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Highlights 

 

•DRAC is a Dose Rate and Age Calculator for trapped charge dating. 

•DRAC is available online at www.aber.ac.uk/alrl/drac. 

•DRAC enables easy and transparent dose rate calculation. 

•Users input sample details and select appropriate factors to calculate dose rates. 

•Users download an output table detailing inputs and all calculated values. 

 

Abstract 

 

Accurate calculation of the environmental radiation dose rate (Ḋ) is an essential part of trapped charge 

dating methods, such as luminescence and electron spin resonance dating. Although the calculation of Ḋ is 

not mathematically complex, the incorporation of multiple variables and the propagation of uncertainties 

can be challenging. The Dose Rate and Age Calculator (DRAC) is an open access, web-based program which 

enables rapid Ḋ calculation for trapped charge dating applications. Users can select from recently published 

attenuation and conversion factors to make mathematically robust, reproducible Ḋ calculations. 

Comparison of DRAC calculated Ḋ values against the published Ḋ determinations of 422 samples from 32 

studies results in a reproducibility ratio of 1.01 ± 0.05. It is anticipated that DRAC will facilitate easier inter-

laboratory comparisons and will provide greater transparency for Ḋ calculations. DRAC will be updated to 

reflect the latest advances in Ḋ calculation and is freely accessible at www.aber.ac.uk/alrl/drac. The code 

for DRAC is available from GitHub at https://github.com/DRAC-calculator/DRAC-calculator. 

 

Keywords: DRAC; Dose rate; Age; Calculator; Luminescence dating; Electron spin resonance dating; 

Software; Open access. 

 

1. Introduction 

 

Trapped charge dating techniques such as luminescence and electron spin resonance (ESR) dating are key 

Quaternary dating methods and in a period of 22 months from January 2013, over 500 papers have been 

published using these techniques. Within luminescence dating, calculation of the environmental dose rate 

(Ḋ) is equally important as calculation of the equivalent dose (De) in age determinations, yet many 

luminescence dating publications tend to be more focused upon the calculation of De values. The recent 

luminescence laboratory inter-comparison project (Buylaert et al., 2006 and Murray et al., 2015) initially 

reported at the UK Luminescence meeting held in Aberystwyth in September 2012, highlighted that whilst 

De values are measured reproducibly between different laboratories, greater variability is seen in Ḋ 



determinations. This may be partly explained by the variety of measurement techniques used to infer Ḋ, i.e. 

some laboratories use techniques to determine radionuclide concentrations (e.g. inductively-coupled 

plasma mass spectrometry (ICP-MS)), whereas other laboratories use emission counting methods to 

directly measure radioactivity. However, De Corte et al. (2007) compared a wide range of different 

methods for dose rate determination and did not record major differences between techniques. An 

alternative explanation is variability in the parameters used in Ḋ determinations, such as different 

radionuclide conversion factors (e.g. Adamiec and Aitken, 1998 and Guerin et al., 2012) and dose rate 

attenuation factors (e.g. Brennan, 2003 and Mejdahl, 1979), which will result in minor variability in the 

calculated Ḋ. Furthermore, although the mathematics required in the dose rate calculation is not complex, 

the compilation of in excess of 10 variables (Fig. 1) provides many opportunities for miscalculation. To 

overcome the challenges of Ḋ calculation, desktop based programs have been previously published e.g. the 

AGE program (Grün, 2009). However as this program is written to be run in a DOS based language it 

requires additional DOS emulation software to run in versions of Windows more recent than XP and the 

radionuclide conversion factors it uses have now been superseded. Other programs have not been formally 

published (e.g. ADELE; Kulig, 2005) and are not widely available. We present here a web-based Dose Rate 

and Age Calculator (DRAC), which is freely available and can be more easily updated to reflect the most 

recent conversion and attenuation factor publications. By providing a standardised calculator with 

transparent calculations which utilises published input variables, DRAC provides an effective means of 

removing the potential for miscalculation and will facilitate improved assessment of dose rate and age 

calculations and more simple inter-laboratory Ḋ comparisons. 

 

 
Figure 1: Overview of the Ḋ calculation for trapped charge dating applications. IM – infinite matrix, ext – 

external, int – internal. 

 

2. DRAC website and data input 

 

DRAC (v1.1) can be accessed at www.aber.ac.uk/alrl/drac and is hosted by the Aberystwyth Luminescence 

Research Laboratory, Aberystwyth University, UK. The publication of DRAC as a website ensures that users 



will immediately benefit from software updates, and that revised inputs can be rapidly incorporated into 

the calculation code. A key objective of DRAC is calculation transparency, and it is intended that all users 

will be able to easily trace the methods used to calculate published dose rate values in a similar manner to 

the cosmogenic nuclide dating community, who have recently benefitted from the development of 

CRONUS (Balco et al., 2008). Therefore, the DRAC calculation code is listed on GitHub which is an open 

access code repository, and can be accessed using a link from the DRAC website. 

 

The DRAC website is comprised of three key parts: a user guide, the calculator input page, and the data 

tables summary. The user guide page provides a short introduction to the calculation process used by DRAC 

and provides a summary of the inputs required and outputs generated by DRAC. On the calculator input 

page, users can download a .csv template of the inputs required for the dose rate calculation, and once this 

has been populated, can copy and paste their data into the calculation box. Note that because this 

comprises a text input, it is important to ensure that values are input with the correct number of significant 

figures. DRAC users can input data for multiple samples by populating multiple rows of data, facilitating the 

rapid analysis of a number of samples simultaneously. Once users click “calculate”, DRAC produces an 

output file in .csv format which provides a summary table, as well as listing all of the inputs used, the 

variables that have been selected (e.g. a-value, grain size etc.) and calculated values (e.g. the different 

attenuation factors). Input and output tables populated with example data are provided in the 

Supplementary Information for reference, although users should always refer to the DRAC website to 

ensure they are using the most up to date versions of the input and output tables. The data tables page 

provides the datasets (e.g. conversion factors, attenuation factors) that can be selected and used in the Ḋ 

calculation. These datasets are also detailed in the Supplementary Information. 

3. Determination of the environmental dose rate (Ḋ) 

 

Four types of radiation contribute to the Ḋ received by a sample: alpha particles (α), beta particles (β), 

gamma rays (γ) and cosmic rays. The dose rate from each of these sources is combined to calculate the 

total Ḋ, which is used in trapped charge dating calculations. The alpha (Ḋα), beta (Ḋβ) and gamma (Ḋγ) dose 

rates originate from naturally occurring radionuclides, including Uranium (U), Thorium (Th) and Potassium 

(K), which are present in the surrounding sediment matrix and make up a proportion of the crystalline 

structure of some minerals. The radiation emitted can be attenuated due to a variety of factors including 

grain size and sediment-matrix water content, requiring that dose rates are adjusted. The cosmic dose rate 

(Ḋc) received by a sample is a function of the geographic location, burial depth and altitude from which the 

sample was taken. In DRAC, the internal and external dose rates are calculated and attenuated as 

appropriate, and along with the Ḋc, these are combined to calculate the total Ḋ. The calculation stages are 

discussed below. 

