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Abstract

The paper addresses, for the first time, the problem of calculating the local elastic
fields and effective longitudinal shear stiffness of elliptic nano fiber composite with
Gurtin-Murdoch interface. The complete, multipole expansion type solutions have
been obtained for three most widely used model geometris of fibrous composite, they
are single inclusion model, finite cluster model and representative unit cell model.
Both the periodic and random microstructure of composite are considered. The de-
veloped analytical method combines the superposition principle, the technique of
complex potentials and certain new results in the theory of special functions. An
appropriate choice of the potentials reduces the the boundary-value problem to an
ordinary, well-posed set of linear algebraic equations. This provides an efficient nu-
merical study of the elastic fields and effective stiffness of fibrous nano composite,
with the interaction effects adequately taken into account. For the purpose of effec-
tive stiffness evaluation, both the Maxwell’s and Rayleigh’s approaches have been
implemented. In the latter case, the exact, closed form formulas for the effective
elastic moduli have been derived by analytical averaging the local strain and stress
fields. The convergence of solution has been verified and the parametric study of the
model problem has been performed. The obtained accurate numerical data illustrate
a substantial effect of the inclusion shape and interface elasticity on the local stress
concentration and effective elastic behavior of fibrous nano composite.
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1 Introduction

The local fields and overall behavior of heterogeneous solids are greatly affected by the
interfaces. The assumptions of "perfect interface bonding" or "perfect contact" widely
used in micromechanics are not always appropriate. The real-life interfaces are imperfect:
the atomic lattices mismatch, poor mechanical or chemical adherence, surface contam-
ination, oxide and interphase diffusion/reaction layers, coatings, interface debonding or
cracking, etc. are among the possible reasons of imperfectness. In particular, a distinctive
feature of nanostructured materials is experimentally observed (e.g., Miller and Shenoy,
2000; Sharma and Ganti, 2002) dependence of elastic properties on some nano scale length
parameter. This dependence is caused by the surface energy and becomes stronger with
the interface area to volume ratio increased. For sufficiently high value of this ratio, the
interface contribution to local stress field and macroscopic response can be substantial.

To a date, a considerable effort has been made on the continuum description of mechanics
of nanomaterials and heterostructures. For the comprehensive review of recent advances
in mechanics of nanostructured elements and nanoheterogeneous solids, see Wang et al
(2011). The model of elastic surface most often employed in the publications on nanocom-
posites has been developed by Gurtin and Murdoch (1975, 1978). This model introduces
size effect of the surface-related stress, which is an important characteristic of nanocom-
posites. Specifically, the traction jump across the interface is directly proportional to the
residual surface stress and surface elastic properties and inversely proportional to the
local radius of curvature. The interface stress jump appears to be extremely small at
macro scale (and, therefore, ignored in classical mechanics) but becomes significant at
nano scale, typically when the radius of curvature/inhomogeneity is below 100 nm. Based
on Gurtin and Murdoch’s theory, several authors modified the known micromechanical
models by incorporating the surface elasticity feature to include some surface effects in
expressions for the effective elastic moduli of nanocomposites (Wang et al, 2011). An ef-
fective elastic stiffness of the unidirectional fibrous nanocomposite with coherent interface
was studied by means of the generalized self-consistent scheme (Duan et al, 2007a,b) and
by the neutral inclusion approach (Chen et al, 2007). The effective inhomogeneity method
by Mogilevskaya et al (2010a,b) provides more accurate solution to the homogenization
problem by taking into account the interactions among a finite cluster of nanofibers.

Noteworthy, all the above mentioned works dealt with the composites of circular fibers.
When the inhomogeneity’s shape deviates considerably from the circular one, we need
an additional length parameter to quantify it. An elliptical shape providing sufficient
flexibility is more appropriate for this purpose. In particular, an infinitely thin elliptic
hole is known to be a convenient model of the straight crack. What is important, the
curvature radius of elliptic inclusion varies along its surface and may get much smaller
values as compared with the circular inclusion of same area. It was mentioned already
that the surface effects are inversely proportional to the local radius of curvature, so one
can expect their more significant impact on the mechanical behavior of the composite.

To the best of our knowledge, (Luo and Wang, 2009) is the only work where the anti-
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plane elastic shear problem for a plane containing a single elliptic nanoinhomogeneity was
considered. Despite the importance of the problem, no attempts have been made until now
to apply this - or any other - model to the homogenization problem. The main purpose
of this work is to develop the micromechanical model of elliptic nanofiber composite
providing adequate account of the surface elasticity-induced size effects and interactions
between the constituents.

2 Governing equations in terms of complex variables

Longitudinal shear of an aligned fiber composite with isotropic constituents is described
by the out-of-plane shear problem of 2D elasticity theory, where u3 is the only non-zero
component of displacement vector u:

u1 = u2 = 0; u3 = w(x1, x2).

In this case, two non-zero components of the stress tensor are σ13 and σ23. The stress
equilibrium equation ∇ · σ = 0 takes the form

∂σ13

∂x1

+
∂σ23

∂x2

= 0; (1)

the Hooke’s law reduces to

σi3 = 2µεi3 = µ∂w/∂xi, i = 1, 2. (2)

It follows from Eqs (1) and (2) that ∇2w = 0 whereas the strain compatibility condition

∂ε13
∂x2

=
∂ε23
∂x1

=
1

2

∂2w

∂x1∂x2

is obeyed identically. This problem is readily reformulated in terms of the complex poten-
tials (Muskhelishvili, 1953). For w = Reϕ(z), the complex stress σ = σ13+ iσ23 = µϕ′(z),
where z = x1 + ix2,

3 Single inclusion in an inhomogeneous far field

3.1 The problem statement

Consider an unbounded plane, or matrix, containing a single elliptic inclusion. All the
matrix- and inclusion-related quantities are indexed by "0" and "1", respectively: w = w(0)

and µ = µ0 in the matrix, w = w(1) and µ = µ1 in the inclusion. To describe geometry
of the problem, we introduce the Cartesian coordinate frame Ox1x2 so that its origin
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coincides with the centroid of ellipse whereas the Ox1 and Ox2 axes are directed along
the major and minor axes of the ellipse. An aspect ratio of the ellipse is e = l2/l1, where l1
and l2 are the major and minor, respectively, semi-axes of the ellipse; its area S1 = πl1l2.
Another derivative geometric parameter to be used in our analysis is the inter-foci distance

2d, where d =
√
l21 − l22.

Alongside with conventional complex variable z = x1 + ix2, we will use the "elliptic"
complex variable ξ = ζ + iη introduced (e.g., Sneddon and Berry, 1958) as

z = d cosh ξ =
d

2
(υ + υ−1), υ = exp ξ. (3)

In fact, Eq. (3) defines an elliptic coordinate frame with ζ and η as ”radial” and ”angular”
coordinates, respectively. In particular, the coordinate curve ζ = ζ0 specified by the
condition

ζ0 = ln

(
l1 + l2

d

)
=

1

2
ln

(
1 + e

1− e

)
(4)

coincides with the boundary of elliptic inclusion. Also, we denote υ0 = exp ζ0. It is im-
portant that at this boundary the functions υk = υk

0 exp ikη depend only on the angular
coordinate η. This fact makes the complex variable ξ particularly useful for the domains
with elliptic boundaries. In the limiting case of circular (e = 1) inclusion, d → 0, υ0 → ∞,
υ0d → 2R, η → θ and υd → 2r exp iθ = 2z where r and θ are the circular coordinates.
Another limiting case is an infinitely thin (e = 0) inclusion or slit/crack where d = l1 and
υ0 = 1.

