm to maximise a class of fitness functions with the same optima. It is demonstrated that the unimodal functions
are the easiest and deceptive functions are the hardest in terms of the time-based fitness landscape. The paper also reveals that in
a fitness function class, the easiest function to one algorithm may become the hardest to another algorithm, and vice versa.

I. I NTRODUCTION

Which fitness functions are easy for an evolutionary algorithm (EA) and which are not? This is an important research topic
in the field of evolutionary computation. In theory, the study of the hardness of fitness functions can help understandingthe
ability of EAs. In practice, the study may provide a guideline to the design of benchmarks. Answers to the above questions
vary as the scope of fitness functions changes from all possible functions to a single function.

The first scenario is to consider all possible fitness functions. In this case No Free Lunch theorems [1], [2] have answered
the question. The theorems claim that the performance of anytwo EAs are equivalent in terms of average performance.

The second scenario is to consider a class of fitness functions with the same features, such as unimodal functions versus
multi-modal functions, or deceptive functions versus non-deceptive functions. However a multi-modal function may beeasy
to solve [3]. A unimodal function may be difficult for certainEAs but easy for others [4]. A non-deceptive function may be
difficult to an EA [5], and a deceptive function may be easy [6]. Few features are available to distinguish whether a function
class is easy or hard for an EA.

The third scenario is to consider a single fitness function. Apopular approach is to develop a statistic measure to predict
the hardness of a fitness function, such as fitness-distance correlation [7], fitness variance [8], and epistasis variance [9].
Unfortunately it is intractable to design a measure that canpredict the hardness of a function efficiently [10], [11].

Different from the above three scenarios, an alternative scenario is considered in the current paper: given an EA and a class
of fitness functions with the same optima, which function is the hardest within the class? Which is the easiest? And how to
construct them? Here the easiest function is referred to a function on which the runtime of the EA is the shortest; and the
hardest is a function on which the runtime of the EA is the longest. Both are compared with other functions in the same class.
These questions have never rigorously been answered before.

Our research aims at understanding the hardest and easiest fitness functions within a function class, and helping design
benchmarks. The set of benchmarks usually include several typical fitness functions, for example, easy, hard and ‘averagely
hard’ functions in the class. An EA has the best performance on the easiest function, and the worst performance on the hardest
function. We will focus on these two extreme cases in this paper.

The paper is organised as follows: Section II describes related work. Section III defines the easiest and hardest fitness
functions, and establishes criteria of determining whether a function is the easiest or the hardest. Section IV constructs
the easiest and hardest functions. Section V discusses the mutual transformation between the easiest and hardest functions.
Section VI concludes the paper.

II. RELATED WORK

The hardness of fitness functions (or called problem difficulty) has been studied over two decades. Normally a fitness
function is said to be easy to an EA if the runtime is polynomial on the function or hard if the runtime is exponential. How
to characterize which fitness functions are easy or hard was thought to be a major challenge [10].

One approach is to link features of a fitness landscape to the hardness of fitness functions. Several features have been
investigated, for example, isolation, deception and multi-modality, ruggedness and neutrality. A fitness landscape with isolation
is hard for EAs, but other characteristics may not be relatedtoo much to the hardness of fitness functions [10]. A fully

This work was supported by the EPSRC under Grant Nos. EP/I009809/1 and EP/I010297/1. Xin Yao was supported by a Royal Society Wolfson Research
Merit Award and also by the NSFC under Grant No. 61329302. Tianshi Chen was supported by the NSFC under Grant Nos. 61100163and 61221062.

Jun He is with Department of Computer Science, Aberystwyth University, Aberystwyth, SY23 3DB, UK.
Tianshi Chen is with State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190,

China.
Xin Yao is with CERCIA, School of Computer Science, University of Birmingham, Birmingham B15 2TT, UK.

http://arxiv.org/abs/1203.6286v5


2

non-deceptive function may be difficult for an EA [5] but somedeceptive functions can be solved easily by an EA [6]. Some
multi-modal functions may be easy to solve [3], but the unimodal function like the ‘long path’ problem [3] could be difficult
for certain EAs [4]. Few features are universally useful to distinguish between hard and easy fitness functions.

Another approach is to predict the hardness of a fitness function through a statistic measure. Many measures are proposed,
for example, fitness-distance correlation [7], correlation length and operator correlation [12], fitness variance [8], and epistasis
variance [9]. Nevertheless, to compute the exact value of such measures usually is exponential in the problem size due tothe
fact that the search space is exponentially large [10], [11], [13]. Inherent flaws also exist in the common hardness measures
such as epistasis variance, fitness-distance correlation and epistasis correlation [14].

An alternative theoretical approach is based on fitness levels. Hard fitness functions are classified into two types: ‘wide gap’
problems and ‘long path’ problems [15], [16]. For the ‘wide gap’ type, the EA is trapped at a fitness level, because there isa
wide gap between that fitness level and higher fitness levels.For the ‘long-path’ type, the EA has to take a long path to reach
an optimum. The behavior of EAs on these two problems are different [17], [18].

The research in the current paper is totally different from previous work. The hardest and easiest functions are compared
with other fitness functions within the same function class.The hardest function are not relevant to exponential runtime and
the easiest fitness functions are not relevant to polynomialruntime. For some function class, an EA only needs polynomial
time on the hardest function. For some other function class,an EA may take exponential time on the easiest function.

Our study is also different from No Free Lunch theorems [1], [2], which state that any two EAs are equivalent when their
performance is averaged across all possible fitness functions. We don’t intend to investigate the easiest and hardest functions
among all possible fitness functions, instead only within a class of fitness functions with the same optima.

III. E ASIEST AND HARDEST FITNESSFUNCTIONS

In this section we define the easiest and hardest fitness functions in a function class and establish the criteria to determine
whether a function is the easiest or hardest.

A. Definition of Easiest and Hardest Fitness Functions

Consider the problem of maximizing a class of fitness functions with the same optima. An instance of the problem is to
maximize a fitness functionf(x):

max{f(x);x ∈ S}, (1)

whereS is a finite set. The optimal set is denoted bySopt and the non-optimal set bySnon. Without loss of generality, the
functionf(x) takesL+ 1 finite valuesf0 > f1 > · · · > fL (calledfitness levels). Corresponding to fitness levels, the setS is
decomposed intoL+ 1 subsets:

Sl := {x | f(x) = fl}, l = 0, 1, · · · , L.

For simplicity of analysis, we only investigate strictly elitist (1+1) EAs. Usingstrictly elitist selection, the parent is replaced
by the child only when the child is fitter. Therefore the best found solution is always preserved. In the EAs, mutation is
independent of the fitness function. Both mutation and selection operators are time invariant (i.e., static). The procedure of
such an elitist (1+1) EA is described as follows.

1: input: fitness functionf(x);
2: generate a solution at random and denote it byφ0;
3: generation countert← 0;
4: while the maximum value off(x) is not found do
5: child φt.m ← is mutated from parentφt;
6: if f(φt.m) > f(φt) then
7: next generation parentφt+1 ← φt.m;
8: else
9: next generation parentφt+1 ← φt;

10: end if
11: t← t+ 1;
12: end while
13: output: the maximal value off(x).