 

3.1. External alpha, beta and gamma dose rates 

 

Aitken (1985a) comments that for the majority of samples, U, Th and K comprise almost all of the total Ḋ in 

approximately equal parts, with a small contribution from Rubidium (Rb) and the Ḋc. Dose rates resulting 

from the decay of these elements can be calculated either by determining the radionuclide concentrations 

present in the sediment matrix or by directly measuring the emission of radiation from the sediment (cf. De 

Corte et al., 2007). Many measurement techniques are available for dose rate determination, including ICP-

MS, neutron activation analysis, gamma spectrometry, thick source alpha and beta counting, and alpha 

spectroscopy. 

 



DRAC offers the flexibility of inputting either radionuclide concentrations and/or directly measured dose 

rates. Alternatively, a combination of the two can be used, e.g. the Ḋβ may be measured directly using beta 

counting, whilst the Ḋα and Ḋγ are determined from radionuclide concentrations. Where the user inputs a 

combination of radionuclide concentrations and directly measured dose rates, DRAC will use the specified 

dose rate in calculations. These specified dose rates should be input in Gy.ka−1, and will be attenuated by 

DRAC in subsequent calculation stages. Users will note from Table S1 that radionuclide concentrations of U, 

Th and Rb should be input in ppm and K in %. Details of how to convert from Bq.kg−1 to ppm and K2O% to K 

are detailed in the Supplementary Information (Table S3.1). Where the user opts to use radionuclide 

concentrations for dose rate calculations, they have the option of either inputting a Rb concentration or 

deriving Rb from the K concentration, where Rb (ppm) is equal to −9.17 + 38.13 K (%) after Mejdahl (1987). 

 

3.1.1. Radionuclide conversion factors 

 

A set of conversion factors are used to calculate the infinite-matrix alpha, beta and gamma dose rates 

derived from a radionuclide. Conversion factors for each radionuclide derived from nuclear data tables 

have been published by a number of authors (e.g. Adamiec and Aitken, 1998). Liritzis et al. (2013) have 

most recently updated the conversion factors from values previously published by Guerin et al. (2011) and 

Adamiec and Aitken (1998). In contrast to previous contributions, Liritzis et al. (2013) have also calculated 

uncertainties for their conversion factors and in the absence of calculated uncertainties in the studies of 

Guerin et al. (2011) and Adamiec and Aitken (1998), proportional uncertainties derived from Liritzis et al. 

(2013) are applied to all three datasets. The data tables used in DRAC can be viewed in the Supplementary 

Information accompanying this paper (Table S3.2) and on the DRAC website. Radionuclide concentrations 

are multiplied by the relevant conversion factor to determine the Ḋα, Ḋβ and Ḋγ delivered by the decay of 

each element. The uncertainties are propagated in quadrature when calculating the dose rate from each of 

the radionuclides. Further details of the calculation process and worked examples are presented in the 

Supplementary Information (S3.9, S3.10, and S3.11). 

 

3.2. Internal alpha and beta dose rates 

 

The inclusion of U, Th and K within the mineral lattice of quartz and feldspar grains results in an internal 

Ḋαand Ḋβ component, which is particularly significant for K-feldspars. For quartz, Aitken (1998) suggests 

that in most environments, the contribution of the internal alpha dose rate to the Ḋ is negligible, 

particularly given its low alpha efficiency (Rees-Jones and Tite, 1997). However, in some environments with 

low environmental dose rates, internal doses for quartz may account for a few percent of the total dose 

rate (e.g. Armitage and King, 2013, Jacobs et al., 2003 and Sutton and Zimmerman, 1978). Users of DRAC 

working in low dose environments can incorporate a user-defined and attenuated internal Ḋ within their 

dose rate calculation (e.g. Vandenberghe et al., 2008) if required. The inclusion of K within the structure of 

K-feldspars results in an internal Ḋβ (e.g. Huntley and Baril, 1997) and the recent development of the post-

IR IRSL protocol (Buylaert et al., 2009 and Thomsen et al., 2008) and technological advances that facilitate 

single-grain K-feldspar dating, have resulted in efforts to precisely measure individual-grain internal K 

contents (e.g. Smedley et al., 2012). In DRAC, users should input a K concentration value for their samples 

or may wish to use the K content values of 12.5 ± 0.5% of Huntley and Baril (1997) or the 10 ± 2% measured 

by Smedley et al. (2012). 

 

In DRAC, users can input internal radionuclide concentrations of U, Th and K which will be multiplied by the 

selected conversion factors to calculate the internal Ḋα and Ḋβ, and which will be adjusted for grain size. 

The internal Ḋα will also be adjusted for alpha efficiency. Alternatively, users may input a specified internal 



Ḋ (Gy.ka−1) which should be the sum of both the internal Ḋα and Ḋβ, user defined internal dose rates, and 

must be provided in a grain-size attenuated form, because without specified radionuclide concentrations it 

is not possible for DRAC to calculate an appropriate attenuation factor. 

 

3.3. Attenuation factors 

 

In order to determine the Ḋ from the calculated internal and external Ḋα, Ḋβ and Ḋγ, it is necessary to adjust 

the doses for a range of factors, including alpha efficiency, grain size, removal of the grain surface by 

etching, and moisture content. DRAC users can select from a variety of published datasets for attenuation 

of dose rates, as detailed below. 

 

3.3.1. Alpha efficiency (a-value) 

 

In contrast to beta particles and gamma rays, alpha particles are highly ionising and cause the saturation of 

trapping defects within their alpha decay tracks (Aitken, 1985a). This is corrected for by using an alpha 

efficiency factor, or a-value (Aitken and Bowman, 1975), which can be considered as the ratio of 

luminescence per unit alpha track length to the luminescence per unit absorbed beta dose (Aitken, 1985b). 

A range of a-values have been published in the literature for different grain-sizes and mineral types, and 

within DRAC, users should input their selected a-value for any samples where an alpha contribution is to be 

calculated. The most commonly used published values include 0.15 ± 0.05 for coarse-grained K-feldspar 

(Balescu and Lamothe, 1994), 0.10 ± 0.02 for coarse-grained quartz (Olley et al., 1998), 0.038 ± 0.002 for 

fine-grained quartz (Rees-Jones, 1995) and 0.086 ± 0.004 for polymineral fine grains (Rees-Jones, 1995), but 

see also Lai et al., 2008, Lang, 1994 and Mauz et al., 2006 and Spooner et al. (1990) for other values. If an a-

value is provided, the user defined external Ḋα, or the dose rate calculated from U and Th concentrations 

will be adjusted accordingly. 