The coherent interface between the matrix and inclusion is assumed in the form of Gurtin-
Murdoch’s model (e.g., Luo and Wang, 2009):

[[σn]]L = −∂σs
t

∂t
; [[w]]L = 0 (5)

where σn = 2µ∇w · n = 2µ∂w/∂n is the normal stress and σt = 2µ∇w · t = 2µ∂w/∂t

is the tangential stress. Here, [[f ]]L =
(
f (0) − f (1)

)
|L means a jump of quantity f across

the interface L : ζ = ζ0. Also, σs
t = 2

(
µS − τ 0

)
εst , where µS and τ 0 are the surface

elastic constants whose dimensionality is [N/m]. In view of the displacement continuity,

εst = ∂w0/∂t = ∂w1/∂t. To be specific, we take σs
t = 2

(
µS − τ 0

)
∂w0/∂t. Then, the first

interface condition of Eq. (5) yields

(
µ̃1

∂w(1)

∂n
− ∂w(0)

∂n

)

L

= hc
∂2w0

∂t2
. (6)

where µ̃1 = µ1/µ0. and hc =
µS−τ0

µ0

.

Remark 1 In the perfect interface case, µ̃1 is the only (bulk property-related) input pa-
rameter of the problem. By contrast, here we have an extra input parameter hc being the
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surface-to-bulk moduli ratio. It has dimensionality [m] and so can be regarded as a length
parameter characterizing the scale behavior of the material. As a consequense, for a finite
µS − τ 0 a "size effect" is observed, i.e., the elastic fields are dependent on the inclusion
size. The available in literature data (e.g., Miller and Shenoy, 2000; Sharma and Ganti,
2002) indicate that hc magnitude is of order of nanometers. Therefore, one can expect
the size effect manifestation in heterogeneous solids - including nanocomposites - whose
structure length parameter (say, interface curvature) is comparable with hc.

The displacement field in and outside the inclusion is defined by the far displacement field
wfar: from the physical consideration, w(0) → wfar when z → ∞. And, to complete the
problem formulation, we impose w(1)(0) = 0. Our goal is to determine displacement in
and outside the inclusion.

3.2 Formal solution

The displacement w(1) is written in terms of the complex potential ϕ1 as

w(1) = Reϕ1, ϕ1 =
∑

k

Dkυ
−k, (7)

where Dk = D−k (e.g., Muskhelishvili, 1953) due to the fact that w(1) is finite everywhere
in the inclusion (z ∈ S1). Taking w(1)(0) = 0 into account yields

ϕ1 =
∞∑

k=1

Dk

(
υk + υ−k

)
. (8)

The same reasonings apply to the far displacement field wfar assumed to be regular in a
vicinity of inclusion, so

wfar = Reϕfar, ϕfar =
∞∑

k=1

ak
(
υk + υ−k

)
. (9)

An important particular case is the constant far stress σfar = −µ0E, where E = E1 +

iE2. The corresponding displacement wfar = E1x1 + E2x2 = Re
(
Ez

)
. From here, ak =

δk1dE/2, where δij is the Kronecker delta.

The total displacement in the matrix w(0) = wfar + ws, where ws is a disturbance due to
the inclusion:

w(0) = Reϕ0, ϕ0 = ϕfar + ϕs. (10)

Its asymptotic behavior (ws → 0 with z → ∞) implies that ϕs series expansion involves
only negative powers of υ, i.e.,

ϕs =
∞∑

k=1

Akυ
−k. (11)
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In what follows, however, we will conveniently write

ϕ0 =
∑

k

(Ak + ak) υ
−k, (12)

where Ak ≡ 0 for k ≤ 0 and ak = a−k.

3.3 Resolving set of equations

The coherent surface (displacement continuity) condition [[w]]L = 0 yields

ϕ1 + ϕ1 = ϕ0 + ϕ0. (13)

At the interface L, υ = υ0τ , where τ = exp iη; hence, υ = υ0τ
−1. By substituting ϕ1 of

Eq.(8) and ϕ0 of Eq.(12) into Eq. (13), we get

∑

k

Dkυ
−k +

∑

k

Dkυ−k =
∑

k

(Ak + ak) υ
−k +

∑

k

(
Ak + ak

)
υ−k

or

∑

k

Dkυ
−k
0 τ−k +

∑

k

D−kυ
k
0τ

−k =
∑

k

(Ak + ak) υ
−k
0 τ−k +

∑

k

(
A−k + a−k

)
υk
0τ

−k.

In view of the orthogonality property of Fourier harmonics τk = exp ikη, we come readily
to a set of linear relations

Dkυ
−k
0 +Dkυ

k
0 = (Ak + ak) υ

−k
0 + akυ

k
0 (14)

for k ≥ 0 .

In view of the Cauchy-Riemann condition

∂ Reϕ

∂n
=

∂ Imϕ

∂t

we get from Eq. (6) (
µ̃1

∂ Imϕ1

∂t
− ∂ Imϕ0

∂t

)

L

= hc
∂2Reϕ0

∂t2
.

Now, integration with respect to t along the interface L results in

(µ̃1 Imϕ1 − Imϕ0)L = hc
∂Reϕ0

∂t
.

At the elliptic interface ζ = ζ0,

∂ϕ

∂n
=

1

d
√
sinh2 ζ0 + sin2 η

∂ϕ

∂ζ
,

∂ϕ

∂t
=

1

d
√
sinh2 ζ0 + sin2 η

∂ϕ

∂η
.
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So we get

µ̃1 (ϕ1 − ϕ1)− (ϕ0 − ϕ0) = β

(
∂ϕ0

∂η
+

∂ϕ0

∂η

)
, (15)

where

β = i
hc

l2

1√
1 + α sin2 η

, (16)

α = sinh−2 ζ0 and l2 = d sinh ζ0 is the minor semi-axis of elliptic inclusion.

Combination of Eq.(15) with Eq.(13) yields

(µ̃1 + 1)ϕ0 + (µ̃1 − 1)ϕ0 = 2µ̃1ϕ1 + β

(
∂ϕ0

∂η
+

∂ϕ0

∂η

)
.

In view of Eq.(12) and the obvious identity ∂υ/∂η = iυ, one finds that

(µ̃1 + 1)
∑

n

(An + an) υ
−n + (µ̃1 − 1)

∑

n

(
An + an

)
υ−n

= 2µ̃1

∑

n

Dnυ
−n + iβ

[
∑

n

n (An + an) υ
−n −

∑

n

n
(
An + an

)
υ−n

]
.

Next, we multiply by τk : k = 1, 2, ... and integrate over a period 0 ≤ η ≤ 2π to get
another infinite set of linear equations:

(µ̃1 + 1) (Ak + ak) υ
−k
0 + (µ̃1 − 1) akυ

k
0 (17)

= 2µ̃1Dkυ
−k
0 +

∑

n

n (An + an) υ
−n
0 βk−n −

∑

n

n
(
An + an

)
υ−n
0 βk+n,

where

βk = β−k = − i

2π

∫

L
βτkdτ = − 1

2π

hc

l2

∫ 2π

0

exp(ikη)√
1 + α sin2 η

dη. (18)

For the recurrent procedure of βk evaluation, see Appendix A.