Let G(x) denote the expected number of generations for an EA to find an optimal solution for the first time when starting at
x (calledexpected hitting time). In (1+1) EAs,G(x) also represents the expected number of fitness evaluations (calledexpected
runtime). In this paper, we restrict our discussion to those EAs whose expected runtime is finite (convergent).

Definition 1: Given an EA for maximising a class of fitness functions with the same optima, a functionf(x) in the class is
said to be theeasiestto the EA if starting from any initial point, the runtime of the EA for maximisingf(x) is no more than
the runtime for maximising any fitness functiong(x) in the class when starting from the same initial point. A function f(x)



3

in the class is said to be thehardiestto the EA if starting from any initial point, the runtime of the EA for maximisingf(x)
is no less than the runtime for maximising any fitness function g(x) in the class when starting from the same initial point.

The definition of the easiest and hardest functions is based on a point-by-point comparison of the runtime of the EA on two
fitness functions. It is irrelevant to polynomial or exponential runtime. The easiest and hardest functions are not unique. This
will be demonstrated in Subsection IV-C.

B. Criterion for Determining Easiest Function

Before we establish the criterion, we apply drift analysis to the random sequence{φt, t = 0, 1, · · · } and draw several
preliminary results. Notice that each generation of the (1+1) EA consists of two steps: mutation and selection,

φt
mutation
−→ φt.m with φt

selection
−→ φt+1.

The mutation operator is a transition fromφt to φt.m, whose transition probabilities are represented by

P [m](x, y) := P (φt.m = y | φt = x), x, y ∈ S. (2)

Hereφ is a random variable andx its value.
The selection operator is another transition fromφt andφt.m to φt+1, whose transition probabilities are represented by

P [s](x, y; z) := P (φt+1 = z | φt = x, φt.m = y), x, y, z ∈ S.

The tth generation is a transition fromφt to φt+1, whose transition probabilities are represented by

P (x, z) := P (φt+1 = z | φt = x). (3)

In drift analysis, a functiond(x) is called adrift function if it is non-negative at any point and equals to 0 at any optimum.
Given a drift functiond(x), drift represents the progress rate of moving towards the optima per generation. Drift at pointx is
defined by

∆(x) :=
∑

y∈S

P (x, y)(d(x) − d(y)).

Define positive drift∆+(x) and negative drift∆−(x) as follows

∆+(x) =
∑

y:d(x)>d(y)

P (x, y)(d(x) − d(y)),

∆−(x) =
∑

y:d(x)<d(y)

P (x, y)(d(x) − d(y)).

Then the drift∆(x) = ∆+(x) + ∆−(x).
Using drift analysis [19], we obtain the following preliminary results.
Lemma 1: [19, Lemma 1] If the drift satisfies that∆(x) ≥ 1 for any non-optimal pointx, then the expected runtime

satisfies thatG(x) ≤ d(x) for any pointx.
Lemma 2: [19, Lemma 2] If the drift satisfies that∆(x) ≤ 1 for any non-optimal pointx, then the expected runtime

satisfies thatG(x) ≥ d(x) for any pointx.
Lemma 3: [19, Lemma 3] Let the drift functiond(x) = G(x), then the drift satisfies∆(x) = 1 for any non-optimal point

x.
Furthermore, the runtime of an elitist (1+1) EA can be explicitly expressed in transition probabilities.
Lemma 4: [16, Theorem 4] For any elitist (1+1) EA, its expected runtime is given by

G(x) =







0, x = S0.
1+

∑

l−1

k=0

∑

y∈Sk
P (x,y)G(y)

∑

l−1

k=0

∑

y∈Sk
P (x,y)

, x ∈ Sl, l > 0.

Using the above lemmas, we establish a criterion of determining whether a fitness function is the easiest to an elitist (1+1)
EA.

Theorem 1:Given an elitist (1+1) EA, and a class of fitness functions with the same optima, letGf (x) denote the runtime
of the (1+1) EA for maximisingf(x). If the following monotonically decreasing conditionholds:

• for any two pointsx andy such thatGf (x) < Gf (y), it hasf(x) > f(y),
thenf(x) is the easiest in the fitness function class.

Proof: Let g(x) be a fitness function in the function class.{φt, t = 1, 2, · · · } denotes the sequence for maximisingf(x),
and{ψt, t = 1, 2, · · · } the sequence for maximisingg(x). LetGg(x) denote the runtime of the (1+1) EA for maximisingg(x).

Since our objective is to show the expected runtime onf(x) is no more than the runtime on any other function, we take
the runtime onf(x) as the drift function:d(x) = Gf (x). This plays a crucial role in our analysis.



4

For the sequence{φt}, denote the drift at pointx by ∆φ(x). For the sequence{ψt}, denote the drift at pointx by ∆ψ(x).
The subscriptsφ andψ are used to distinguish between the two sequences{φt} and{ψt}.

Notice thatd(x) = Gf (x), then we apply Lemma 3 and get that for any non-optimal pointx, drift

∆φ(x) = 1. (4)

The rest of proof is based on the idea: first, we prove the drift∆ψ(x) ≤ 1 for the sequence{ψt}, and then draw the derived
conclusion using Lemma 2.

(1) First we compare the negative drift of the two sequences.In the case of negative drift, we consider two pointsx andy
such thatd(x) < d(y) (i.e.,Gf (x) < Gf (y)). According to the monotonically decreasing condition,f(x) > f(y).

For the sequence{φt}, y is never accepted due to elitist section, which leads toPφ(x, y) = 0. Thus for the sequence{φt},
there is no negative drift.

∆−
φ (x) = 0.

For the sequence{ψt}, there exist two cases: (i)g(x) < g(y); (ii) g(x) ≥ g(y). In the case ofg(x) < g(y), y will be
accepted, which impliesPψ(x, y) ≥ 0. Thus there exists negative drift for the sequence{ψt}.

∆−
ψ (x) ≤ 0.

Comparing the negative drift of these two sequences, we get

∆−
ψ (x) ≤ ∆−

φ (x). (5)

(2) Secondly we compare the positive drift of the two sequences. In the case of positive drift, we consider two pointsx and
y such thatd(x) > d(y). If y is not an optimum, then according to the monotonically decreasing condition,f(x) < f(y). If
y is an optimum, then naturallyf(x) < f(y).

For the sequence{φt}, if such ay has been mutated fromx, theny is always accepted due to elitist selection. Thus

Pφ(x, y) = P [m](x, y).

For the sequence{ψt}, there exist two cases: (i)g(x) < g(y); (ii) or g(x) ≥ g(y). In the case ofg(x) < g(y), according
to elitist section,y is always accepted. Thus

Pψ(x, y) = P [m](x, y).