 

3.3.2. Grain size 

 

The range of alpha and beta particles may be comparable with the diameter of the grains under 

investigation, therefore dose rates must be corrected for grain-size attenuation effects. Bell (1980) 

calculated attenuation factors for alpha dose rates from U and Th for quartz, and more recently Brennan et 

al. (1991) calculated alpha attenuation factors for spherical grains, accounting for alpha track length. The 

attenuation factors of Brennan et al. (1991) are greater than those of Bell (1980) (Fig. 2), however as the 

factors of Bell (1980) have remained in widespread use throughout OSL publications over the past ∼30 

years, users may select from either set of attenuation factors in DRAC. For Ḋβ grain size attenuation, DRAC 

users can choose between four datasets: Mejdahl, 1979 and Brennan, 2003, and Guerin et al. (2012) who 

offer two sets of factors, one for quartz and one for feldspar (Fig. 3). If a Rb concentration has been 

provided or calculated, the dataset of Readhead, 2002a and Readhead, 2002b will be used to attenuate the 

Ḋβ from Rb. The different sets of attenuation factors assume grain sphericity, infinite matrix homogeneity 

and radionuclide equilibrium. 

 

 

 



 
 

Figure 2: Grain size attenuation factors for Ḋα, interpolated from the original data of Bell (1980) and 

Brennan et al. (1991) using a spline fit. The original and fitted data are available in Tables S3.3a and S3.3b. 

 

 
Figure 3: Grain size attenuation factors for Ḋβ, interpolated from the original data of Mejdahl, 1979, 

Brennan, 2003 and Guerin et al., 2012and Readhead, 2002a and Readhead, 2002b. Note that only the 

quartz factors of Guerin et al. (2012) are shown, but both the quartz and feldspar factors are available for 

use within DRAC. The original and fitted data are available in Tables S3.4a and S3.4b. 

 

Each of the grain size attenuation datasets has been fitted with a smoothed spline function in RStudio, and 

datasets have been generated over the grain size range 1–1000 μm. The original and fitted data are 

provided in the Supplementary Information (Tables S3.3a,b and S3.4a,b). The fitted alpha and beta grain 

size attenuation factors are summarised in Fig. 2 and Fig. 3 respectively. The attenuation factors (1 − Φ(D)) 

are used to correct external doses, whilst the absorption factors (Φ(D)) are used for internal doses. 

 

Using the grain size data provided by the user, DRAC calculates the attenuation factor from the minimum 

and maximum grain size and takes the mean as the grain size attenuation or absorption factor. 

Quantification of the uncertainties associated with each of the attenuation factor datasets is not discussed 



in the various studies, although Brennan (2003) comments that there is a likely uncertainty of several 

percent for his modelled data, but does not provide a numerical uncertainty estimate. In DRAC, the 

uncertainty is calculated from half of the absolute difference between the attenuation factors of the 

minimum and maximum grain sizes. 

 

The decay of radionuclides within the U, Th and K series produce emissions of various energies, and 

therefore the degree of attenuation by the grain varies according to the relative contributions from these 

different sources. In DRAC, dose rates are calculated from radionuclide concentrations and conversion 

factors, or the user can specify a directly measured dose rate. Where radionuclide concentrations (U, Th, K) 

have been provided, the dose rate arising from each radionuclide is attenuated individually, before being 

summed to produce the attenuated Ḋα or Ḋβ. If user-defined Ḋα and Ḋβ values are provided, an average 

attenuation factor calculated assuming the elemental ratios of Mejdahl (1979) (3 ppm U, 12 ppm Th, 1% 

K2O) is used. If no conversion factors have been stipulated because only user defined doses have been 

provided, DRAC will default to using the most recent conversion factors of Liritzis et al. (2013). 

 

3.3.3. Chemical etching 

 

Chemical etching using hydrofluoric acid is routinely used in the preparation of quartz extracts, both to 

remove contaminating grains and to remove the majority of the alpha irradiated outer grain margin. It is 

generally assumed that etching results in removal of an isotropic surface (e.g. Fleming, 1970), however 

experimental results from Bell and Zimmerman (1978) showed that etching was not uniform for a large 

proportion of the grains explored (75%) and in some instances resulted in the formation of deep etch pits. 

Some coarse-grain feldspar preparation protocols also include a chemical etch for the same reason (e.g. Li 

et al., 2008), although feldspars are known not to etch isotropically (Duller, 1992). Consequently, applying 

any etch attenuation factor is subject to uncertainty. Bell (1979) and Brennan (2003) have calculated the 

change in Ḋβ, caused by chemical etching for quartz grains for a range of etch depths. The factors of Bell 

(1979) are reported as a ratio to the grain size attenuated absorbed dose, and thus can be regarded as 

secondary etch attenuation factors (1 − Ф2e). In contrast the factors of Brennan (2003) are reported as 

independent etch attenuation factors (1 − Фe) which do not require additional grain size attenuation. To 

make the different sets of etch attenuation factors comparable, the 100 μm factors of Brennan (2003) are 

expressed as secondary attenuation factors, achieved through scaling them relative to the 100 μm grain-

size attenuation factors also reported in Brennan (2003). At present both of the available secondary etch 

attenuation factors in DRAC assume an initial grain size of 100 μm, although it should be noted that 

Brennan (2003) provides factors for a range of grain sizes. 

 

Users of DRAC should provide a sample etch depth range (in μm) and can use the secondary beta etch 

attenuation factors of either Bell (1979) or Brennan (2003). These datasets have been fitted with a 

smoothing spline function (Ripley, 2013) over a range of 1–30 μm in RStudio (Tables S3.5a,b and S3.6a,b), 

and are used to further attenuate the Ḋβ. The uncertainties associated with etch depth attenuation are not 

discussed by either Bell (1979) or Brennan (2003), and therefore in DRAC, the uncertainty is calculated from 

half of the absolute difference between the attenuation factors of the minimum and maximum etch 

depths. Combined secondary etch attenuation factors have also been calculated from the data of Brennan 

(2003) and Bell (1979) using the elemental ratios of Mejdahl (1979). Note that as Bell (1979) comments that 

the beta dose from K is negligibly affected by chemical etching, no K etch attenuation is incorporated for 

the Bell (1979) combined etch attenuation factors. The effect of chemical etching on the beta dose from Rb 

is not considered although Bell (1979) notes that for an etch of 9 μm depth, the beta dose of Rb is reduced 

by a factor of 0.755. 



 

Alpha particles penetrate grains of quartz and feldspar to a lesser depth than beta particles. Consequently, 

the Ḋα is more seriously reduced following chemical etching, and commonly it is assumed that the Ḋα has 

been completely removed by chemical etching. If users wish to completely ignore any remaining alpha 

contribution following chemical etching, zero should be input for the a-value. If the a-value is non-zero then 

the Ḋα remaining following chemical etching will be calculated using the secondary etch attenuation factors 

of Bell (1979), which are also subject to an assumed grain size of 100 μm. The later factors of Brennan et al. 