The last step is removing the Dk. We express them from Eq.(14) as

Dk =
Akυ

−2k
0(

υ−2k
0 − υ2k

0

) − Ak(
υ−2k
0 − υ2k

0

) + ak (19)

and substitute into Eq.(17) to get the final form of the linear system:

(µ̃1 + 1)Ak − 2µ̃1


 Akυ

−2k
0(

υ−2k
0 − υ2k

0

) − Ak(
υ−2k
0 − υ2k

0

)


+ (µ̃1 − 1)

(
akυ

2k
0 − ak

)
(20)

−
∞∑

n=1

nυk−n
0

(
Anβk−n −Anβk+n

)
−

∑

n

nυk−n
0 (anβk−n − anβk+n) = 0;

k = 1, 2, ... .
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Wemention three degenerate cases of the considered problem, they are (a) perfect interface
µS = τ 0 = 0, (b) rigid interface µS−τ 0 = ∞ and (c) circular inclusion, where the solution
is elementary (e.g., Mogilevskaya et al, 2010a) and, in the case of uniform far stress,
the dipole moment A1 is the only non-zero expansion coefficient in Eq.(11). A complete
solution for a finite µS − τ 0 is given by the infinite series of Eqs (12) and (8) and hence
requires an infinite set of linear equations of Eq. (20) to be solved.

(1 + µ̃1)Akυ
−k
0 − 2µ̃1


 Akυ

−2k
0(

υ−2k
0 − υ2k

0

) − Ak(
υ−2k
0 − υ2k

0

)


 υ−k

0 −
∞∑

n=1

nυ−n
0

(
Anβk−n − Anβk+n

)

= δk1
d

2
(µ̃1 − 1)

(
Eυ−k

0 − Eυk
0

)
+

d

2
E

(
υ−1
0 βk−1 − υ0βk+1

)
− d

2
E

(
υ−1
0 βk+1 − υ0βk−1

)
.

As a consequence, the stress in the inclusion is non-uniform even in the case of uniform
far stress.

3.4 Numerical testing

An approximate numerical solution of Eq. (20) up to arbitrary accuracy ε can be found
by the truncation method (Kantorovich and Krylov, 1964) which assumes retaining a
finite number nmax (ε) of harmonics in Eq. (11) and the same number of equations in
the linear system of Eq. (20). An approximate solution obtained this way tends to exact
one as nmax → ∞. In so doing, it is important to keep in mind that convergence rate is
substantially affected by the problem parameters. As expected, convergence accelerates
when we approach the degenerate cases, i.e., for (a) hc → 0 and (b) e = 1 and arbitrary
hc.

For a finite hc, the convergence rate slows down when e → 0 and so nmax should be taken
sufficiently high to ensure convergent solution. Some idea of the convergence rate can be
drawn from the data in Table 1 where the stress σ

(0)
13 (nmax) on the elliptic hole (z = l1)

due to uniaxial far load σ∞
13 = 1 is tabulated. Following Luo and Wang (2009), we take

for this and two subsequent examples hc = 0.2 nm and l1 = 100 nm. As seen from the
table, for e = 0.5 already nmax = 10 provides 4-digit accuracy of σ

(0)
13 stress value. The

same accuracy for e = 0.05 and e = 0.02 is achieved by retaining in the series Eq. (11) of
150 and 300 harmonics, respectively. In all subsequent numerical tests, nmax was taken so
that to ensure convergent (4 digits at least) solution.

Now, we compare our numerical data with those reported by Luo and Wang (2009). In

Fig. 1, the stress concentration factor (SCF) σ13(l1)/σ
∞
13 on the matrix (σ13 = σ

(0)
13 ) and

inclusion (σ13 = σ
(1)
13 ) side of interface is shown as a function of elliptic inclusion long

semi-axis l1. The shear moduli ratio is µ̃1 = 0.5. Our numerical results for e = 0.2 and
e = 0.5 are shown by the solid and dash-dotted curves, respectively. It is clearly seen from
the plot that the interface stress jump [[σ13]] is size-dependent. As would be expected,
it grows up for l1 → 0 whereas for large l1 the interface effects become very weak and
can be ignored. Also, these data demonstrate that the interface effects are related to the
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Table 1
Convergence rate of σ

(0)
23 /σ

∞
23 as a function of nmax for hc = 0.2 nm and a = 100 nm

aspect ratio

nmax 0.5 0.2 0.1 0.05 0.02

10 2.982 5.857 10.46 19.30 44.63

20 2.982 5.820 10.10 17.61 36.94

30 5.815 9.968 16.62 31.64

40 5.814 9.923 16.11 28.36

50 5.814 9.908 15.86 26.36

60 9.904 15.74 25.12

70 9.902 15.68 24.33

80 9.902 15.65 23.83

100 15.63 23.26

150 15.62 22.83

200 15.62 22.74

250 22.72

300 22.71

5 10 15 20 25 30

0,5

1,0

1,5

inclusion side

 e = 0.2
 e = 0.5

,  Luo & Wang (2009)

St
re

ss
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on
ce

nt
ra

tio
n 

fa
ct

or
 

13
(l 1) /

 
13

l1, nm

matrix side

Fig. 1. SCF σ13/σ∞
13 in the point z = l1 as a function of l1; µ̃1 = 0.5.

local curvature of the interface. For ellipse, the radius of curvature rc in the point z = l1
equals (l2)

2 /l1 = e2l1. For a fixed l1 (specifically, l1 = 2 nm) we get [[σ13]] /σ
∞
13 = 0.375 for

e = 0.5 and [[σ13]] /σ
∞
13 = 1.258 for e = 0.2. For e = 0.5, our data consistent with those
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reported by Luo and Wang (2009): the lasts are shown in Fig. 1 by the open (σ
(1)
13 ) and

solid (σ
(0)
13 ) circles.

In Fig. 2, the SCF σ23(l1)/σ
∞
23 at the surface of elliptic hole (µ̃1 = 0) is shown as a function

of its aspect ratio, e. Again, l1 = 100 nm. For hc = 0 (no surface stress) and e → 0 this
stress tends to infinity, in accordance with the linear fracture mechanics. In the limiting
case e = 0 an ellipse degenerates into straight crack whose tips (z = ±d) produce square
root singularity of the stress field, with the corresponding stress intensity factor (SIF)
KIII defined as

K±
III

µ0
= lim

z→±d

√
2π (z ∓ d)

∂w

∂z
.

On the contrary, for a finite hc our computations predicts the finite σ23(l1) limiting value.
In this study, nmax varied from several hundreds to a few thousands for e < 0.01. Notewor-
thy, these results are in line with the conclusions made by Kim et al (2010) who studied
the nano crack problem (being the limiting case of the problem we consider) numerically,
by means of the point wise collocation method. The open and solid circles represent the
data by Luo and Wang (2009). The solution for hc = 0 is elementary; for hc = 0.2 as
many as 101 harmonics were retained in numerical solution. As seen from Table 1, this
nmax value is insufficient in the case of thin ellipse and this is the possible reason of the
data deviation for e < 0.05.