In the case ofg(x) ≥ g(y), according to elitist section,y will not be accepted. The transition probabilityPψ(x, y) = 0.
Then we get thatPφ(x, y) ≥ Pψ(x, y). Hence

∑

y:d(x)>d(y)

Pψ(x, y)(d(x) − d(y))

≤
∑

y:d(x)>d(y)

Pφ(x, y)(d(x) − d(y)).

So the positive drift of the two sequences satisfies

∆+
ψ (x) ≤ ∆+

φ (x). (6)

Merging (5) and (6) and using (4), we know that the total driftof the two sequences satisfies

∆ψ(x) ≤ ∆φ(x) = 1.

Applying Lemma 2, we see the expected runtime ong(x) satisfies

Gg(x) ≥ d(x) = Gf (x),

then we finish the proof.
Now we give an intuitive explanation of the above theorem. The monotonically decreasing condition means the function is

unimodal in terms of the time-based fitness landscape and Theorem 1 asserts that a unimodal function is always the easiest.
In the following we explain this in detail.

In a time-based fitness landscape, runtimeG(x) is regarded as the distanced(x) between a pointx and the optimum. It is
completely different from a neighbourhood-based distancesuch as the Hamming distance. Time is seldom used as a distance
measure in evolutionary computation but popular in our reallife. Taking runtime as the distance, we visualise the monotonically
decreasing condition

• for any two pointsx andy such thatd(x) < d(y), it hasf(x) > f(y),

using a time-based fitness landscape (see Fig. 1), where thex axis is the runtime and they axis is the fitness, and the origin
represents the set of optima withd(x) = 0.



5

d(x)

f(x)

Fig. 1. A unimodal time-based fitness landscape. Thex axis is the runtime:d(x) = G(x). The y axis is the fitness function. The origin represents the
optimum.

The landscape isunimodal: the functionf(x) has exactly one optimum. In contrast, any unimodal functiondefined in the
2-D time-based fitness landscape will satisfy the monotonically decreasing condition. The unimodal property implies that no
negative drift exists in an elitist EA. Thus the EA always moves towards the optimum. This makes the unimodal time-based
fitness landscapes the easiest to the EA.

The theorem only states that a unimodal time-based fitness landscape is the easiest. Nevertheless this assertion could not be
established if using a neighbourhood-based distance such as the Hamming distance. A unimodal function in the context ofa
neighbourhood-based fitness landscape is not always the easiest.

C. Criterion of Determining Hardest Function

In a similar way, we establish a criterion of determining whether a fitness function is the hardest to an elitist (1+1) EA. It
is similar to Theorem 1. The monotonically decreasing condition is replaced by the monotonically increasing condition.

Theorem 2:Given an elitist (1+1) EA, and a class of fitness functions with the same optima, letGf (x) denote the expected
runtime for maximisingf(x). If the following monotonically increasing conditionholds:

• for any two non-optimal pointsx andy such thatGf (x) < Gf (y), it hasf(x) < f(y),

thenf(x) is the hardest in the class.
Proof: The proof is similar to that of Theorem 1 but with several changes.

Let g(x) be a fitness function in the function class.{φt, t = 1, 2, · · · } denotes the sequence for maximisingf(x), and
{ψt, t = 1, 2, · · · } the sequence for maximisingg(x). Gg(x) denotes the runtime of the (1+1) EA for maximisingg(x). We
take the runtime onf(x) as the drift function:d(x) = Gf (x).

For the sequence{φt}, notice thatd(x) = Gf (x), then we apply Lemma 3 and get for any non-optimal pointx

∆φ(x) = 1. (7)

(1) First we compare the negative drift of the two sequences.We consider two non-optimal pointsx and y such that
d(x) < d(y) (i.e.,Gf (x) < Gf (y)). According to the monotonically increasing condition,f(x) < f(y).

For the sequence{φt}, if such ay has been mutated fromx, theny is always accepted due to elitist selection. Thus

Pφ(x, y) = P [m](x, y).

For the sequence{ψt}, there exist two cases: (i)g(x) < g(y); (ii) or g(x) ≥ g(y). In the case ofg(x) < g(y), if such ay
has been mutated fromx, theny is always accepted due to elitist selection. Thus

Pψ(x, y) = P [m](x, y).

In the case ofg(x) ≥ g(y), according to elitist section,y will not be accepted. The probabilityPψ(x, y) equals to

Pψ(x, y) = 0.

Then we get thatPφ(x, y) ≥ Pψ(x, y). Hence
∑

y:d(x)<d(y)

Pψ(x, y)(d(x) − d(y))

≥
∑

y:d(x)<d(y)

Pφ(x, y)(d(x) − d(y)). (8)



6

Equivalently the negative drift of the two sequences satisfies

∆−
ψ (x) ≥ ∆−

φ (x). (9)

(2) Secondly we compare the positive drift of the two sequences. We consider two pointsx andy such thatd(x) > d(y),
wherey could be either an optimum or not.

First considery an optimum. For the sequence{φt}, if such ay has been mutated fromx, theny is always accepted due
to elitist selection. Thus

Pφ(x, y) = P [m](x, y).

Similarly for the sequence{ψt}, y is always accepted due to elitist selection. Thus

Pψ(x, y) = P [m](x, y).

Then we get

Pψ(x, y) = Pφ(x, y). (10)

Then considery not an optimum. According to the monotonically increasing condition,f(x) > f(y) if y is not an optimum.
For the sequence{φt}, y is never accepted due to elitist section, which leads to

Pφ(x, y) = 0.

For the sequence{ψt}, even iff(x) > f(y), it is still possible thatg(x) < g(y). So y may be accepted. This means

Pψ(x, y) ≥ 0.

Thus we have

Pψ(x, y) ≥ Pφ(x, y). (11)

Combining (10) and (11), we have for anyy,

Pψ(x, y) ≥ Pφ(x, y).

Then
∑

y:d(x)>d(y)

Pψ(x, y)(d(x) − d(y))

≥
∑

y:d(x)>d(y)

Pφ(x, y)(d(x) − d(y)). (12)

Equivalently the positive drift of the two sequences satisfies

∆+
ψ (x) ≥ ∆+

φ (x). (13)

Merging (9) and (13) and using (7), we draw that the total drift of the two sequences satisfies

∆ψ(x) ≥ ∆φ(x) = 1.

It follows from Lemma 1 that for any non-optimal pointx

Gg(x) ≤ d(x) = Gf (x),

then we finish the proof.
An intuitive explanation of the above theorem is that the monotonically increasing condition means the function is deceptive

and Theorem 2 states a deceptive function is always the hardest. Let’s demonstrate this using the time-based fitness landscape.
Still taking runtimeG(x) as the distanced(x) to the optima, we visualise the monotonically increasing condition

• for any two non-optimal pointsx andy such thatd(x) < d(y), it hasf(x) < f(y),

using a time-based fitness landscape (see Fig. 2). The landscape isdeceptive: the closer a point is to the origin, the lower its
fitness is. The deceptive time-based fitness landscape is thehardest.

When using a neighbourhood-based distance, it is impossible to establish a similar result under a similar condition. A
deceptive function in the context of the neighbourhood-based fitness landscape is not always the hardest.