(1991) are not included in DRAC because of limited resolution over the 1–30 μm etch depth range. 

 

3.3.4. Scaling of the gamma dose rate 

 

Conventional sampling strategies for trapped charge dating suggest avoiding sample collection from within 

0.3 m of the current sediment surface, which is the range of gamma rays. In near-surface settings the Ḋγ 

should be corrected to take into account the gamma contribution from the sediment matrix, as well as the 

inert atmosphere above ground level. DRAC offers the option of correcting the Ḋγ calculated for samples 

collected from depths of 0.3 m or less using the scaling factors of Aitken, 1985a and Aitken, 1985b;Table 

S3.7). For samples within 0.3 m of the surface, the Ḋγ from U, Th and K will be individually scaled, unless a 

user specified Ḋγ is provided, in which case the weighted average scaling factor computed by Aitken is 

applied. 

 

3.3.5. Water content 

 

Water has significant attenuating properties. External Ḋα, Ḋβ and Ḋγ must therefore be adjusted for the 

water content of the sediment from which the sample was taken over the burial lifetime of the sample. The 

attenuation factors of Aitken and Xin (1990) and Zimmerman (1971) are used in the DRAC calculation, and 

are 1.49, 1.25 and 1.14 for alpha, beta and gamma radiation respectively. Dose rates are attenuated using 

the equation of Aitken and Xin (1990) and uncertainties are propagated in quadrature. The water content 

and uncertainty should be expressed as a percentage and be the weight of water divided by dry sediment: 

water (%) by mass = (wet mass − dry mass/dry mass) × 100. 

 

3.4. Cosmic dose rate 

 

The contribution from cosmic rays to the total environmental dose rate, whilst small in most depositional 

settings, is not negligible (Prescott and Hutton, 1994) and should be included as part of the environmental 

dose rate. The Ḋc calculation is detailed in Prescott and Hutton, 1988 and Prescott and Hutton, 1994 and 

DRAC uses the calculation protocol outlined in the appendix of Prescott and Hutton (1994; p. 

500).Barraboutis and Rustin (1983) observed that the soft component of cosmic rays only penetrates 

shallow depths of up to 167 g.cm−2 (Fig. 4). At greater depths, the Ḋc comprises only the hard (muon) 

component. In DRAC, the contribution from the soft and hard component will be calculated for samples 

taken from depths between 0 and 167 g.cm−2. At greater depths, only the hard component is calculated 

(Fig. 4). For Ḋc calculation, DRAC requires the input of the sample depth and the mean overburden density 

to calculate the Ḋc at a geomagnetic latitude of 55° and 0 m asl. This dose rate is then corrected for the 

sample-specific geomagnetic latitude and altitude, and users are required to include the latitude, longitude 

and altitude of the sampling location. Users of DRAC can find a worked example of this calculation in 

Worksheets S3.9, S3.10, S3.11, along with the look-up table of F, H and J values (Table S3.8) required to 

correct for location (e.g. Prescott and Stephan, 1982 and Prescott and Hutton, 1994) in the Supplementary 

Information and on the DRAC website. 



 
Figure 4: Penetration depths of cosmic rays. The original data from Barbouti and Rastin (1983) as presented 

in Prescott and Hutton (1988)are shown, together with their fit for the hard component. Data fitted for this 

study for the contributions from both soft and hard components (depths < 167 g.cm−2) and from hard 

components only (depths > 167 g.cm−2) are shown. 

 

Cosmic dose rates may fluctuate over longer-term time-scales, due to variability in galactic primary cosmic 

rays, solar modulation and changes in the geomagnetic dipole moment, although this variability is likely to 

have averaged out over the past 500 ka (Prescott and Hutton, 1994). To account for possible fluctuations 

and uncertainties associated with the production of cosmic rays over time, DRAC applies an uncertainty of 

±10% to calculated Ḋc values. For more complex depositional settings, users of DRAC also have the option 

of inputting a user defined Ḋc. 

 

3.5. Calculation of Ḋ and age 

 

Ḋ is calculated by combining the attenuated internal and external Ḋα and Ḋβ, the attenuated Ḋγ and the Ḋc. 

The values are combined and uncertainties propagated in quadrature. DRAC will also calculate an age if a De 

and uncertainty have been provided, where age = De/Ḋ. 

 

4. DRAC comparison 

 

Worked examples of the calculation of DRAC for quartz, feldspar and polymineral samples are provided in 

the Supplementary Information (Worksheets S3.9, S3.10 and S3.11), along with the DRAC Input and DRAC 

Output tables (worksheets S3.12 and S3.13). To test Ḋ values calculated by DRAC against published dose 

rates, Ḋ information was taken from 32 randomly selected studies (totalling 422 samples) and used to 

calculate Ḋ in DRAC (v1.1). For the 32 studies selected it was necessary to estimate some parameters where 

they were not detailed in the publication e.g. if the conversion factors used were not stated, the factors of 

Adamiec and Aitken (1998) were used. Full details of the assumptions made are given in the caption of Fig. 

5, which summarises the comparison, presented according to mineral type and grain size. For the full 

dataset of 422 samples, DRAC and published Ḋ values are in excellent agreement with a ratio of 1.01 ± 0.05. 

This demonstrates that as a community, Ḋ values are calculated consistently, although some small 

deviation between DRAC and published Ḋ values is to be expected because of the small variations which 

will arise from the use of different conversion factors and/or attenuation datasets, some of which have had 

to be assumed. Sensitivity testing of a quartz sample from Durcan (2012) shows that a ±2% variation 



around the calculated value can be generated through the use of different conversion factors, attenuation 

factors, sample location parameters and uncertainties. Transposition and miscalculation errors have been 

observed in some publications, which again, leads to discrepancy between the published and DRAC 

calculated Ḋ values. Despite these various factors, the deviation from unity is slight. 

 

 
Figure 5: Comparison of dose rates (Ḋ) calculated in DRAC with those previously published. Data are plotted 

separately for a) feldspar, b) polymineral, c) coarse-grain (>63 μm) quartz and d) fine-grain (<63 μm) quartz. 