0,00 0,02 0,04 0,06 0,08 0,10

10

20

30

40

50

60
 hc = 0
 hc = 0.1 nm
 hc = 0.2 nm
 hc = 0.4 nm

Luo & Wang (2009):
 hc = 0 
 hc = 0.2 nm 

St
re

ss
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on
ce

nt
ra

tio
n 

fa
ct

or
 

23
(l 1) /

 
23

Aspect ratio, e

Fig. 2. SCF σ
(0)
23 (l1)/σ

∞
23 at the elliptic hole (µ̃1 = 0) as a function of aspect ratio, e

In the above examples, we prescribed two separate length parameters, both of nanometer
scale. They are the characteristic length of material hc and the inclusion semi-axis length,
l1. In fact, they enter the equations only in the form of the dimensionless number (criterion)
being the ratio of these two, see Eq. (16). Introducing this criterion as of a new problem
parameter makes our theoretical analysis and numerical results more general. The obvious
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Table 2
SCF σ

(0)
23 (l1)/σ

∞
23 at the elliptic hole as a function of aspect ratio e and normalized interface

stress h∗c = hc/rc

h∗c e = 1.0 e = 0.5 e = 0.2 e = 0.1 e = 0.05 e = 0.02

0 2.000 3.000 6.000 11.00 21.00 51.00

0.02 1.961 2.955 5.922 10.86 20.74 50.54

0.05 1.905 2.892 5.814 10.67 20.39 49.87

0.1 1.818 2.796 5.652 10.39 19.85 48.83

0.2 1.667 2.631 5.377 9.902 18.94 46.94

0.5 1.333 2.264 4.778 8.858 16.98 42.48

1.0 1.000 1.866 4.140 7.756 14.92 37.45

definition h̃c = hc/l1 is not necessarily the best choice: the properly defined criterion is
expected to provide useful hint regarding the behavior of material. From this standpoint,
the radius of curvature rc closely related to the surface stress seems to be a good choice for
the geometry length parameter. In Table 2, the SCF σ23(l1)/σ

∞
23 at the surface of elliptic

hole is shown as a function of its aspect ratio e and normalized interface stress h∗
c = hc/rc.

It is clearly seen from the table that at least for 0.02 ≤ e ≤ 1 an effect of surface stress is
negligible for h∗

c << 1 and significant when h∗
c is of order 1.

4 Multiple inclusion models of composite

The straightforward application of the above theory in the micromechanics is a single
inclusion-based (dilute, Maxwell, self-consistent, differential, etc.) scheme for the effective
stiffness of elliptic fiber composite with imperfect interface. The Maxwell’s homogenization
scheme will be discussed in Section 5. In what follows, the solution for a single inclusion
is used as the background theory of the advanced models of composite.

4.1 Finite array of inclusions (FCM model)

We consider an elastic plane containing N elliptic nano inclusions. To minimize a number
of parameters, we assume all the inclusions to be identical and equally oriented (in x1

direction). Consideration of composite with inclusions of various size, shape, orientation
and properties follows the same way. Thus, geometry of this model is defined by the
coordinates (X1q, X2q) of the center Oq of q-th inclusion (1 ≤ q ≤ N), their aspect ratio
e = l2/l1 and inter foci length 2d. In literature, this model is also referred as a finite
cluster model, or FCM.

Besides the global Cartesian coordinate frame Ox1x2, we introduce the inclusion-related
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local coordinate frames Oqx1qx2q whose origins coincide with the center of q-th inclusion
whereas the Oqx1q and Oqx2q axes are parallel to the corresponding axes of the global
coordinate frame. The global z = x1+ix2 and local zq = x1q+ix2q variables are related by
z = zq+Zq (Zq = X1q+iX2q). The local, inclusion-related elliptic coordinates ξq = ζq+iηq
are defined by the formula analogous to Eq. (3):

zq = d cosh(ξq) =
d

2
(υq + υ−1

q ), υq = exp ξq. (21)

At the q-th inclusion surface Lq, we have ζq = ζ0 and υ0 = exp ζ0. The corresponding
interface conditions take the form

[[σn]]Lq
= −∂σs

t

∂t
; [[w]]Lq

= 0

where now [[f ]]Lq
=

(
f (0) − f (q)

)
|Lq

. The far field load is given by the displacement

wfar = E1x1 + E2x2 = Re
(
Ez

)
.

4.2 Analytical solution

We use the superposition principle to write a general solution of the out-of-plane problem
as

w(0) = Reϕ0, ϕ0 = ϕfar +
N∑

p=1

ϕ(p), (22)

where, as before, ϕfar = Ez is a linear term and

ϕ(p) =
∞∑

n=1

A(p)
n υ̂n(zp) (1 ≤ p ≤ N) . (23)

In Eq. (23), The functions υn = υ−n and A(p)
n are the complex series expansion coefficients

to be found.

To fulfil the boundary conditions of Eq. (5), we first expand ϕ0 in a vicinity of q-th
inclusion (in fact, with respect of its midpoint Oq) into the Laurent series of υq. Expansion
of the linear term ϕfar is elementary:

ϕfar = EZq +
Ed

2
(υq + 1/υq).

Expansion of the disturbance terms ϕ(p), Eq. (23) employs Eq. (C.2) for the terms with
p = q and Eq. (C.5) for the rest of them. Omitting the algebra, we write

ϕ0 =
∑

k

(
A

(q)
k + a

(q)
k

)
(υq)

−k (A
(q)
k ≡ 0 for k ≤ 0), (24)
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where

a
(q)
k =

N∑

p=1

∞∑

n=1

A(p)
n ηpqnk + δk,±1

Ed

2
. (25)

The explicit form of the expansion coefficients ηpqnk is given by Eq. (B.3). We note also that

a
(q)
k of Eq. (25) are the expansion coefficients of the regular part of solution and, hence,

a
(q)
−k = a

(q)
k is the necessary condition. For more details, see Kushch (2013).

The form of Eq. (24) is the same as of Eq.(12), so the only remaining step is substitution
of Eq. (25) into Eq. (20) written for q-th interface. After some algebra, we come to the
following compact, convenient for numerical realization formulas:

∞∑

n=0

(
A(q)

n V
(1)
nk + A

(q)
n V

(2)
nk + a(q)n v

(1)
nk + a

(q)
n v

(2)
nk

)
= 0 (26)

q = 1, 2, ..., N ; k = 1, 2, ... ;

where

V
(1)
nk = −nυ−n

0 βk−n + δnk

[
(µ̃1 + 1)− 2µ̃1υ

−2n
0

υ−2n
0 − υ2n

0

]
υ−n
0 ;

V
(2)
nk = nυ−n

0 βk+n + δnk
2µ̃1υ

−n
0

υ−2n
0 − υ2n

0

;

v
(1)
nk = −nυ−n

0 βk−n + nυn
0βk+n − δnk (µ̃1 − 1) υ−n

0 ;

v
(2)
nk = nυ−n

0 βk+n − nυn
0βk−n + δnk (µ̃1 − 1) υn

0 .

Numerical solution of the linear system Eq. (26) is obtained by the truncation method.