Note: the above unimodal and deceptive time-based fitness landscapes are different from the easy and hard fitness landscapes
described in [20], which are classified by polynomial or exponential hitting time.



7

d(x)

f(x)

Fig. 2. A deceptive time-based fitness landscape. Thex axis is the runtime:d(x) = G(x). The y axis is the fitness function. Th origin represents the
optimum.

D. Case Study: 0-1 Knapsack Problem

We give two simple examples to show the application of the above theorems. The examples come from the 0-1 knapsack
problem. We will not consider all instances of the 0-1 knapsack problem. Instead we focus on an instance class.

Example 1:Consider an instance class of the 0-1 knapsack problem described as follows:

maximize f(x) =
∑n

i=1 vixi,
subject to

∑n
i=1 wixi ≤ C,

wherevi > 0 is the value of itemi, wi > 0 its weight, andC the knapsack capacity. The value of items satisfiesv1 >
v2 + · · ·+ vn, and the weight of items satisfiesw1 > w2 + · · ·+wn, the knapsack capacityC = w1. A solution is represented
by a binary stringx = (x1 · · ·xn). The unique optimum is(10 · · · 0), denoted byx∗.

An elitist (1+1) EA using bitwise mutation is applied to the problem.
• EA( 1

n ). Flip each bit independently with flipping probability1n .
For simplicity of analysis, we adopt the simplest approach to handle the constraint: reject any infeasible solution during
selection.

Let’s investigate a special instance in the class:v1 = n andv2 = · · · = vn = 1; w1 = n andw2 = · · · = wn = 1. Notice
that the global optimum isx∗ := (10 · · · 0) and the local optimum is(01 · · · 1). It is a deceptive function. We can prove the
monotonically increasing condition holds. We give an outline of the proof but omit its detailed calculation. Corresponding to
fitness levelfl, the subset

S0 = {x∗}, andf0 = n,

Sl = {x | h(x, x
∗) = n− l}, andfl = n− l, for l > 0,

whereh(x, y) is the Hamming distance betweenx andy.
According to Lemma 4, the expected runtime of EA(1

n ) is given by the following recurrence relation:G(x) = 0 for x ∈ S0

and

G(x) =
1 +

∑l−1
k=0

∑

y∈Sk
P (x, y)G(y)

∑l−1
k=0

∑

y∈Sk
P (x, y)

, x ∈ Sl,

where

P (x, y) = P [m](x, y) =

(

1−
1

n

)n−h(x,y)(
1

n

)h(x,y)

.

Then the monotonically increasing condition holds.

G(x) < G(y) =⇒ f(x) < f(y), x, y ∈ Snon.

Applying Theorem 2, we know the fitness function related to this instance is the hardiest in the class.
Example 2:Consider an instance class of the 0-1 knapsack problem. The knapsack capacityC is enough large such that

C ≥ w1 + · · · + wn. The unique optimum is(1 · · · 1). This function class is equivalent to linear functions. We apply EA(1n )
to the problem.

Let’s investigate a special instance in the class:v1 = · · · = vn = 1. Its fitness function is equivalent to the OneMax function,
so that it is easy. We prove the OneMax function is the easiestthrough verifying the monotonically decreasing condition. We
give an outline of the proof. Corresponding to fitness levelfl wherel = 0, · · · , n, the subset

Sl = {x | h(x,~1) = l}, andfl = n− l,



8

whereh(x, y) is the Hamming distance betweenx andy.
According to Lemma 4, the expected runtime of EA(1

n ) is given by the following recurrence relation:G(x) = 0 for x ∈ S0

and for l > 0

G(x) =
1 +

∑l−1
k=0

∑

y∈Sk
P (x, y)G(y)

∑l−1
k=0

∑

y∈Sk
P (x, y)

, x ∈ Sl,

where

P (x, y) = P [m](x, y) =

(

1−
1

n

)n−h(x,y)(
1

n

)h(x,y)

.

Then the monotonically decreasing condition holds.

G(x) < G(y) =⇒ f(x) > f(y), x, y ∈ S.

Applying Theorem 1, we get the OneMax function is the easiestamong all linear functions.
Note: The monotonically increasing condition is a sufficient condition for a fitness function being the hardest, but not

necessary. The same is true to the monotonically decreasingcondition of the easiest functions. The reason is trivial: Consider
a function class only includes one function, then the function will be both the easiest and hardest in the class, regardless of
the monotonically increasing or decreasing condition.

IV. CONSTRUCTION OFEASIEST AND HARDEST FITNESSFUNCTIONS TO AN EA

In this section we construct unimodal functions (the easiest) and deceptive functions (the hardest), respectively, toany given
elitist (1+1) EA.

A. Construction of Easiest Fitness Functions

Given a class consisting of all fitness functions with the same optima on a finite setS, consider an elitist (1+1) EA for
maximising a fitness function in the class. We construct the easiest functionf(x) to the EA as follows.

1) Let S0 = Sopt. For anyx ∈ S0, defineG′(x) = 0.
2) Suppose that the subsetsS0, · · · , Sl−1 are given andG′(x) has been defined on these subsets. LetSl be the set consisting

of all points such that

arg min
x∈S\∪l−1

k=0
Sk

1 +
∑l−1
k=0

∑

y∈Sk
P [m](x, y)G′(y)

∑l−1
k=0

∑

y∈Sk
P [m](x, y)

.

For anyx ∈ Sl, define

G′(x) =
1 +

∑l−1
k=0

∑

y∈Sk
P [m](x, y)G′(y)

∑l−1
k=0

∑

y∈Sk
P [m](x, y)

. (14)

The value ofG′(x) is the same for any pointx in the same subset.
3) Repeat the above step until any point is covered by a subset. Then there exists some integerL > 0 andS = ∪Lk=0Sk.
4) ChooseL + 1 numbersf0, · · · , fL such thatf0 > · · · > fL. Set a fitness functionf(x) as follows:f(x) = fk, for

x ∈ Sk.

The following theorem shows that the fitness function constructed above is the easiest to the EA. The proof is a direct
application of the monotonically decreasing condition.

Theorem 3:f(x) is the easiest function in the function class with respect tothe EA.
Proof: (1) We show thatG′(x) equals to the expected runtimeG(x).

According to Lemma 4, the expected runtimeG(x) = 0 for x ∈ S0 and for l > 0

G(x) =
1 +

∑l−1
k=0

∑

y∈Sk
P (x, y)G(y)

∑l−1
k=0

∑

y∈Sk
P (x, y)

, x ∈ Sl. (15)

For anyx ∈ Sk and y ∈ Sl wherek > l, sincef(x) = fk < f(y) = fl and the EA adopts elitist selection,y is always
accepted if it has been generated via mutation. Thus the transition probabilityP (x, y) equals toP [m](x, y). (15) equals to

G(x) =
1 +

∑l−1
k=0

∑

y∈Sk
P [m](x, y)G(y)

∑l−1
k=0

∑

y∈Sk
P [m](x, y)

, x ∈ Sl. (16)

Comparing it with (14),G(x) andG′(x) are identical.
(2) We prove the monotonically decreasing condition.