422 samples from 32 studies are compared with a mean ratio of 1.01 ± 0.05. If not stated in the publication, 

the following parameters were used to facilitate comparison: conversion factors – Adamiec and Aitken 

(1998), no Rb calculation from K, grain size attenuation for Ḋα and Ḋβ – Bell (1980) and Mejdahl (1979) 

respectively, etch depth – 9 μm, etch depth attenuation – Bell, 1979, a-value either 0.086 ± 0.0043, 0.035 ± 

0.001 (Rees-Jones and Tite, 1997) or 0.15 ± 0.015 (Balescu and Lamothe, 1994) dependent on mineral and 

grain-size, overburden density – 2.0 ± 0.1 g.cm−3, latitude, longitude and altitude estimated from Google 

Earth. The studies used for the DRAC comparison: Alappat et al., 2011, Bates et al., 2003, Breman et al., 

2003, Buylaert et al., 2007 and Clark-Balzan et al., 2012, Davidovich et al., 2012,Demeter et al., 2012, Fuchs 

et al., 2012, Haberzettl et al., 2009, Halfen et al., 2010, Hall et al., 2010, Houben et al., 2013, Kaiser et al., 

2009, Kars et al., 2012, Kels et al., 2014, Klasen et al., 2011, Kock et al., 2009, Kreutzer et al., 2012, Le Dortz 

et al., 2009,Lepper et al., 2013, Lomax et al., 2014, Madsen et al., 2009, Roskosch et al., 2012, Schatz et al., 

2012, Schmidt et al., 2014,Schokker et al., 2005 and Stevens et al., 2011Tamura et al., 2011, Thiel et al., 

2011, Xu et al., 2010 and Yang et al., 2010. 

 

 

 



4.1. Reporting Ḋ calculation 

 

The 32 publications used for the DRAC comparison comprises a small proportion of the number of studies 

investigated for inclusion. This is because the vast majority of publications reviewed did not contain enough 

basic information to reproduce the Ḋ calculation. We as authors do not wish to dictate a standardised set 

of data which should be included in journal publications. However, we do ask the community to be mindful 

of the information necessary to reproduce a Ḋ calculation and to incorporate these details in their 

publications (or supplementary information) accordingly. 

 

5. Future directions 

 

DRAC is intended to provide a robust and accessible method of dose rate calculation, which enables 

practitioners to accurately determine environmental dose rates. The website calculations are intended to 

be transparent and to enable interested parties to recalculate published environmental dose rate values 

reproducibly. Users may refer to the Supplementary Information and/or DRAC website for an outline of the 

DRAC calculations and worked examples. It is anticipated that DRAC will facilitate easier inter-laboratory 

comparisons of environmental dose rate values, through the standardisation of dose rate calculations. 

 

Rather than comprising a final version, it is intended that DRAC will undergo modification as advances in 

environmental dose rate calculations are made. Potential extensions to the calculator could include the 

incorporation of Monte-Carlo modelling for beta dose heterogeneity (e.g. Nathan et al., 2003), calculation 

of gamma dose heterogeneity or the extension of the calculator to other minerals such as calcite. 

Contributions to DRAC are welcomed and DRAC users are encouraged to contact the authors with updated 

dose rate datasets, such as conversion and attenuation factors, and/or potential developments to the 

calculator. 
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Supplementary Information 

Table S1: The inputs required for a DRAC (v1.1) calculation. Users can use this table to guide the input of 

data into the DRAC input template. 

Table 
Input 

Name Required Description 

TI:1 Project ID Y Inputs can be alphabetic, numeric or selected symbols (/ - () [] 
_). Spaces are not permitted. TI:2 Sample ID Y 

TI:3 Mineral Y The mineral used for dating: quartz, feldspar or polymineral. 
Input must be “Q”, “F” or “PM”. 

TI:4 Conversion factors N The conversion factors required to calculate dose rates from 
radionuclide concentrations. Users have the option of datasets 
from Adamiec and Aitken (1998), Guerin et al. (2011) or Liritzis 
et al. (2013). Input must be “AdamiecAitken1998”, 
“Guerinetal2011”, “Liritzisetal2013” or “X” if conversion factors 
are not required. 

TI:5 External U (ppm) N Radionuclide concentrations in parts per million for uranium, 
thorium and rubidium and % for potassium. Inputs must be 0 
or positive and should not be left blank. 

TI:6 External δU (ppm) N 

TI:7 External Th (ppm) N 

TI:8 External δTh (ppm) N 

TI:9 External K (%) N 

TI:10 External δK (%) N 

TI:11 External Rb (ppm) N 

TI:12 External δRb (ppm) N 

TI:13 Calculate external Rb 
from K conc? 

N Option to calculate a rubidium concentration from potassium, 
using the 270:1 ratio suggested by Mejdahl (1987). Input 
should be yes “Y” or no “N”. 

TI:14 Internal U (ppm) N Internal radionuclide concentrations in parts per million for 
uranium, thorium and rubidium and % for potassium. Inputs 
must be 0 or positive and should not be left blank. 

TI:15 Internal δU (ppm) N 

TI:16 Internal Th (ppm) N 

TI:17 Internal δTh (ppm) N 

TI:18 Internal K (%) N 

TI:19 Internal δK (%) N 

TI:20 Internal Rb (ppm) N 

TI:21 Internal δRb (ppm) N 

TI:22 Calculate internal Rb 
from K conc? 

N Option to calculate an internal rubidium concentration from 
potassium, using the 270:1 ratio suggested by Mejdahl (1987). 
Input should be yes “Y” or no “N”. 

TI:23 User external Ḋα 
(Gy.ka-1) 

N Users may input directly measured values for external alpha, 
beta and gamma dose rates (in Gy.ka-1). Any positive inputs in 
these fields will override dose rates calculated from 
radionuclide concentrations. Inputs should be 0 or positive and 
should not be left blank. 

TI:24 User external δḊα 
(Gy.ka-1) 

N 

TI:25 User external Ḋβ 
(Gy.ka-1) 

N 

TI:26 User external δḊβ 
(Gy.ka-1) 

N 

TI:27 User external Ḋγ 
(Gy.ka-1) 

N 

TI:28 User external δḊγ 
(Gy.ka-1) 

N 

TI:29 User internal Ḋ 
(Gy.ka-1) 

N Users may input an internal dose rate (either alpha, beta or the 
sum of the two, in Gy.ka-1). DRAC will assume that this value 



TI:30 User internal δḊ 
(Gy.ka-1) 

N has already been corrected for attenuation. Inputs in this field 
will override dose rates calculated from radionuclide 
concentrations. Inputs should be 0 or positive and not left 
blank. 

TI:31 Scale Ḋγ at shallow 
depths? 

N Users may choose to scale gamma dose rates for samples taken 
within 0.3 m of the ground surface. The scaling factors of 
Aitken (1985) are used. Input should be yes “Y” or no “N”. 

TI:32 Grain size min (µm) Y The grain size range analysed. DRAC can be used for the grain 
size ranges between 1 and 1000 µm. Inputs should range 
between 1 and 1000 and not be left blank. 

TI:33 Grain size max (µm) Y 

TI:34 α-Grain size 
attenuation factors 

Y The grain size attenuation factors for the alpha dose rate. Users 
have the option of datasets from Bell (1980) and Brennan et al. 
(1991). Input must be “Bell1980” or “Brennanetal1991”. 