4.3 RUC model

Now, we consider the representative unit cell (RUC) model of composite with inclusions of
elliptic shape. Specifically, we study a composite where the elliptic fibers form a periodic
micro structure with the period a along the axes Ox1 and Ox2 of the global Cartesian
coordinate frame. The unit cell of this material is a square containing N inclusions, see
Fig. 3. Within a cell, inclusions are located arbitrarily but without overlapping other
inclusions of this and adjacent cells. At the same time, the inclusions can cross the cell
boundary: we consider the inclusion as belonging to the cell if the center of inclusion
lies inside it. The whole composite bulk is obtained by replicating the unit cell in two
orthogonal directions. The volume content of inclusions c = Nπl1l2/a

2. The random RUC
geometry shown in Fig. 3 is generated using the Monte Carlo procedure of Metropolis
type (see, e.g., Byström, 2003; Kushch and Chernobai, 2014, for the details).

The strain and stress fields are assumed macroscopically uniform and defined by the
constant macroscopic gradient E. Due to the cell-type periodicity of geometry, the local
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Fig. 3. RUC model of the random structure composite with elliptic fibers: number of inclusions
per cell N = 48, aspect ratio e = 1/3, volume content of inclusions c = 0.5.

displacement field is a quasi-periodic function of coordinates:

w(z + a)− w(z) = E1a; w(z + ia)− w(z) = E2a. (27)

Analytical solution of this problem follows the same way as before, with minor modifica-
tions. First, the functions υn(zp) Eqs (22) and (23) are replaced with the periodic complex
potentials υ̂n(zp) defined by Eq. (C.1) of Appendix C. The properties Eq. (C.4) of the
functions υ̂n enable fulfilling the periodicity conditions of Eq. (27). Substitution of the
modified Eqs (22) and (23) into Eq. (27) gives us

Γ = E +
πdi

a2

N∑

p=1

ImA
(p)
1 . (28)

In view Eq. (28), the modified linear term is ϕfar = Γz. Also, Γ replaces E in all subsequent
equations. The expansion coefficients ηpqnk in Eq. (25) are replaced with their periodic
counterparts η∗pqnk = ηpqnk + η̃pqnk. The explicit form of η̃pqnk is given by Eq. (B.3), see Kushch
(2013) for more details. The linear system of Eq. (26) provides evaluation of the coefficients
A(p)

n and thus complete solution of the problem.

5 Effective longitudinal shear stiffness

The general formula for the effective elastic stiffness tensor is 〈σ〉 = C∗ : 〈ε〉 where 〈ε〉
and 〈σ〉 are the macroscopic strain and stress vector, respectively. In our case, this tensor
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formula reduces to two scalar formulas

〈σi3〉 = 2C∗
i3j3 〈εj3〉 = C∗

i3j3

〈
∂w

∂xj

〉
, i = 1, 2.

To evaluate the effective longitudinal shear stiffness of nanofiber composite, we apply two
alternate approaches, both tracing back to the classical works by Maxwell (1873) and
Rayleigh (1892).

5.1 Maxwell’s approach

Recently, the analytical method has been developed for evaluating the effective conductiv-
ity of a composite with the elliptic fibers imperfectly bonded to the matrix Kushch et al
(2014a). There, the Maxwell homogenization scheme has been extended to the anisotropic
distribution of the inhomogeneities. In the particular case of elliptic fibers, an effective
inclusion is the ellipse with aspect ratio governed by the orientation distribution of the
individual inhomogeneities. The formula for effective property is derived by equating the
induced dipole moment of effective inclusion to the total dipole moment of individual
inhomogeneities. In addition to the common (shape of inclusions, their volume content
and phase conductivities) structural parameters, this formula accounts also for the inter-
face effects and orientation distribution of fibers. What is important, all the developed in
Kushch et al (2014a) theory applies to the problem we considered. To keep things sim-
ple, we assume the elliptic inclusions to be equally oriented. In this case, an aspect ratio
of effective inclusion is the same as that of actual inclusions Sevostianov (2014). Below,
we report briefly the findings of Kushch et al (2014a) and give the working formulas for
effective stiffness of composite.

The induced dipole moment of inhomogeneity is commonly defined (e.g., Jackson, 1962)
as a parameter governing asymptotic behavior of disturbance field caused by this inhomo-
geneity. This parameter was de-facto employed by Maxwell to derive his famous formula
for the effective stiffness of a composite with spherical particles. In the context of 2-D
problem, the complex dipole moment p = p1+ip2 is written in terms of complex variables
as (Kushch and Sevostianov, 2013)

p = µ0

∫

L

(
∂w(0)

∂n
z − nw(0)

)
dL, (29)

where L is an arbitrary contour encompassing the inhomogeneity and n = n1 + in2 is a
complex representation of the unit vector normal to L. In view of Eq. ( ), integration in
Eq. (29) is elementary and yields the simple formula for the induced dipole moment p of
elliptic inhomogeneity Kushch et al (2014a):

p = −πdµ0A1. (30)

In the classic Maxwell’s homogenization scheme, an equivalent homogeneous inclusion is
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a circle of radius Req and area Seq. The latter is determined by the volume content c of
inhomogeneities with area S1 as

S1 = cSeq = cπR2
eq.

The isotropic effective stiffness of composite is found as a stiffness µ∗ of this equivalent
inhomogeneity by equating its dipole moment peq to the sum p∗ of the dipole moments
p of individual inhomogeneities inside the representative volume element (RVE) of equal
size, Seq. By contrast, the composite of elliptic inhomogeneities we consider is anisotropic
at macro level. In the Maxwell homogenization scheme, this anisotropy appears in two
ways — as anisotropy of the properties and as anisotropy of the shape of the equivalent
inhomogeneity. To calculate effective stiffness using Maxwell homogenization scheme, we
equate the dipole moments of elliptic inhomogeneity with imperfect interface to that of
equivalent anisotropic inhomogeneity. The last one is also evaluated using Eq. (30).

In the case of aligned ellipses, the effective stiffness of the composite is given by the
formulas

C∗
1313

µ0

=
(1 + υ2

0)P1 − υ2
0

(1− υ2
0)P1 − υ2

0

;
C∗

2323

µ0

=
(1− υ2

0)P2 + υ2
0

(1 + υ2
0)P2 + υ2

0

. (31)

Here,

P1 + iP2 =
πdc

2S1

(
ReA1

E1
+ i

ImA1

E2

)
;

where A1 is found from Eq. (??) and S1 = πl1l2 is the area of inclusion. As expected, in the
particular case of circular nano inclusions of radius R, the composite is macroscopically
isotropic (C∗

1313 = C∗
2323 = µ∗) and Eq. (31) reduces to that suggested by Chen et al

(2007):

µ∗

µ0

=
(1 + c)(µ̃1 + h̃c) + (1− c)

(1− c)(µ̃1 + h̃c) + (1 + c)
,

where µ̃1 = µ1

µ0

and h̃c = µS−τ0

µ0R
. These parameters enter the formula additively, so the

surface effects contribute to the effective stiffness only if µ̃1 and h̃c were of the same order
of magnitude.

