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Abstract
We discuss a few mathematical aspects of random dynamical decoupling, a key
tool procedure in quantum information theory. In particular, we place it in the
context of discrete stochastic processes, limit theorems and completely positive
trace-preserving semigroups on matrix algebras. We obtain precise analytical
expressions for expectation and variance of the density matrix and fidelity over
time in the continuum-time limit depending on the system Lindbladian, which then
lead to rough short-time estimates depending only on certain coupling strengths.
We prove that dynamical decoupling does not work in the case of intrinsic (i.e., not
environment-induced) decoherence, and together with the above-mentioned esti-
mates this yields a novel method of partially identifying intrinsic decoherence.

Keywords: central limit theorem, dynamical decoupling, intrinsic decoher-
ence, CPT semigroups

(Some figures may appear in colour only in the online journal)

1. Introduction

The aim of this article is two-fold: first, to provide an analytical description of random
dynamical decoupling because analytical expressions are often more manageable than com-
binatoric-numerical ones; second, to use this description to propose a partial method of
detecting intrinsic decoherence of quantum systems.

Dynamical decoupling is a method applied to stabilise states of quantum registers against
undesired time-evolution. Originally invented in NMR technology, it has been generalised to
a wider context, in particular in quantum information theory [LB13, VKL99]. It works by
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application of repeated instantaneous unitary correction pulses on the quantum register,
perturbing the original time-evolution. The procedure is particularly interesting and effective
when performed in a random way [VK05, SV05].

While several general estimates and specialisations of the procedure have been proposed
in the past (see [LB13] and the references therein), our focus here is on finding handy
analytical descriptions of the time-evolution of expectation and distribution of physically
interesting quantities like the density matrix process or the gate fidelity process arising from
this random time-evolution. We believe that such descriptions are a valuable tool in future
computations and enable predictions in experiments.

We would like to provide now a rough overview of the content of this article. Let  ( , )
stand for a generic finite-dimensional quantum system, with  a finite-dimensional complex
Hilbert space and  a possibly time-dependent Lindblad generator (see [BP02, Wol11] for
general background information). We start in section 2 by introducing dynamical decoupling
and show that the decoupling condition (4) can be satisfied only if  = Hi[ , · ] for some
Hamiltonian H. This might sound like a contradiction since dynamical decoupling aims to
eliminate decoherence (noise) arising from open systems. It can be resolved by differentiating
between intrinsic and extrinsic decoherence: the latter one is where decoherence arises from
interaction with an actual quantum heat bath or environment such that the total space time-
evolution is unitary, the former one is where decoherence is actually the time-evolution of a
closed system [Adl04]. It is unclear whether intrinsic decoherence may appear in nature, and
it would, of course, contradict the axiom of unitary time-evolution. But in order to find out
whether it may exist or whether the axiom of unitarity is always verified, one has to perform
experiments and develop mathematical tools.

To this end, sections 3 and 4 provide a probabilistic-analytical approach to dynamical
decoupling, namely: we set up a probabilistic description of a random walk in the completely
positive trace-preserving (CPT) maps of the quantum system arising from the random cor-
rection pulses; then we study the continuum-limit of this random walk under a suitable
scaling, which becomes a Gaussian (Markov) process in the CPT maps. We use this to
determine the expectation and higher moments of the density matrix process ρt . In the 4th
section we then compute the expectation of the gate fidelity, which might be regarded as a
mean fidelity when averaging over all states on B ( ) in a suitable manner. We illustrate all
constructions and considerations with an easy example that shall accompany us through the
paper.

Up to this point, things were quite general, but this is where we can turn to our second
aim: distinguishing between intrinsic and extrinsic decoherence (with bounded Hamiltonian
dilations, see [AHB14, appendix]). We therefore specialise in the final section 5 on providing
approximative bounds for the gate fidelity in these two extremal cases together with a recipe
which should enable the experimenter to determine the type of decoherence present in his
setting. Ideally he should just know the pulse length τ , the total time t of evolution, and the
coupling strength of the undesired decoherence. In some cases unfortunately some further
input is needed. However, the overall moral is roughly speaking the following: the rate of
decoherence decreases to 0 when τ → 0 if decoherence is extrinsic and due to bounded
interaction [AHB14, VK05]; it remains essentially unaffected by the decoupling procedure if
decoherence is intrinsic. In other words, if random dynamical decoupling with τ → 0 does not
eliminate decoherence, then it was intrinsic or due to unbounded interaction! Model studies
and illustrations of this procedure can be found in the companion article [AHB14].
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2. The concept of dynamical decoupling