9

First we prove an inequality:

G(x) > G(y), x ∈ Sl+1, y ∈ Sl. (17)

We prove it by induction. For anyx ∈ S1, y ∈ S0, it is trivial that G(x) > G(y) = 0. Suppose that for anyx ∈ Sl,
y ∈ Sl−1, it holdsG(x) > G(y). We prove that for anyx ∈ Sl+1, y ∈ Sl, it holdsG(x) > G(y).

Sincey ∈ Sl, from the construction, we know that

G(y) = min
w∈S\∪l−1

k=0
Sk

1 +
∑l−1

k=0

∑

z∈Sk
P [m](w, z)G(z)

∑l−1
k=0

∑

z∈Sk
P [m](w, z)

.

Let w = x, then we get

G(y) ≤
1 +

∑l−1
k=0

∑

x∈Sk
P [m](x, z)G(z)

∑l−1
k=0

∑

z∈Sk
P [m](x, z)

.

Equivalently

G(y)

l−1
∑

k=0

∑

z∈Sk

P [m](x, z) ≤ 1 +

l−1
∑

k=0

∑

z∈Sk

P [m](x, z)G(z).

We add the term
∑

z∈Sl
P [m](x, z)G(z) to both sides. Notice thatG(z) = G(y) for z ∈ Sl. As to the left-hand side, we

replace the factorG(z) by G(y) and move it outside of the summation. Then we get

G(y)

l
∑

k=0

∑

z∈Sk

P [m](x, z) ≤ 1 +

l
∑

k=0

∑

z∈Sk

P [m](x, z)G(z).

Equivalently

G(y) ≤
1 +

∑l
k=0

∑

z∈Sk
P [m](x, z)G(z)

∑l
k=0

∑

z∈Sk
P [m](x, z)

.

Sincex ∈ Sl+1, it follows from (16)

G(x) =
1 +

∑l
k=0

∑

z∈Sk
P [m](x, z)G(z)

∑l
k=0

∑

z∈Sk
P [m](x, z)

.

So we getG(y) ≤ G(x). The inequality is strict sincex andy are in different subsets. Thus we prove (17).
Secondly using (17), we can infer the monotonically decreasing condition easily. From (17), we draw that

G(x) > G(y), if x ∈ Sl, y ∈ Sk with l > k. (18)

For any two pointsx andy such thatG(x) > G(y), let x ∈ Sk, y ∈ Sl. Thenk and l must satisfyk < l. Then we have
f(x) = fk < f(y) = fl. This proves the monotonically decreasing condition.

(3) The conclusion is drawn from Theorem 1.
The above theorem provides an approach to designing the easiest fitness functions in the function class. The idea behind

the construction procedure is simple: we construct a function which is unimodal in the time-based fitness landscape and then
it is the easiest. Notice that the number of the easiest functions is infinite since the potential values of eachfl are infinite.

B. Construction of Hardest Fitness Functions

We consider an elitist (1+1) EA and a class of fitness functions with the same optima. The hardest fitness functionf(x) in
this class is constructed as follows.

1) Let S0 = Sopt. For anyx ∈ S0, let G′(x) = 0.
2) Suppose that the subsetsS0, · · · , Sl−1 have been produced andG(x) have been defined on these subsets. Then define

Sl to be the set of all points such that

arg max
x∈S\∪l−1

k=0
Sk

1 +
∑l−1
k=0

∑

y∈Sk
P [m](x, y)G′(y)

∑l−1
k=0

∑

y∈Sk
P [m](x, y)

.

For anyx ∈ Sl, set

G′(x) =
1 +

∑l−1
k=0

∑

y∈Sk
P [m](x, y)G′(y)

∑l−1
k=0

∑

y∈Sk
P [m](x, y)

. (19)

3) Repeat the above step until any point is covered by a subset. Then there exists an integerL > 0 such thatS = ∪Lk=0Sk.



10

4) ChooseL+ 1 numberf0, · · · , fL such thatf0 > · · · > fL > 0. Set the fitness function to bef(x) = fk, x ∈ Sk.

Now we prove thatf(x) is the hardest fitness function in the class using the monotonically increasing condition.
Theorem 4:f(x) is the hardest function in the function class to the EA.

Proof: (1) We prove that the mean runtimeG(x) = G′(x). The proof is similar to the first step in the proof of Theorem 3.
(2) We prove the monotonically increasing condition. The proof is similar to the second step in the proof of Theorem 3.
(3) The conclusion is drawn from Theorem 2.
The above theorem provides an approach to designing the hardest fitness functions in the class. We construct a function

which is deceptive in the time-based fitness landscape and then it is the hardest.
In the construction of the easiest and hardest functions, wedon’t restrict the representation of fitness functions. However,

the current approach is not suitable for the fitness functionclass with a specific requirement, for example, all fitness functions
in the class must be linear or quadratic. This research issueis left for future studies.

C. Case Study: Benchmarks in Pseudo-Boolean Optimisation

So far we have introduced a general approach to constructingthe easiest and hardest fitness functions. Now we illustrate
an application in pseudo-Boolean optimisation: to design benchmarks within a fitness function class. According to No Free
Lunch theorems, the performance of two EAs are equivalent ifaveraged over all possible Boolean-valued fitness functions.
Therefore we only consider a fitness class.

Example 3:Consider the class of all pseudo-Boolean functions with thesame optima at~0 := (0 · · · 0) and~1 := (1 · · · 1).

max{f(x);x ∈ {0, 1}n}. (20)

We compare the performance of two (1+1) elitist EAs on this problem using different mutation rates.
1) EA( 1

n ). Flip each bit independently with flipping probability1n . The mutation probability fromx to y is

P [m](x, y) =

(

1−
1

n

)n−h(x,y)(
1

n

)h(x,y)

, (21)

whereh(x, y) denote the Hamming distance betweenx andy.
2) EA( 12 ). Flip each bit independently with flipping probability12 . The mutation probability fromx to y is

P [m](x, y) =

(

1

2

)n

. (22)

As to benchmark functions, their optima must be known in advance and the number of benchmarks is often between5
to 30. Since a function class normally includes a large amount of functions, a question is which functions should be chosen
as benchmarks? Naturally we prefer typical functions in theclass: easy, hard and ‘averagely hard’ functions. Here we only
consider how to design the easiest and hardest fitness functions.

The easiest fitness function to EA(1
n ) is constructed as follows.

1) Let S0 = {~0,~1}. For anyx ∈ S0, defineG(x) = 0.
2) Suppose that the subsetsS0, · · · , Sl−1 are given andG(x) has been defined on these subsets. LetSl be the set consisting

of all points such that

arg min
x∈S\∪l−1

k=0
Sk

1 +
∑l−1

k=0

∑

y∈Sk
P [m](x, y)G(y)

∑l−1
k=0

∑

y∈Sk
P [m](x, y)

. (23)

Using the mutation probability

P [m](x, y) =

(

1−
1

n

)n−h(x,y)(
1

n

)h(x,y)

,

we get

Sl = {x | min{h(x,~0), h(x,~1)} = l}.