5.2 Rayleigh’s approach

The developed RUC model provides evaluation of the local fields in every point of the unit
cell. For our purpose, it is important that these fields can be integrated analytically to
obtain the exact, closed form formula for the effective moduli C∗

i3j3. Specifically, µ
∗
i3 = 〈σi3〉

for 〈∇w〉 = ij, so we need an explicit expression of the macroscopic gradient and stress
corresponding to our displacement solution w, Eqs (22)-(26). The macroscopic quantities
〈∇w〉 and 〈σ〉 are defined as the RVE surface-averaged values of the corresponding local
fields (e.g., Zuzovsky and Brenner, 1977; Benveniste and Miloh, 1986):

〈∇w〉 def
=

1

V

∫

S
wn ds, 〈σ〉 def

=
1

V

∫

S
(σ · n)x ds, (32)
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where V is a volume and S is a boundary of the representative volume element (RVE) of
composite, x = xjij is the position vector and n = njij is the normal unit vector. The
definition Eq. (32) is advantageous for the following reasons. First, it involves only the
observable/measurable quantities - displacement and stress - at the surface of composite
specimen. In essence, RVE is considered as a "black box" which makes the definition gen-
eral, valid for composites with arbitrary interior microstructure. In context of our study,
the most important is the fact that, in contrast to the commonly used volume averaging,
Eq. (32) holds true for composites with imperfect interfaces. For more discussion on this
subject, see Kushch and Sevostianov (2013); Kushch (2013).

Due to macro periodicity of structure imposed by RUC model, the last one can serve as
RVE of composite for the effective stiffness evaluation purpose. As would be expected
from Eq. (27), 〈∇w〉 = Ejij. The formula for average stress in our case becomes

〈σ〉 = −µ0 〈∇w〉+ 1

a2

N∑

q=1

p(q), (33)

where

p(q) =
∫

Lq

[
w(0)σn (x)− σn

(
w(0)

)
x
]
dL (34)

and Lq is the q-th matrix-inhomogeneity interface. In Eq. (34), integral is taken over
the matrix side (w = w(0), σ = σ(0)) of Lq; σn (w) = σ (w) · n is the normal stress and
σn (x) = σn (xj) ij. In the considered by us isotropic case, σn (x) = µ0n.

In the second term in Eq. (33), p(q) is the induced dipole moment of q-th inhomogeneity.
For further discussion, see Kushch and Sevostianov (2013): here, we note only that the
integrals in Eq. (34) involve only the matrix phase displacement field, w(0). Moreover,
these integrals are identically zero for all but dipole term in the w(0) multipole expansion
in a vicinity of inhomogeneity and represent contribution of these inhomogeneities to the
overall stiffness tensor.

Evaluation of the integral of Eq. (34) over the elliptic boundary is ready. In complex
variables, it takes the form

p(q) = µ0

∫

Lq

(
∂w(0)

∂n
z − nw(0)

)
dL,

where p(q) = p
(q)
1 + ip

(q)
2 . In view of

z = d cosh ξ,
∂

∂n
=

1

d |sinh ξ|
∂

∂ζ
, n =

sinh ξ

|sinh ξ| , dL = d |sinh ξ| dη,

Eq. (34) reduces to

p(q) = µ0

∫ 2π

0

(
∂w(0)

∂ζq
cosh ξq − w(0) sinh ξq

)
dηq. (35)
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Recall that w(0) = Reϕ0; we substitute the local expansion of ϕ0 given by Eq. (24) into
Eq. (35). Only zero Fourier harmonics in ηq survives integration over the period, so we
get

p(q) = −µ0πdA
(q)
1 .

As would be expected, only the dipole term contributes to the effective stiffness of com-
posite. Substitution of this expression into Eq. (33) gives the remarkably simple formula

〈σ〉
µ0

= E +
πd

a2

N∑

q=1

A
(q)
1 , (36)

consistent with (Kushch and Chernobai, 2014). Together with Eqs. (??), re-written as

〈σ〉 = (C∗
1313 + iC∗

2313)E1 + (C∗
1323 + iC∗

2323)E2,

the formula Eq. (36) provides evaluation of the effective longitudinal shear stiffness of
composite.

6 Numerical study

The model we have developed involves a number of parameters contributing to the effective
stiffness of composite. They are volume content c of inclusions, their arrangement (Zq),
size and shape (l1 and l2), inclusion-to-matrix stiffness ratio µ̃1 and normalized interface
stiffness, defined as h̃c = hc/l1. Also, we limit our consideration by two model geometries
of composite. One of them is a periodic orthogonal array whose periods a1 and a2 are
proportional to inclusion’s semi axes: l1/a1 = l2/a2. Another one is the quasi-random
geometry shown in Fig. 3. Noteworthy, the last model can be also used to study the
periodic structures provided the ratio a1/a2 is a rational number, see Fig. 4(?????) for
example. An alternate approach consists in considering the rectangle with sides a1 and
a2 containing one inclusion as a unit cell of periodic composite. All the above theory,
with appropriate modification of the standard lattice sums Σ∗

n Eq. (C.7), applies to this
model as well. The considered geometries of composite result in macroscopic ortothropy
of elastic properties, i.e., C∗

1323 = C∗
2313 = 0. As to C∗

1313 and C∗
2323, we normalize them by

dividing by µ0 (or, what the same, take µ0 = 1).

The multiple inclusion model boundary-value problem reduces to an infinite linear system
even in the case of perfect interface. Therefore, an accuracy of numerical (approximate,
in fact) solution will depend on the number nmax of equations retained in Eq. (26). An
accuracy of the reported below numerical data can be estimated from Table 3, where
the normalized effective elastic modulus C∗

1313 of periodic porous solid µ̃1 = 0 is shown
as a function of nmax for volume content c = 0.7. Computational practice shows that
the convergence rate is governed primarily by the volume content of inclusions or, what
is the same, by the minimum distance between them. It is seen from the table that for
c = 0.7 ≈ 0.9cmax, where cmax = π/4 corresponds to dense packing, nmax = 20 provides
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Table 3
Convergence rate of C∗

1313 for c = 0.7 µ̃1 = 0 (periodic structure)

e = 0.5 e = 0.2

nmax h̃c = 0 h̃c = 0.02 h̃c = 0.04 h̃c = 0 h̃c = 0.02 h̃c = 0.04

1 0,1951 0,2370 0,2785 0,2112 0,3190 0,4238

3 0,1489 0,1990 0,2462 0,1556 0,2760 0,3861

5 0,1420 0,1952 0,244 0,1452 0,2730 0,3852

10 0,1398 0,1945 0,2436 0,1424 0,2727 0,3851

15 0,1397 0,1944 0,2437 0,1422 0,2725 0,3850

20 0,1397 0,1944 0,2437 0,1422 0,2725 0,3850

evaluation of the effective stiffness of composite with at least 4-digit accuracy. What is
important in the context of our study, C∗

1313 convergence rate is practically invariant of
hc.