TI:35 β-Grain size 
attenuation factors 

Y The grain size attenuation factors for the beta dose rate. Users 
have the option of datasets from Mejdahl (1979), Brennan 
(2003) and Guerin et al. (2012) for quartz or feldspar. Input 
must be “Mejdahl1979”, “Brennan2003”, “Guerinetal2012-Q” 
or “Guerinetal2012-F” . 

TI:36 Etch depth min (µm) Y The user defined etch depth range (µm). Inputs should range 
between 0 and 30 and not be left blank. TI:37 Etch depth max (µm) Y 

TI:38 β-Etch attenuation 
factor 

N The etch depth attenuation factors for the beta dose rate. 
Users have the option of datasets from Bell (1979) and 
Brennan (2003). Input must be “Bell1979” or “Brennan2003”. 
Note: only the dataset of Bell (1980) is provided for attenuation 
of the alpha dose rate by etching. 

TI:39 a-value N Alpha track efficiency value and uncertainty defined by the 
user. Inputs should be 0 or positive and not left blank. TI:40 δa-value N 

TI:41 Water content (%) Y Sediment water content (%) over the burial period. Inputs 
should be 0 or positive and not be left blank. TI:42 δWater content (%) Y 

TI:43 Depth (m) N Depth and uncertainty from which sample was extracted 
beneath the ground surface. Inputs should be 0 or positive and 
not left blank. If user defined Ḋc will be used then an "X" must 
be input 

TI:44 δDepth (m) N 

TI:45 Overburden density 
(g.cm-3) 

N Density of the overlying sediment matrix from which the 
sample was taken. Inputs should be 0 or positive and not be 
left blank. If user defined Ḋc will be used then an "X" must be 
input 

TI:46 δOverburden density 
(g.cm-3) 

N 

TI:47 Latitude (decimal 
degrees) 

N Latitude and longitude of sample location (in degree decimals). 
Positive values should be used for northern latitudes and 
eastern longitudes and negative values for south latitudes and 
western longitudes. Inputs should range from – 90 to 90° for 
latitudes and -180 to 180° for longitude. If user defined Ḋc will 
be used then an "X" must be input 

TI:48 Longitude (decimal 
degrees) 

N 

TI:49 Altitude (m asl) N Altitude of sample location in metres above sea level. Input 
should be less than 5000 and not left blank. If user defined Ḋc 
will be used then an "X" must be input 

TI:50 User defined Ḋc 
(Gy.ka-1) 

N Users may input a cosmic dose rate (in Gy.ka-1). Inputs in these 
fields will override the DRAC calculated cosmic dose rate. 
Inputs should be positive or “X” if not required, and not left 
blank. 

TI:51 User defined δḊc 
(Gy.ka-1) 

N 

TI:52 De (Gy) N Sample De and uncertainty (in Gy). Inputs should be positive or 
“X” if not required, and not left blank. TI:53 δDe (Gy) N 

 



Table S2: The outputs generated during the DRAC (v1.1) calculation. In the output file created by DRAC, all 

inputs and outputs are provided. 

Table 
Output 

Name Description 

TO:A External U Ḋα (Gy.ka-1) The calculated external dose rates from the provided 
radionuclide concentrations and selected conversion factors. TO:B External δU Ḋα (Gy.ka-1) 

TO:C External U Ḋβ (Gy.ka-1) 

TO:D External δU Ḋβ (Gy.ka-1) 

TO:E External U Ḋγ (Gy.ka-1) 

TO:F External δU Ḋγ (Gy.ka-1) 

TO:G External Th Ḋα (Gy.ka-1) 

TO:H External δTh Ḋα (Gy.ka-1) 

TO:I External Th Ḋβ (Gy.ka-1) 

TO:J External δTh Ḋβ (Gy.ka-1) 

TO:K External Th Ḋγ (Gy.ka-1) 

TO:L External δTh Ḋγ (Gy.ka-1) 

TO:M External K Ḋβ (Gy.ka-1) 

TO:N External δK Ḋβ (Gy.ka-1) 

TO:O External K Ḋγ (Gy.ka-1) 

TO:P External δK Ḋγ (Gy.ka-1) 

TO:Q External Rb Ḋβ (Gy.ka-1) 

TO:R External δRb Ḋβ (Gy.ka-1) 

TO:S Internal U Ḋα (Gy.ka-1) The calculated internal dose rates from the provided 
radionuclide concentrations and selected conversion factors. TO:T Internal δU Ḋα (Gy.ka-1) 

TO:U Internal U Ḋβ (Gy.ka-1) 

TO:V Internal δU Ḋβ (Gy.ka-1) 

TO:W Internal Th Ḋα (Gy.ka-1) 

TO:X Internal δTh Ḋα (Gy.ka-1) 

TO:Y Internal Th Ḋβ (Gy.ka-1) 

TO:Z Internal δTh Ḋβ (Gy.ka-1) 

TO:AA Internal K Ḋβ (Gy.ka-1) 

TO:AB Internal δK Ḋβ (Gy.ka-1) 

TO:AC Internal Rb Ḋβ (Gy.ka-1) 

TO:AD Internal δRb Ḋβ (Gy.ka-1) 

TO:AE U Ḋγ scaling factor The scaling factors of Aitken (1985) used to correct gamma 
dose rates of samples taken from within 0.3 m of the ground 
surface. 

TO:AF Th Ḋγ scaling factor 

TO:AG K Ḋγ scaling factor 

TO:AH Average Ḋγ scaling factor 

TO:AI Depth scaled U Ḋγ (Gy.ka-1) The gamma dose rates and uncertainties corrected for 
shallow depth (<0.3 m). TO:AJ Depth scaled δU Ḋγ (Gy.ka-1) 

TO:AK Depth scaled Th Ḋγ (Gy.ka-1) 

TO:AL Depth scaled δTh Ḋγ (Gy.ka-1) 

TO:AM Depth scaled K Ḋγ (Gy.ka-1) 

TO:AN Depth scaled δK Ḋγ (Gy.ka-1) 

TO:AO Depth scaled user external Ḋγ (Gy.ka-

1) 

TO:AP Depth scaled δuser external Ḋγ 
(Gy.ka-1) 

TO:AQ External infinite matrix Ḋα (Gy.ka-1) The infinite matrix external and internal dose rates. 
Calculated either from the radionuclide concentrations and 
conversion factors or the user defined dose rates. These 

TO:AR External infinite matrix δḊα (Gy.ka-1) 

TO:AS External infinite matrix Ḋβ (Gy.ka-1) 



TO:AT External infinite matrix δḊβ (Gy.ka-1) values are used as the basis for all subsequent calculations. 