For anyx ∈ Sl, define

G(x) =
1 +

∑l−1
k=0

∑

y∈Sk
P [m](x, y)G(y)

∑l−1
k=0

∑

y∈Sk
P [m](x, y)

. (24)

3) Repeat the above step until any point is covered by a subset. The last subset isSL whereL := n/2. Without loss of
generality, assumen is even.

4) ChooseL+ 1 numbersf0, · · · , fL such thatf0 > · · · > fL. Set the fitness functionf(x) = fl, for x ∈ Sl. Thenf(x)
is the easiest function in the function class.



11

An example of the easiest function to EA(1
n ) is the Two Max function, given by

f(x) = n−min{h(x,~0), h(x,~1)}. (25)

The runtime is calculated as follows. Letx ∈ Sl, without loss of generality, suppose it hasl 0-valued bits andn− l 1-valued
bits (with l ≤ n− l). The event of going from the fitness levelfl to a higher fitness level will happen if one of 0-valued bits
is flipped and other bits are kept unchanged. The probabilityof this event is at least

(

l

1

)

1

n

(

1−
1

n

)n−1

≥
l

ne
,

wheree is Euler’s constant. Thus the runtime of going from the fitness levelfl to a higher fitness level is no more thanenl .
Since the number of fitness levels isL, therefore the total runtime to reach the global optima is atmost

L
∑

l=1

en

l
= O(n lnn).

There are infinite easiest fitness functions, including linear, quadratic and other non-linear functions, for example,

f(x) =
(

n−min{h(x,~0), h(x,~1)}
)k

, k = 1, 2, · · · (26)

The runtime of the EA on all easiest fitness functions is the same no matter whether they are linear or not.
It is worth noting that the Two Max function is unimodal in thetime-based fitness landscape. But using the Hamming

distance, the function is two-modal due to two optima at~0 and~1.
The hardest fitness function to EA(1

n ) is constructed as follows.

1) Let S0 = {~0,~1}. For anyx ∈ S0, let G(x) = 0.
2) Suppose that the subsetsS0, · · · , Sl−1 have been produced andG(x) have been defined on these subsets. Then define

Sl to be the set of all points such that

arg max
x∈S\∪l−1

k=0
Sk

1 +
∑l−1

k=0

∑

y∈Sk
P [m](x, y)G(y)

∑l−1
k=0

∑

y∈Sk
P [m](x, y)

.

Using the mutation probability

P [m](x, y) =

(

1−
1

n

)n−h(x,y)(
1

n

)h(x,y)

,

we get (letL := n/2 and assumen/2 is an integer)

Sl = {x | min{h(x,~0), h(x,~1)} = L− l − 1}.

For anyx ∈ Sl, set

G(x) =
1 +

∑l−1
k=0

∑

y∈Sk
P [m](x, y)G(y)

∑l−1
k=0

∑

y∈Sk
P [m](x, y)

. (27)

3) Repeat the above step until any point is covered by a subset. The last subset isSL.
4) ChooseL+ 1 numbersf0, · · · , fL such thatf0 > · · · > fL. Set the fitness functionf(x) = fl, for x ∈ Sl.
An example of the hardest function to EA(1

n ) is a Fully Deceptive function

f(x) =

{

n+ 1, if x = ~0,~1;

min{h(x,~0), h(x,~1)}, otherwise.
(28)

Consider a pointx ∈ S1 wherex consists of exactn/2 zero-valued bits andx is the farthest from~0 and~1. Now we calculate
the runtimeG(x). Since the Hamming distance betweenx and the optima~0 and~1 is n/2, so the transition probability of
going fromx to the two optima is between

(

1−
1

n

)n/2 (
1

n

)n/2

and2

(

1−
1

n

)n/2 (
1

n

)n/2

,

and the runtime isΘ(nn/2).
There are infinite hardest fitness functions, for example, for k = 1, 2, · · ·

f(x) =

{

(n+ 1)k, if x = ~0,~1;
(

min{h(x,~0), h(x,~1)}
)k

, otherwise.
(29)



12

TABLE I
THREE BENCHMARKS ANDRUNTIME COMPARISON OFTWO EAS.

name function time-based fitness landscape EA(1
n

) EA( 1
2

)
Two Max f(x) = n−min{h(x,~0), h(x,~1)} unimodal O(n lnn) Θ(2n)

Fully Deceptive f(x) =

{

n+ 1, if x = ~0,~1;

min{h(x,~0), h(x,~1)}, otherwise.
deceptive Θ(nn/2) Θ(2n)

Two Needles in Haystack f(x) =

{

1, if x = ~0,~1;
0, otherwise.

isolation nΘ(n) ×Θ(1) Θ(2n)

We can construct the easiest and hardest fitness functions toEA( 12 ) in the same way. The easiest fitness function to EA(1
2 )

is constructed as follows.

1) Let S0 be the set of optima~0 and~1.
2) Let S1 be the set consisting of all points such that

arg min
x∈S\S0

1
∑

y∈S0
P [m](x, y)

.

Using the mutation probability

P [m](x, y) = 2−n,

we getS1 = {x | x 6= ~0,~1}.
3) Choose2 numbersf0, f1 such thatf0 > f1. Set the fitness functionf(x) = fl, for x ∈ Sl. Then f(x) is the easiest

function in the function class.

An example of the easiest function to EA(1
2 ) is the Two Needles in the Haystack function

f(x) =

{

1, if x = ~0,~1;
0, otherwise.

(30)

We calculate the runtimeG(x) for x ∈ S1 as follows. The transition probability of going fromx to the two optima is
between(12 )

n and2× (12 )
n. Then the runtime isΘ(2n).

The hardest fitness function to EA(1
2 ) is constructed as follows.

1) Let S0 = {~0,~1}.
2) Let S1 be the set of all points such that

arg max
x∈S\S0

1
∑

y∈S0
P [m](x, y)

.

Using the mutation probability

P [m](x, y) = 2−n,

we getS1 = {x | x 6= ~0,~1}.
3) Choose 2 numbersf0, f1 such thatf0 > f1. Set the fitness functionf(x) = fl, for x ∈ Sl. Then the above function

f(x) is the hardest to EA(12 ).

An example of the hardest function to EA(1
2 ) is the Two Needles in the Haystack function, the same as the easiest function.

The runtime isΘ(2n). Since the runtime of EA(12 ) on both the easiest and hardest functions isΘ(2n). Then we know for any
function in the class, its runtime isΘ(2n).

We have constructed three benchmark functions: Two Max, Fully Deceptive and Two Needles in the Haystack. They are
described in Table I. The three functions represent three typical fitness landscapes: unimodal, deceptive and isolation. Using
the benchmarks, we can make a fair comparison of the performance of EA(1n ) and EA(12 ). Table I lists the results.