Let us start with some notation used throughout the article. We shall denote our quantum
system in question by  ( , ), with  a finite-dimensional complex Hilbert space (of

dimension d ) and we denote the adjoint of linear maps on it by ‘*’;  is the Lindblad
operator on B ( ), generating the CPT time evolution maps α = et

t , t ∈ +, of the quantum
system (see [BP02, Wol11] for general background information). Let us abbreviate

=A B: ( ), which has dimension =d d 2 and which becomes a Hilbert space again with

scalar product ∈ × ↦ 〈 〉 =x y A A x y x y( , ) , : tr ( * ), and we denote adjoints of maps on this
Hilbert space by ‘†’. We write Ad (or ad) for the adjoint representation of the unitary group
(or its Lie algebra, respectively) on A, i.e., =v x vxvAd( )( ) * and =H x H xad( )( ) [ , ], for

∈v H x A, , with v unitary and H selfadjoint.
By a decoupling set in A we mean a finite group of unitaries = ⊂∈V v A: ( )j j J such that

∈ J0 and

∑= ∈ ∀ ∈
∈

v v x x A1 1, Ad( )( ) , . (1)
j J

j0

Notice that in this case we automatically have


∑ =∈ v xv x 1tr ( )
J j J j j d

1

| |
* 1 .

Example 1. The standard illustrative example of a finite-dimensional quantum system to
keep in mind throughout this paper is an N-qubit quantum system, so  = ⊗( ) N2 and

=d 2 N2 ; there typically the decoupling set V consists of the 4N different combinations of
Pauli matrices σ σ σ1{ , , , }1 2 3 on the tensor factors. Here =v vj j

* , for all j.

Given the CPT semigroup of time evolution maps α ∈ +( )t t of our system and a (‘short’)
time τ , consider the externally modified time evolution

α α α α= ◦ ◦ ◦ ◦ … ◦ ◦τ
τ

τ τ τ+ −( ) ( ) ( )v v v v v vAd Ad Ad , (2)n j j j j j j( 1)
( ) * * *

n n n0 1 1 0

where ∈n , and ∈j( )i i 0 forms a certain sequence in J with =j 00 , meaning we apply

instantaneous decoupling or correction pulses
−

v vj j
*
i i 1

at time τi ; set α α α= ◦τ
τ τ

τ
−t t n n

whenever τ τ∈ +t n n[ , ( 1) ). The sequence ji can be fixed or random, leading to deterministic
or random dynamical decoupling. It turns out that random decoupling has many advantages
[KAS05, VK05, SV05] and moreover is mathematically more interesting, and that is why we
want to investigate it here.

Our first goal is to find an analytical description of the externally modified time evolution
α τ

t
( ) . In the random setting, α τ

τ∈( )t t
( ) becomes a stochastic process (a random walk with steps

lasting time τ) induced by the process τ∈v( )j tt
with independent identically distributed (iid)

and equidistributed [Shi96] increments in V, and we are interested in the limit τ → 0, which
would enable nice analytical expressions.

Since α = texp ( )t , we find

α τ α= ◦ ◦ ◦τ
τ

τ
τ

+ ( )( ) ( )v vexp Ad Ad , (3)n j j n( 1)
( ) * ( )

n n

so the increment during the time interval τ−t t( , ) is given by τ ◦ ◦v vexp ( Ad( ) Ad( ))j j
*

t t
.
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We say that V satisfies the decoupling condition for  ( , ) if

∑ ◦ ◦ =
∈

( )v vAd( ) Ad 0. (4)
j J

j j
*

The idea behind this condition is that it ensures cancellation of interaction at first order in
τ ∥ ∥, i.e., for short time τ , and thus higher order terms contribute.
We say (the time evolution of) our quantum system  ( , ) is purely unitary if

 = Hiad( ), with ∈H A selfadjoint, because in this case α = et
t is induced by a one-

parameter family of unitary matrices; in this case  = −† . The ‘opposite case’, namely
where  =† we call purely dephasing.

Theorem 2. A decoupling set for  ( , ) satisfies the decoupling condition (4) iff  ( , ) is
purely unitary.