In Fig. 4, the component C∗
2323 of the effective stiffness tensor of periodic porous solid is

plotted as a function of the volume content of elliptic pores with aspect ratio e = 0.1. For
the macro level (h̃c = 0), the accurate data obtained by the Rayleigh’s method (Eq. (36),
solid line) coincide up to 4 significant digits with the data by Lu (1994) obtained under
assumption of traction-free pore surfaces and shown in the plot by the open circles. The
surface stress increases overall stiffness of porous solid: the data obtained from Eq. (36)
for h̃c = 0.1 are shown by the dashed line. The Maxwell’s scheme (Eq. (31), dash-dotted
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Fig. 4. Effective stiffness C∗
2323 as a function of porosity (periodic structure)

curves) also predicts growth of C∗
2323. however, in both cases it greatly underestimates the

macroscopic shear stiffness of porous solid.
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The analogous data for effective stiffness C∗
1313 are plotted in Fig. 5. Again, for h̃c =

0 our results coincide with the data reported byLu (1994) whereas Maxwell’s scheme
overestimates them (dash-dotted curve). It appears that C∗

1313 is affected by h̃c much
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Fig. 5. Effective stiffness C∗
1313 as a function of porosity c (periodic structure)

more substantially than µ∗
23 and for h̃c = 0.1 the effective stiffness µ∗

13 of porous solid
exceeds that of a bulk material, µ0. Interestingly, in the last case prediction made by the
Rayleigh’s andMaxwell’s methods are very close. These examples clearly demonstrate that
the interfaces affect the overall stiffness of nanostructured materials quite substantially
and therefore must be taken into account.

In Fig. 6, the effective elastic moduli C∗
1313 and C∗

2323 of porous solid with c = 0.5 are shown
as dependent of h̃c. As would be expected, for e = 1 (circular pores) C∗

1313 = C∗
2323 and

is a weakly growing function of h̃c shown in the plot by the dash-dotted curve and open
circles. For e < 1, C∗

2323(e) < C∗
2323(1) whereas C∗

1313(e) > C∗
1313(1) and their difference is

getting bigger as e → 0. For example, an anisotropy parameter C∗
1313/C

∗
2323 equals 1.38

for e = 0.5 and 2.33 for e = 0.2.

To complete this part, we give two examples of the surface effects in the periodic and
random composites with c = 0.5 and e = 1/3. The random structure was modeled by
RUC with N = 48 equally oriented inclusions per cell (Fig. 3). The effective moduli of
random composite were obtained by averaging the output data over 20 runs. In Table 4,
the effective moduli C∗

1313(h̃c) and C∗
2323(h̃c) are shown as a function of 0 ≤ µ̃1 ≤ 10 for

h̃c = 0 and h̃c = 0.2. The last value is intentionally taken sufficiently large to illustrate an
effect of h̃c. Noteworthy, C

∗
i3i3 are the nearly linear functions of h̃c, so one can estimate

their values for 0 < h̃c < 0.2 based on the tabulated data. As seen from the table, an
effect of h̃c is the most prominent for µ̃1 ≤ 1 whereas for µ̃1 = 1 the difference between
C∗

1313(0.2) and C∗
1313(0) is below 2% for C∗

1313 and below 1% for C∗
2323.

In Fig. 7, the effective modulus C∗
1313 is shown as a function of µ̃1 for h̃c = 0 and h̃c = 0.2.
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Table 4
The effective elastic moduli C∗

1313(h̃c) and C∗
2323(h̃c) of periodic and random composite with

c = 0.5 and e = 1/3

periodic structure random structure

µ̃1 C∗
1313(0) C∗

2323(0) C∗
1313(0, 2) C∗

2323(0, 2) C∗
1313(0) C∗

2323(0) C∗
1313(0, 2) C∗

2323(0, 2)

0,0 0,353 0,275 0,835 0,427 0,368 0,143 0,845 0,341

0,25 0,552 0,515 0,975 0,628 0,575 0.466 0,977 0,594

0,5 0,720 0,706 1,100 0,796 0,731 0,690 1,100 0,785

0,75 0,868 0,865 1,212 0,939 0,871 0,862 1,216 0,937

1,0 1,0 1,0 1,314 1,062 1,0 1,0 1,326 1,062

2,0 1,417 1,388 1,646 1,424 1,45 1,369 1,722 1,404

4,0 1,946 1,818 2,085 1,829 2,141 1,741 2,335 1,756

6,0 2,271 2,041 2,364 2,052 2,646 1,940 2,810 1,948

8,0 2,491 2,186 2,557 2,194 3,070 2,073 3,214 2,080

10,0 2,650 2,287 2,700 2,292 3,484 2,128 3,567 2,141

The data for periodic and random composite are shown in black and red, respectively.
The blue curves represents the Maxwell’s scheme. It is seen that for 0 ≤ µ̃1 < 2 the
predictions of all three models are pretty close and predict the same effective stiffness
growth due to h̃c. For µ̃1 > 2, an effect of h̃c decreases and micro structure becomes a
dominant factor. The crossed open circles in Fig. 7 represent the data by Byström (2003)
for µ̃1 = 10 who studied the analogous models numerically and found C∗

1313 = 2.650 for
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periodic and C∗
1313 = 3.452 for random composite. Our method predicts C∗

1313 = 2.650
and C∗

1313 = 3.484 for the periodic and random composite with µ̃1 = 10 and hc = 0 (no
interface effect), respectively, see Table 4. These numbers within 0, 1% agree with those
reported by Byström (2003). Such a good correlation can be regarded as the correctness
proof and accuracy validation of the developed method and numerical algorithms.

7 Conclusions

The analytical, multipole expansion method has been developed to study the elastic be-
havior of composite with aligned, elliptic in cross-section nanofibers due to longitudinal
shear. For the first time, a complete solution has been obtained for the FCM and RUC
models of fibrous nanocomposite with Gurtin-Murdoch type interface. Both the periodic
and random microstructure of composite are considered. In the latter case, the represen-
tative unit cell of a composite contains multiple elliptic inclusions. The method combines
the principle of superposition, technique of complex potentials and some new results in
the theory of special functions. An appropriate choice of complex potentials and the re-
expansion formulas for them reduce the boundary-value problem for a heterogeneous solid
to an ordinary, well-posed set of linear algebraic equations. This in turn reduces the com-
putational effort of solution greatly and thus provides an efficient numerical study of the
elastic fields and effective stiffness of fibrous nano composite, with the interaction effects
adequately taken into account.

The homogenization problem for a composite containing elliptic nano inclusions never
been considered even approximately so the theory has been developed and numerical esti-
mates of the effective stiffness of composites with finite characteristic length parameter hc

have been obtained for the first time. For this purpose, both the Maxwell’s and Rayleigh’s
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approaches have been implemented. In the latter case, the exact finite form expressions of
the effective elastic moduli have been derived by analytical averaging of the local strain
and stress fields. The reported in the paper accurate numerical data illustrate substantial
effect of interface elasticity and related size effect on the local stress concentration and
effective stiffness of composite. In particular, the surface effect makes the stress field in the
inclusion non-uniform even in the Eshelby’s problem and gives a rise to size-dependence of
the stress concentration factor. The stress in the tip of infinitely thin elliptic nano cavity
is finite, in contrast to the traction-free surface case. The effective stiffness of composite
is also affected by the surface/interface effects and the inclusion’s shape. Their combined
action results in (a) macroscopic anisotropy of elastic properties and (b) manifestation of
the surface elasticity effects in composite with coarser inclusions as compared with the
circular fiber case. The latter is due to the fact that traction jump across the interface in
Gurtin-Murdoch model is inversely proportional to the local radius of curvature. The gen-
eral conclusion drawn from our numerical study is that elastic stiffness and brittle strength
of nanoheterogeneous materials can be substantially improved by appropriate choice of
inclusion shape and modification of interfaces. The developed semi-analytical technique,
able to accurately evaluate the elastic fields of interacting nanoinhomogeneities, opens new
opportunities in computer-aided design of new nanostructured materials with tailor-made
mechanical properties.
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A Evaluation of βk coefficients