TO:AU External infinite matrix Ḋγ (Gy.ka-1) 

TO:AV External infinite matrix δḊγ (Gy.ka-1) 

TO:AW Internal infinite matrix Ḋα (Gy.ka-1) 

TO:AX Internal infinite matrix δḊα (Gy.ka-1) 

TO:AY Internal infinite matrix Ḋβ (Gy.ka-1) 

TO:AZ Internal infinite matrix δḊβ (Gy.ka-1) 

TO:BA U Alpha grain size attenuation factor The alpha grain size attenuation factors and uncertainties 
calculated from the selected dataset and for the specified 
grain size range. The value is calculated as the average of the 
attenuation factors for the two grain size extremes and the 
uncertainty is 50% of the range. If dose rates are calculated 
using radionuclide concentrations, they are attenuated 
individually. If a dose rate is provided by the user, it is 
attenuated using the combined attenuation factor. 

TO:BB δU Alpha grain size attenuation 
factor 

TO:BC Th Alpha grain size attenuation 
factor 

TO:BD δTh Alpha grain size attenuation 
factor 

TO:BE Combined alpha grain size 
attenuation factor 

TO:BF δCombined alpha grain size 
attenuation factor 

TO:BG U Alpha grain size absorption factor The alpha grain size absorption factors and uncertainties 
calculated from the selected dataset and for the specified 
grain size range. The value is calculated as the average of the 
attenuation factors for the two grain size extremes and the 
uncertainty is 50% of the range. 

TO:BH δU Alpha grain size absorption factor 

TO:BI Th Alpha grain size absorption factor 

TO:BJ δTh Alpha grain size absorption 
factor 

TO:BK Grain size corrected external U Ḋα 
(Gy.ka-1) 

The external and internal alpha dose rates corrected for 
grain size attenuation and absorption. 

TO:BL Grain size corrected external δU Ḋα 
(Gy.ka-1) 

TO:BM Grain size corrected external Th Ḋα 
(Gy.ka-1) 

TO:BN Grain size corrected external δTh Ḋα 
(Gy.ka-1) 

TO:BO Grain size corrected user external Ḋα 
(Gy.ka-1) 

TO:BP Grain size corrected user external 
δḊα (Gy.ka-1) 

TO:BQ Grain size corrected internal U Ḋα 
(Gy.ka-1) 

TO:BR Grain size corrected internal δU Ḋα 
(Gy.ka-1) 

TO:BS Grain size corrected internal Th Ḋα 
(Gy.ka-1) 

TO:BT Grain size corrected internal δTh Ḋα 
(Gy.ka-1) 

TO:BU U Beta grain size attenuation factor The beta grain size attenuation factors and uncertainties 
calculated from the selected dataset and for the specified 
grain size range. The value is calculated as the average of the 
attenuation factors for the two grain size extremes and the 
uncertainty is 50% of the range. If dose rates are calculated 
using radionuclide concentrations, they are attenuated 
individually. If a dose rate is provided by the user, it is 
attenuated using the combined attenuation factor based on 
the ratio of Mejdahl (1979). 

TO:BV U δBeta grain size attenuation factor 

TO:BW Th Beta grain size attenuation factor 

TO:BX Th δBeta grain size attenuation 
factor 

TO:BY K Beta grain size attenuation factor 

TO:BZ K δBeta grain size attenuation factor 

TO:CA Rb Beta grain size attenuation factor 

TO:CB Rb δBeta grain size attenuation 



factor 

TO:CC Compiled beta grain size attenuation 
factor 

TO:CD δCompiled beta grain size 
attenuation factor 

TO:CE U Beta grain size absorption factor The beta grain size absorption factors and uncertainties 
calculated from the selected dataset and for the specified 
grain size range. The value is calculated as the average of the 
attenuation factors for the two grain size extremes and the 
uncertainty is 50% of the range. 

TO:CF U δBeta grain size absorption factor 

TO:CG Th Beta grain size absorption factor 

TO:CH Th δBeta grain size absorption factor 

TO:CI K Beta grain size absorption factor 

TO:CJ K δBeta grain size absorption factor 

TO:CK Rb Beta grain size absorption factor 

TO:CL Rb δBeta grain size absorption factor 

TO:CM Grain size corrected external U Ḋβ 
(Gy.ka-1) 

The external and internal beta dose rates corrected for grain 
size attenuation and absorption. 

TO:CN Grain size corrected external δU Ḋβ 
(Gy.ka-1) 

TO:CO Grain size corrected external Th Ḋβ 
(Gy.ka-1) 

TO:CP Grain size corrected external δTh Ḋβ 
(Gy.ka-1) 

TO:CQ Grain size corrected external K Ḋβ 
(Gy.ka-1) 

TO:CR Grain size corrected external δK Ḋβ 
(Gy.ka-1) 

TO:CS Grain size corrected external Rb Ḋβ 
(Gy.ka-1) 

TO:CT Grain size corrected external δRb Ḋβ 
(Gy.ka-1) 

TO:CU Grain size corrected user external Ḋβ 
(Gy.ka-1) 

TO:CV Grain size corrected user external 
δḊβ (Gy.ka-1) 

TO:CW Grain size corrected internal U Ḋβ 
(Gy.ka-1) 

TO:CX Grain size corrected internal δU Ḋβ 
(Gy.ka-1) 

TO:CY Grain size corrected internal Th Ḋβ 
(Gy.ka-1) 

TO:CZ Grain size corrected internal δTh Ḋβ 
(Gy.ka-1) 

TO:DA Grain size corrected internal K Ḋβ 
(Gy.ka-1) 

TO:DB Grain size corrected internal δK Ḋβ 
(Gy.ka-1) 

TO:DC Grain size corrected internal Rb Ḋβ 
(Gy.ka-1) 

TO:DD Grain size corrected internal δRb Ḋβ 
(Gy.ka-1) 

TO:DE U Alpha etch attenuation factor The alpha etch depth attenuation factors calculated from 
the Bell (1980) dataset for the specified etch depth. The 
value is calculated as the average of the attenuation factors 

TO:DF U δAlpha Etch attenuation factor 

TO:DG Th Alpha etch attenuation factor 



TO:DH Th δAlpha etch attenuation factor for the etch depth extremes and the uncertainty is 50% of 
the range. If dose rates are calculated using radionuclide 
concentrations, they are attenuated individually. If a dose 
rate is provided by the user, it is attenuated using the 
combined attenuation factor. 

TO:DI Compiled alpha etch attenuation 
factor 

TO:DJ δCompiled alpha etch attenuation 
factor 

TO:DK U Alpha etch absorption factor Alpha etch depth absorption factors calculated from the Bell 
(1980) dataset for the specified etch depth. The value is 
calculated as the average of the attenuation factors for the 
etch depth extremes and the uncertainty is 50% of the 
range. 