Proof. We write out the generator  in Christensen–Evans form [CE79, Wol11]

 Ψ= + + ∀ ∈x x ax xa x A( ) ( ) *, ,

with a certain ∈a A and completely positive Ψ which is not a multiple of idA (w.l.o.g.,
because adding λ2 idA to Ψ has the same result on  as adding λ1 to a). Suppose first that α is

purely unitary; then Ψ = 0 and = −a a* . From (1), with J indexing the decoupling set
= ∈V v j J{ : }j as above, we obtain





∑ ∑

∑

◦ ◦ = +

= +

= + = ∈

∈ ∈

∈
( )

( )
( )

( )

( ) ( ) ( )
J

v v x
J

v a v x v x a

J
v a x x v a

d
a a x x A

1
Ad( ) Ad ( )

1
Ad( ) Ad ( ) Ad ( ) *

1
Ad( )( ) Ad( ) *

1
tr * 0, ,

j J

j j
j J

j j j

j J

j j

* * *

so V satisfies the decoupling condition. If instead α is not purely unitary, we have Ψ =0 and
hence

∑Φ Ψ= ◦ ◦
∈

( )
J

v v:
1

Ad( ) Ad
j J

j j
*

is completely positive and nonzero. Suppose Φ(x) equals



∑− +

= − + ∈

∈
( )( )

( )
( )( ) ( )

J
v a v x v v x a

d
a a x x A

1
Ad( ) Ad ( ) Ad( ) Ad ( ) *

1
tr * , .

j J

j j j j
* *

Then, for every rank-one projection ∈p A, we have


Φ = − +p a a p( ) tr ( *)
d

1 . But for every

ξ ∈ with ξ =p 0, we have


∑ξ ξ ξ Φ ξ ξ Ψ ξ= − + = = ◦ ◦
∈

( ) ( )
d

a a p p
J

v v p0
1

tr * , , ( )
1

, Ad( ) Ad ( ) ,
j J

j j
*

with each single term ⩾0, due to the positivity of Ψ and the scalar product, and thus actually
=0. In particular, since =v 10 , we have ξ Ψ ξ〈 〉 =p, ( ) 0, so Ψ ∈ +p p( ) . Let us write Ψ in
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(minimal) Kraus form with Ψrank( ) its Kraus rank and certain ∈b Ai [Wol11]:

∑Ψ = ∈
Ψ

=

x b xb x A( ) , .
i

i i
1

rank( )
*

This entails then, for any two mutually orthogonal vectors η ξ ∈ H, ,

∑ξ Ψ η η ξ ξ η= =
Ψ

=

b0 , ( ) , .
i

i

1

rank( )
2

Hence, for every i, we see that η η∈bi , or in other words, η must be an eigenvector of bi.
This holds for every η ∈ , so ∈b 1i , and thus Ψ is a multiple of idA, which contradicts our

initial assumptions. Therefore,


Φ = − +x a a x( ) tr ( *)
d

1 , and

∑ ◦ ◦ =
∈

( )
J

v v
1

Ad( ) Ad 0,
j J

j j
*

i.e., V on  ( , ) does not satisfy the decoupling condition. □

Despite this result, it will turn out in the course of this paper that dynamical decoupling is
still interesting beyond the unitary case.

3. The continuous-time limit of random dynamical decoupling

We continue with the notation and concepts introduced in the previous section. Let us, in
particular, assume all increments vji, with ∈i , in our random walk ∈v( )j ii 0 of decoupling
pulses to be iid and equidistributed in V as in the preceding section. The induced random walk

α τ
τ
+ ∈( )n n( 1)

( ) lies in the completely positive maps on A according to (2) and (3). Moreover,
since completely positive maps are linear maps of the Hilbert space A and since all the
increments are invertible, the random walk actually lies in the group AGL( ) of invertible
linear maps of A, and gl ∈ A( ), the Lie algebra of AGL( ). This induced random walk has
again iid increments and is described by the measure

⎜ ⎟
⎛
⎝

⎞
⎠∑μ δ=τ

τ
∈

◦ ◦ ( )J
:

1
. (5)*

j J
v v

( )
exp Ad( ) Adj j

We would like to investigate it in the limit τ → 0. However, since τ is an actual physical
quantity in our set-up, we keep it and instead consider a fictitious limit, which should be good
for small τ , as explained below. Considering simply μ τ( ) and the limit of τ → 0, we would
obtain a drift-like expression without fluctuations, which is not a really physical result but a
good first approximation, see (7) and remark 6. In fact, the well-known Donsker invariance
principle [Shi96] basically says that the limit of a classical random walk is described suitably
well by Brownian motion, i.e., by scaling length increments with the square-root of time
increments, supposed that the expectation of every increment is 0. The following kind of
central limit theorem helps us to treat these dissipation-fluctuation terms in the present
noncommutative setting, and will thus become a building stone in our construction; it has first
been stated in [Weh62] but can also be found in the textbook [Gre08, theorem 4.4.2]. The
necessary notation and concepts in Lie groups and stochastic processes on Lie groups are
outlined in the appendix, and we suggest the reader to go through it before continuing here.
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Theorem 3. Let G be an N-dimensional Lie group, with 1-chart (U,x), Lie algebra basis

⩽ ⩽X( )k k N1 and coordinate mappings →x U:k extended to functions in ∞C G( )c and hence
to the one-point compactification Gc. Let μ ∈( )

n n be a family of probability measures on G
converging to δ1. Suppose there are numbers ∈a a,k kl such that = …a( )kl k l N, 1 is positive
semi-definite and, for all = …k l N, 1, , and → ∞n :

(i) ∫ μ = +x g g a n o n( )d ( ) (1 ),
G k n k

(ii) ∫ μ = +x g x g g a n o n( ) ( )d ( ) (1 ),
G k l n kl

(iii) μ =U o n( ˜ ) (1 )
n

c for every 1-neighbourhood ⊂U G˜ c.

Then the sequence μ ∈(( )* )
n

n
n converges *-weakly to a measure ν1 on Gc which belongs

to the convolution semigroup ν ∈ +( )t t whose corresponding operator semigroup ∈ +T( )t t on
C G( )c has infinitesimal generator

∑ ∑= ↾ = +=
= =

L
t
T a D a D D:

d

d
t t

k

N

k X

k l

N

kl X X0

1 , 1
k k l

with =L C Gdom( ) ( )c
2 .

We would like to apply this theorem to our setting, namely where =G AGL( ) and
g gl= A( ) regarded as (real!) linear Lie group and algebra, respectively, and subspaces of
B(A). The plan is as follows: in a first step we shall construct a continuous-time stochastic
process in G, and in a second step use this to obtain a description of the induced behaviour of
the density matrix process ρ ∈ +( )t t . In our setting this means we first have to define suitable
and physically realistic measures μ

n
to which to apply our limit procedure of theorem 3. The

drift part should correspond to the original drift part resulting from (5). Putting

 ∑= ◦ ◦
∈

( )
J

v v¯ :
1

Ad( ) Ad
j J

j j
*

and

  = ◦ − ◦ ( )( )v v: Ad( ) ¯ Ad ,j j j
*

let us define the measures

   ∑μ δ= ∈τ τ
∈

+ −τ( )( )J
n:

1
, , (6)

n
j J

nexp ¯
2n

j j1 2
2

which conceptually imitate a diffusion part for the variation around the mean ̄ and a drift
part for the mean movement. Apart from being mathematically clear and plausible from the
classical Donsker invariance principle, the meaningfulness of this limit shall moreover be
confirmed by numerical analysis carried out partially in the final section and mainly in
[AHB14].

Let us drop a quick side remark: as a rough first approximation for μ
n
we might also study

the purely drift-like

⎜ ⎟
⎛
⎝

⎞
⎠∑μ δ=

∈
◦ ◦τ ( )J

:
1

, (7)*n
j J

v v
(drift)

exp Ad( ) Adn j j

similar to (5) but with scaling variable τ n instead of τ as we now would like to keep τ fixed.
In analogy to the law of large numbers this would lead to even nicer expressions and CPT
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dynamics but less faithful modelling; sometimes we will consider it briefly for comparison
reasons, see remark 6. It can be shown that all other types of scaling (i.e., others than n1 or

n1 ) essential lead to either trivial or singular not well-defined expressions. We shall
therefore stick to μ

n
henceforth if not explicitly mentioned otherwise. Moreover, it is clear that

 ◦ ◦ =v vAd( ) ¯ Ad( ) ¯j j
* (as V is a group) and hence ∑ =∈ 0j J j . We have  =¯ 0 iff V

satisfies the decoupling condition for  ( , ).
Using now the defining property of the coordinate maps in the limit → ∞n , (i) is

obtained with a series expansion of   + −τ τ τ( )exp ( ¯ )
n j n j2

2
1 2 , namely:

g
g g

g

⎜ ⎟
⎛
⎝⎜

⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟

⎞
⎠⎟

⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟

  