The runtime of EA(1n ) on the Two Needles in the Haystack function is calculated asfollows. Suppose the initial pointx
consists ofΘ(n) 0-valued bits andΘ(n) 1-valued bits, then the event of going fromx to the optima happens when either all
0-valued bits are flipped and other bits unchanged; or all1-valued bits are flipped and other bits unchanged. The probability
of the event is( 1n )

Θ(n) ×Θ(1). Thus the runtime isnΘ(n) ×Θ(1).
From the table, we see that EA(1

n ) is better than EA(12 ) on the Two Max function, but worse on the Fully Deceptive Points
and Two Needles in the Haystack functions. The comparison gives an understanding of the two EAs’ ability in different fitness
landscapes: unimodal, deceptive and isolation. Each EA hasits own advantage. EA(1n ) is more suitable for unimodal functions,
but EA(12 ) performs better on deceptive or isolation functions.

The runtime of EA(1n ) and EA(12 ) increases exponentially fast on the Fully Deceptive and Two Needles in the Haystack
functions. Thus it will be difficult to compare the runtime ofthe EAs via computer experiments unlessn is small.



13

V. M UTUAL TRANSFORMATION BETWEEN THE EASIEST AND HARDEST FITNESSFUNCTIONS

In the case study of the previous section, we observe that theeasiest and hardest fitness functions vary as EAs change. In
this section we prove an interesting result: a fitness function that is the easiest to one elitist (1+1) EA could becomes hardest
to another elitist (1+1) EA and vice versa.

A. Easiest May Become Hardest

Consider a class consisting of all functions with the same optima. Letf(x) be the easiest to an elitist (1+1) EA (called the
original EA). Denote its fitness levels byf0 > · · · > fL and define the setSl = {x; f(x) = fl}. We construct another elitist
(1+1) EA (called thebad EA) and showf(x) is the hardest to the bad EA.

The mutation operator in the bad EA is constructed as follows.

1) ChooseL+ 1 non-negative numbersm0,m1, · · · ,mL such thatm0 = 0,m1 > m2 > · · · > mL > 0.
2) For anyx ∈ S0 andy ∈ S, let the mutation transition probabilityP [m](x, y) be any probability.
3) For anyx ∈ Sl (wherel = 1, · · · , L) andy ∈ S, set the mutation transition probabilityP [m](x, y) such that

1 +
∑k−1

j=0

∑

y∈Sj
P [m](x, y)mj

∑k−1
j=0

∑

y∈Sj
P [m](x, y)

< mk, for k < l,

and

1 +
∑l−1

j=0

∑

y∈Sj
P [m](x, y)mj

∑l−1
j=0

∑

y∈Sj
P [m](x, y)

= ml. (31)

The above mutation operator is determined by the subsetsS1, · · · , Sl rather than fitness levels.
The following theorem shows the functionf(x) satisfies the monotonically increasing condition and then it is the hardest

to the bad EA.
Theorem 5:f(x) is the hardest function to the bad EA.

Proof: (1) We prove that the expected runtime of the bad EAG(x) = ml, for x ∈ Sl, l = 0, · · · , L.
According to Lemma 4, the expected runtime

G(x) =
1 +

∑l−1
j=0

∑

y∈Sj
P (x, y)G(y)

∑l−1
j=0

∑

y∈Sj
P (x, y)

.

For anyx ∈ Sl andy ∈ Sk wherel > k. Sincef(x) = fl < f(y) = fk and the bad EA adopts elitist selection,y is always
accepted if it has been generated via mutation. Thus the transition probabilityP (x, y) equals toP [m](x, y).

The expected runtime becomes

G(x) =
1 +

∑l−1
j=0

∑

y∈Sj
P [m](x, y)G(y)

∑l−1
j=0

∑

y∈Sj
P [m](x, y)

.

Comparing it with (31), we obtainG(x) andml are identical.
(2) We prove the monotonically increasing condition.
Assume thatx ∈ Sl, y ∈ Sk for somel andk. If G(x) < G(y), then it is equivalent toml < mk. Thus we havek < l and

f(x) = fl < f(x) = fk.

which gives the monotonically increasing condition.
(3) The conclusion is drawn from Theorem 2.
In the construction of the mutation operator and the proof ofthe above theorem, we don’t utilize the assumption off(x)

being the easiest to the original EA. Thus the theorem can be understood more generally: for any fitness functionf(x), we can
construct an elitist (1+1) EA to whichf(x) is the hardest. From the theoretical viewpoint, the theoremshows the existence of
a bad EA to the easiest fitness function.

B. Hardest May Become Easiest

Let f(x) be the hardest fitness function to the original elitist (1+1)EA. We construct another elitist (1+1) EA (called the
good EA), and showf(x) becomes the easiest to the good EA.

The mutation operator in the good EA is constructed as follows.

1) ChooseL+ 1 non-negative numbersm0, · · · ,mL such thatm0 = 0 < · · · < mL.
2) For anyx ∈ S0 andy ∈ S, let the mutation transition probabilityP [m](x, y) be any probability.



14

3) For anyx ∈ Sl (wherel = 1, · · · , L) andy ∈ S, set the mutation transition probabilityP [m](x, y) such that

1 +
∑k−1

j=0

∑

y∈Sj
P [m](x, y)mj

∑k−1
j=0

∑

y∈Sj
P [m](x, y)

> mk, for k < l,

and

1 +
∑l−1

j=0

∑

y∈Sj
P [m](x, y)mj

∑l−1
j=0

∑

y∈Sj
P [m](x, y)

= ml. (32)

The following theorem showsf(x) satisfies monotonically decreasing condition and then it isthe easiest to the good EA.
Theorem 6:f(x) is the easiest function to the good EA.

Proof: (1) We prove that the expected runtime of the good EAG(x) = mk, for x ∈ Sk, k = 0, 1, · · · , L. The proof is
similar to the first step in the proof of Theorem 5.

(2) We prove the monotonically decreasing condition. The proof is similar to the second step in the proof of Theorem 5.
(3) The conclusion is drawn from Theorem 1.
In the construction of the mutation operator and the proof ofthe above theorem, we also don’t utilize the assumption of

f(x) being the hardest to the original EA. The theorem implies that for any fitness functionf(x), we can construct a good
(1+1) EA to whichf(x) is the easiest.

The above theorem reveals if a fitness function is the hardestto one EA, then it is possible to design another good EA to
which the function is the easiest. However, the above construction method is intractable in practice since the complexity of
construction is exponential. How to design such a good EA is an ultimate goal in the study of EAs but beyond the scope of
the current paper.

Theorems 5 and 6 can be viewed as a complement to No Free Lunch theorems. No Free Lunch theorems concern all potential
fitness functions. The theorems claim the performance of anytwo EAs are equivalent if averaged over all possible functions.
Theorems 5 and 6 concern the hardness of a single fitness function. The two theorems assert that a fitness function could be
the easiest to one elitist (1+1) EA but the hardest to anotherEA. This implies for a single fitness function, a good EA (but
also a bad EA) always exists.