We re-write Eq. (18) as

βk = − 1

2π

hc

l2

∫ 2π

0

cos kη − i sinkη

∆(α)
dη.

where ∆(α) =
√
1 + α sin2 η. It is readily seen that for all integer k

∫ 2π

0

sinkη

∆(α)
dη ≡ 0;

∫ 2π

0

cos (2k + 1) η

∆(α)
dη ≡ 0;

so we only need to evaluate the integrals of type

Ik =
∫ 2π

0

cos2kη

∆(α)
dη = 4

∫ π/2

0

cos2kη

∆(α)
dη. (A.1)
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For k = 0 and k = 1, these integrals are written in terms of complete elliptic integrals of
the first and second kind, defined as (Abramovitz and Stegun, 1964)

K(α) =
∫ π/2

0

dx

∆(−α)
and E(α) =

∫ π/2

0
∆(−α)dx,

respectively. By comparison with Eq. (A.1), one finds

I0 = 4
√
αK(−α) (A.2)

and

I1 = 4
√
α
[(

1 +
2

α

)
K(−α)− 2

a
E(−α)

]
. (A.3)

Now, we derive the recurrent formula for Ik, k ≥ 2. The standard trigonometry consider-
ation yields

Ik+1√
α

=
∫ 2π

0

cos2kη cos 2η

∆(α)
dη −

∫ 2π

0

sin 2kη sin 2η

∆(α)
dη (A.4)

and
∫ 2π

0

cos 2kη cos 2η

∆(α)
dη =

Ik+1 + Ik−1

2
√
α

.

Also, we apply the differentiation formulas

2

a
d∆(α) =

sin 2ηdη

∆(α)
; d sin 2kη = 2k cos 2kηdη;

and integration by parts to transform the second integral in Eq. (A.4):

∫ 2π

0

sin 2kη sin 2η

∆(α)
dη =

2

α

∫ 2π

0
sin 2kη d∆(α)

=
2

α

[
sin 2kη d∆(α)1/2

∣∣∣∣∣
2π

0
−

∫ 2π

0
∆(α)d sin 2kη

]

= −2k
(
2

α
+ 1

)
Ik√
α
+ 2k

∫ 2π

0

cos 2kη cos 2η

∆(α)
dη

By combining the above formulas, we obtain the recurrent formula

(
1

2
+ k

)
Ik+1 =

(
1

2
− k

)
Ik−1 + 2k

(
2

α
+ 1

)
Ik. (A.5)

Together with Eqs (A.2) and (A.3), Eq. (A.5) provides an efficient evaluation of Ik and
hence βk coefficients of Eq. (18).
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B Re-expansion formulas for the elliptic solid harmonics

The series expansion of the p-th inclusion-related irregular elliptic harmonics (υp)
−n (n >

0) in a vicinity of another, q-th inclusion is given by the formula (Kushch et al., 2005)

υ−n
p =

∞∑

m=0

ηpqnm
(
υm
q + υ−m

q

)
(n ≥ 1) ; (B.1)

where the expansion coefficients ηpqnm = ηnm (Zpq, dp, dq) and Zpq = Zq − Zp. For the
arbitrarily located, equally oriented elliptic coordinate frames Opx1px2p and Oqx1qx2q with
the same semi-foci parameter dp = dq = d, Yardley et al (1999) have suggested the formula

ηnm(Zpq) =
1

π

π∫

0

(υp)
−n

∣∣∣ζq=0 cos(mηq)dηp. (B.2)

Computational effort of ηnm evaluation from (B.2) is quite considerable. An efficiency of
numerical algorithm can be improved by using two series expansions of ηnm (Kushch et
al., 2005). The first one is

ηnm(Z) = (−1)m n
∞∑

j=0

V −(n+m+2j) (B.3)

×
j∑

l=0

(−1)j−l

(j − l)!

(
1

2

)n+m+2l

Mnml
(n +m+ l + j − 1)!

(j − l)!
.

where V is defined by Z = d (V + V −1). Here,

Mnml =
(n+m+ l + 1)l
l! (n+ l)! (m+ l)!

,

where (n)m is the Pohgammer’s symbol. The series Eq. (B.1) with the coefficients Eq.
(B.3) converges within an ellipse centered in Zq with inter-foci distance 2d and passing
the pole of p-th elliptic coordinate frame closest to Zq which is sufficient to solve for any
two non-overlapping ellipses. For the well-separated (namely, |zp| > d, |zq| < |Zpq| and
|Zpq| > 2d) inclusions, Eq. (B.3) simplifies to

ηnm(Z) = n (−1)m
∞∑

l=0

d2l+n+mMnml
Γ (n+m+ 2l)

(2Z)n+m+2l . (B.4)

C Periodic complex potentials

Following Kushch et al. (2009b), we define the functions υ̂n as 2D lattice sums:

υ̂n(z) =
∑

k

[υ(z +Wk)]
−n (n ≥ 1) , (C.1)
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where Wk = ak = a (k1 + ik2), −∞ < k1, k2 < ∞. The drawback of this definition is
the convergence issue: in fact, the series Eq. (C.1) for n = 1 is conditionally convergent
(Kushch, 2013). An alternate way of defining the functions υ̂n uses their local series
expansion of the form

υ̂n = υ−n +
∑

k

η̃nk(0) (υ)
−k , (C.2)

where
η̃nk(z) =

∑

k �=0

ηnm (z +Wk) , (C.3)

ηnm being the re-expansion coefficient defined by Eq. (B.1). For n > 1, the definitions by
Eqs (C.1) and (C.2) are equivalent. The periodic harmonics introduced this way obey the
following periodicity conditions:

υ̂n(z + a)− υ̂n(z) = 0; (C.4)

υ̂n(z + ia)− υ̂n(z) = δn1
πdi

a
;

and possess a countable set of cuts centered in the points Wk. The series Eq. (C.1) is
termwise differentiable which means that υ̂n obeys Laplace equation and can be thought
as the periodic complex potential.

In order to fulfil the boundary conditions at the q-th inclusion, we need the local expansion
of υ̂n(zp) in terms of υq. This regular expansion is readily derived with aid of the re-
expansion formulas Eq. (B.1). We write it in the following form

υ̂n(zp) =
∑

m

(ηpqnm + η̃pqnm) (υq)
−m , (C.5)

where η̃pqnm = η̃nk(Zpq) and η̃pqnm = η̃nk(Zpq). In Eq. (C.5), Zpq is understood as a minimum
distance between the p-th and q-th inclusions, with account for those belonging to the
adjacent cells: Zpq = min(Zq −Zp±a± ia). Then, the first term in Eq. (C.5) is computed
using Eq. (B.3). As to the second one, given by Eq. (C.6), we note that a ≫ d for the
typical RUC model. Therefore, Eq. (B.4) applies here and so we get

η̃pqnm = n (−1)m
∞∑

l=0

(
d

2

)n+m+2l

MnmlΓ (n +m+ 2l) Σ∗
n+m+2l(Zpq), (C.6)

where Σ∗
n is the standard lattice sum defined as

Σ∗
n(z) =

∑

k �=0

(z +Wk)
−n . (C.7)
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