TO:DL U δAlpha Etch absorption factor 

TO:DM Th Alpha etch absorption factor 

TO:DN Th δAlpha etch absorption factor 

TO:DO Etch corrected external U Ḋα (Gy.ka-

1) 
The external and internal alpha dose rates corrected for etch 
depth attenuation and absorption. 

TO:DP Etch corrected external δU Ḋα (Gy.ka-

1) 

TO:DQ Etch corrected external Th Ḋα (Gy.ka-

1) 

TO:DR Etch corrected external δTh Ḋα 
(Gy.ka-1) 

TO:DS Etch corrected user external Ḋα 
(Gy.ka-1) 

TO:DT Etch corrected user external δḊα 
(Gy.ka-1) 

TO:DU Etch corrected internal U Ḋα (Gy.ka-1) 

TO:DV Etch corrected internal δU Ḋα (Gy.ka-

1) 

TO:DW Etch corrected internal Th Ḋα (Gy.ka-

1) 

TO:DX Etch corrected internal δTh Ḋα 
(Gy.ka-1) 

TO:DY U Beta etch attenuation factor The beta etch depth attenuation factors calculated from the 
selected dataset. The value is calculated as the average of 
the attenuation factors for the etch depth extremes and the 
uncertainty is 50% of the range. The uncertainty is ±2%. If 
dose rates are calculated using radionuclide concentrations, 
they are attenuated individually. If a dose rate is provided by 
the user, it is attenuated using the combined attenuation 
factor. 

TO:DZ U δBeta etch attenuation factor 

TO:EA Th Beta etch attenuation factor 

TO:EB Th δBeta etch attenuation factor 

TO:EC K Beta etch attenuation factor 

TO:ED K δBeta etch attenuation factor 

TO:EE Compiled beta etch attenuation 
factor 

TO:EF δCompiled beta etch attenuation 
factor 

TO:EG U Beta etch absorption factor The beta etch depth absorption factors calculated from the 
selected dataset. The value is calculated as the average of 
the attenuation factors for the etch depth extremes and the 
uncertainty is 50% of the range. 

TO:EH U δBeta etch absorption factor 

TO:EI Th Beta etch absorption factor 

TO:EJ Th δBeta etch absorption factor 

TO:EK K Beta etch absorption factor 

TO:EL K δBeta etch absorption factor 

TO:EM Etch corrected external U Ḋβ (Gy.ka-

1) 
The external and internal beta dose rates corrected for etch 
depth attenuation and absorption. 

TO:EN Etch corrected external δU Ḋβ (Gy.ka-

1) 

TO:EO Etch corrected external Th Ḋβ (Gy.ka-

1) 

TO:EP Etch corrected external δTh Ḋβ 
(Gy.ka-1) 



TO:EQ Etch corrected external K Ḋβ (Gy.ka-1) 

TO:ER Etch corrected external δK Ḋβ (Gy.ka-

1) 

TO:ES Etch corrected user external Ḋβ 
(Gy.ka-1) 

TO:ET Etch corrected user external δḊβ 
(Gy.ka-1) 

TO:EU Etch corrected internal U Ḋβ (Gy.ka-1) 

TO:EV Etch corrected internal δU Ḋβ (Gy.ka-

1) 

TO:EW Etch corrected internal Th Ḋβ (Gy.ka-

1) 

TO:EX Etch corrected internal δTh Ḋβ 
(Gy.ka-1) 

TO:EY Etch corrected internal K Ḋβ (Gy.ka-1) 

TO:EZ Etch corrected internal δK Ḋβ (Gy.ka-

1) 

TO:FA a-value corrected external U Ḋα 
(Gy.ka-1) 

The external and internal alpha dose rates corrected for 
alpha track efficiency using the provided a-value. 

TO:FB a-value corrected external δU Ḋα 
(Gy.ka-1) 

TO:FC a-value corrected external Th Ḋα 
(Gy.ka-1) 

TO:FD a-value corrected external δTh Ḋα 
(Gy.ka-1) 

TO:FE a-value corrected user external Ḋα 
(Gy.ka-1) 

TO:FF a-value corrected user external δḊα 
(Gy.ka-1) 

TO:FG a-value corrected internal U Ḋα 
(Gy.ka-1) 

TO:FH a-value corrected internal δU Ḋα 
(Gy.ka-1) 

TO:FI a-value corrected internal Th Ḋα 
(Gy.ka-1) 

TO:FJ a-value corrected internal δTh Ḋα 
(Gy.ka-1) 

TO:FK External Dry Ḋα (Gy.ka-1) The external dose rates corrected for grain size and etch 
depth attenuation. TO:FL External Dry δḊα (Gy.ka-1) 

TO:FM External Dry Ḋβ (Gy.ka-1) 

TO:FN External Dry δḊβ (Gy.ka-1) 

TO:FO External Dry Ḋγ (Gy.ka-1) 

TO:FP External Dry δḊγ (Gy.ka-1) 

TO:FQ Water corrected Ḋα The water attenuated external alpha, beta and gamma dose 
rates. TO:FR Water corrected δḊα 

TO:FS Water corrected Ḋβ 

TO:FT Water corrected δḊβ 

TO:FU Water corrected Ḋγ (Gy.ka-1) 

TO:FV Water corrected δḊγ (Gy.ka-1) 

TO:FW Internal Dry Ḋα (Gy.ka-1) The attenuated internal alpha and beta dose rates. 

TO:FX Internal Dry δḊα (Gy.ka-1) 

TO:FY Internal Dry Ḋβ (Gy.ka-1) 



TO:FZ Internal Dry δḊβ (Gy.ka-1) 

TO:GA Ḋ0 (Gy.ka-1) The cosmic dose rate calculated at the sample depth, 55°N 
and sea level. TO:GB δḊ0 (Gy.ka-1) 

TO:GC Geomagnetic latitude The geomagnetic latitude calculated from the sample 
latitude and longitude and sampling depth. 

TO:GD F The factors required to correct the cosmic dose rate for 
altitude and geomagnetic latitude (after Prescott and Stefan, 
1982). 

TO:GE H 

TO:GF J 

TO:GG Ḋc (Gy.ka-1) The calculated or user defined cosmic dose rate used in final 
environmental dose rate calculation. TO:GH δḊc (Gy.ka-1) 

TO:GI External Ḋ (Gy.ka-1) DRAC calculated external and internal dose rates. 

TO:GJ External δḊ (Gy.ka-1) 

TO:GK Internal Ḋ (Gy.ka-1) 

TO:GL Internal δḊ (Gy.ka-1) 

TO:GM Environmental Dose Rate (Gy.ka-1) DRAC calculated environmental dose rate. 

TO:GN δEnvironmental Dose Rate (Gy.ka-1) 

TO:GO Age (ka) Age, if De is provided, calculated using the DRAC determined 
dose rate. TO:GP δAge (ka) 

 

Supplementary information 3 is available as a spreadsheet which can be downloaded from the user guide 

section of the DRAC website. 