VI. CONCLUSIONS ANDFUTURE WORK

This paper presents a rigorous analysis devoted to the easiest and hardest fitness functions with respect to any given elitist
(1+1) EA for maximising a class of fitness functions with the same optima. Such fitness functions have been constructed step
by step. It is demonstrated that the unimodal functions are the easiest and deceptive functions are the hardest in terms of
the time-based fitness landscape. Furthermore it reveals that the hardest (and easiest) functions may become the easiest (and
hardest) with respect to another elitist (1+1) EA. From the theoretical viewpoint, a good EA (but also a bad EA) always exists
for a single fitness function.

A potential application of the theoretical work is the design of benchmarks. Benchmarks play an essential role in the empirical
comparison of EAs. In order to make a fair comparison, a good practice is to choose typical fitness functions in benchmarks,
for example, several easy, hard and ‘averagely hard’ fitnessfunctions. Our work provides a theoretical guideline to thedesign
of easy and hard functions: to choose unimodal (the easiest)and deceptive (the hardest) fitness functions with respect to EAs
under comparison.

Another application is to understand the ability of EAs on a class of fitness functions with the same optima. Through the
comparison of EAs on the easiest and hardest fitness functions, our work helps understand the ability of EAs in unimodal and
deceptive time-based fitness landscapes. This has been shown in the second case study.

Non-elitist EAs, population-based EAs and dynamical EAs are not investigated in this paper. The extension of our work to
such EAs will be the future research. Another work in the future is to study how to construct the easiest and hardest fitness
functions such that a special requirement, for example, allfitness functions must be linear or quadratic.

REFERENCES

[1] D. H. Wolpert and W. G. Macready, “No free lunch theorems for optimization,” IEEE Transactions on Evolutionary Computation, vol. 1, no. 1, pp.
67–82, 1997.

[2] ——, “Coevolutionary free lunches,”IEEE Transactions on Evolutionary Computation, vol. 9, no. 6, pp. 721–735, 2005.
[3] J. Horn and D. E. Goldberg, “Genetic algorithms difficulty and the modality of fitness landscapes,” inProceedings of the 3rd Workshop on Foundations

of Genetic Algorithms, L. D. Whitley and M. D. Vose, Eds. Morgan Kauffman, 1995, pp.243–269.
[4] G. Rudolph, “How mutation and selection solve long path problems in polynomial expected time,”Evolutionary Computation, vol. 4, no. 2, pp. 207–211,

1996.
[5] M. D. Vose and A. H. Wright, “Stability of vertex fixed points and applications,” inProceedings of the 3rd Workshop on Foundations of Genetic

Algorithms, L. D. Whitley and M. D. Vose, Eds. Morgan Kaufmann, 1995, pp.103–114.
[6] S. W. Wilson, “GA-easy does not imply steepest-ascent optimizable,” in Proceedings of the 4th International Conference on GeneticAlgorithms, R. K.

Belew and L. B. Booker, Eds. Morgan Kaufmann, 1991, pp. 85–89.



15

[7] T. Jones and S. Forrest, “Fitness distance correlation as a measure of problem difficulty for genetic algorithms.” inProceedings of the 6th International
Conference on Genetic Algorithms, L. J. Eshelman, Ed. Morgan Kaufmann, 1995, pp. 184–192.

[8] N. J. Radcliffe and P. D. Surry, “Fitness variance of formulae and performance prediction,” inProceedings of the 3rd Workshop on Foundations of
Genetic Algorithms, L. D. Whitley and M. D. Vose, Eds. Morgan Kaufmann, 1995, pp.51–72.

[9] Y. Davidor, “Epistasis variance: A viewpoint on GA-hardness,” inProceedings of the 1st Workshop on Foundations of Genetic Algorithms., G. J. E.
Rawlins, Ed. Morgan Kaufmann, 1991, pp. 23–35.

[10] B. Naudts and L. Kallel, “A comparison of predictive measure of problem difficulty in evolutionary algorithms,”IEEE Trans. on Evolutionary Computation,
vol. 4, no. 1, pp. 1–15, 2000.

[11] J. He, C. Reeves, C. Witt, and X. Yao, “A note on problem difficulty measures in black-box optimization: Classification, existence and predictability,”
Evolutionary Computation, vol. 15, no. 4, pp. 435–443, 2007.

[12] B. Manderick, M. K. de Weger, and P. Spiessens, “The genetic algorithms and the structure of the fitness landscape,” in Proceedings of the 4th
International Conference on Genetic Algorithms, R. K. Belew and L. B. Booker, Eds. Morgan Kaufman, 1991, pp. 143–150.

[13] T. Jansen, “On classifications of fitness functions,” inTheoretical Aspects of Evolutionary Computing, L. Kallel, B. Naudts, and A. Rogers, Eds. Springer,
2001, pp. 371–386.

[14] C. Reeves, “Predictive measures for problem difficulty,” in Proceedings of 1999 Congress on Evolutionary Computation, vol. 1. IEEE Press, 1999, pp.
736–743.

[15] J. He and X. Yao, “An analysis of evolutionary algorithms for finding approximation solutions to hard optimisation problems,” inProceedings of IEEE
2003 Congress on Evolutionary Computation. IEEE Press, 2003, pp. 2004–2010.

[16] ——, “Towards an analytic framework for analysing the computation time of evolutionary algorithms,”Artificial Intelligence, vol. 145, no. 1-2, pp.
59–97, 2003.

[17] T. Chen, J. He, G. Sun, G. Chen, and X. Yao, “A new approachfor analyzing average time complexity of population-basedevolutionary algorithms on
unimodal problems,”IEEE Transactions on Systems, Man and Cybernetics, Part B, vol. 39, no. 5, pp. 1092–1106, 2009.

[18] T. Chen, J. He, G. Chen, and X. Yao., “Choosing selectionpressure for wide-gap problems,”Theoretical Computer Science, vol. 411, no. 6, pp. 926–934,
2010.

[19] J. He and X. Yao, “A study of drift analysis for estimating computation time of evolutionary algorithms,”Natural Computing, vol. 3, no. 1, pp. 21–35,
2004.

[20] J. He, X. Yao, and Q. Zhang, “To understand one-dimensional continuous fitness landscapes by drift analysis,” inProceedings of 2004 Congress on
Evolutionary Computation. IEEE Press, 2004, pp. 1248–1253.


	I Introduction
	II Related Work
	III Easiest and Hardest Fitness Functions
	III-A Definition of Easiest and Hardest Fitness Functions
	III-B Criterion for Determining Easiest Function
	III-C Criterion of Determining Hardest Function
	III-D Case Study: 0-1 Knapsack Problem

	IV Construction of Easiest and Hardest Fitness Functions to an EA
	IV-A Construction of Easiest Fitness Functions
	IV-B Construction of Hardest Fitness Functions
	IV-C Case Study: Benchmarks in Pseudo-Boolean Optimisation

	V Mutual Transformation Between the Easiest and Hardest Fitness Functions
	V-A Easiest May Become Hardest
	V-B Hardest May Become Easiest

	VI Conclusions and Future Work
	References