   



∫

∑

∑

τ
μ

τ
τ τ τ

τ
τ τ τ τ

=

= + −

= + − + +

=

→∞

→∞ ∈

→∞ ∈

a
n

x g g

n

J
x

n n

n

J n
X

n
X

n
X O

n

X

lim ( )d ( )

lim exp ¯
2

lim , ¯
2

,
2

,
1

¯ , .

k
n G

k n

n
j J

k j j

n
j J

j k j k j k

k

1 2
2

1 2
2

2
2

3 2

c

Analogously, for (ii) we have

g g

g g

⎜ ⎟

⎜ ⎟

⎛
⎝⎜

⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟

⎞
⎠⎟

⎛
⎝⎜

⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟

⎞
⎠⎟

⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟

  

  

 

 

∫

∑

∑

∑

τ
μ

τ
τ τ τ

τ τ τ

τ
τ

τ

=

= + −

× + −

= +

=

→∞

→∞ ∈

→∞ ∈

∈

a
n

x g x g g

n

J
x

n n

x
n n

n

J n
X X O

n

J
X X

lim ( ) ( )d ( )

lim exp ¯
2

exp ¯
2

lim , ,
1

, , ,

kl
n G

k l n

n
j J

k j j

l j j

n
j J

j k j l

j J

j k j l

1 2
2

1 2
2

2

3 2

c

for every = …k l N, 1, , . Finally, it is easy to see that condition (iii) is satisfied as μ
n
has

discrete support in J| | points only which converge to 0 as → ∞n . Thus we get

 ∑ ∑ ∑τ= + = +
= = ∈

L a D a D D D
J

D (8)
k

N

k X

k l

N

kl X X

j J1 , 1

¯
2

k k l j

for the generator of the limit convolution semigroup ν ∈ +( )t t on Gc, which can be interpreted
as a combination of drift and diffusion on Gc. This has been the first big step in our
construction, namely the construction of the convolution semigroup of measures ν ∈ +( )t t on
G; it implicitly describes a stochastic process α ′ ∈ +( )t t on G (according to theorem 3) with
α ′ = idA0 .

Our second step shall be to calculate the time evolution of the density matrix and related
physically significant quantities out of the stochastic process α ′ ∈ +( )t t . This is slightly
involved, but can be done using some tools which we are now going to derive.
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A general fact is that, for every ∈f C G( )c , we have

 ∫α ν◦ ′ = =[ ]f f g g T f 1( )d ( ) ( ). (9)t
G

t t
c

We define the subsemigroup = ∈ ∥ ∥ ⩽ ⊂ ⊂G g G g G G: { : 1} c
[1] . Sinceα τ

t
( ) are contractions,

the measures μ
n
must all be supported in G[1]. This implies that the convolutions μ

n
m* of those

measures are supported in G[1] (see the appendix for a proof). For given >t 0, choosing a
sequence ∈m( )n n such that →m n tn , one can check that μ ν→

n
m

t
* n . Hence the limit

semigroup ν ∈ +( )t t is supported in G[1], meaning the Gaussian process α ′ ∈ +( )t t stays almost

surely in G[1]. Then it follows that Tt preserves the closed subspace ⊂C G C G( ) ( )b
c

c0,
[1] of

bounded continuous functions on the complement G c[1] of G[1] vanishing at the boundary
∈ ∥ ∥ =g G g{ : 1}:

∫ ν= =T f g f hg h( ) ( )d ( ) 0,t
G

t
[1]

for every ∈g G[1], as =f hg( ) 0 for ∈h g G, [1], i.e., Tt f has support in G c[1] and is bounded
by∥ ∥∞f . The corresponding quotient Banach space C G C G( ) ( )c b

c
0,

[1] can be identified with

C G( )b
[1] : namely, ∈f C G( )c induces a function ↾ ∈f C G( )G b

[1][1] and v.v., two extensions
f f,1 2 of a function ∈f C G( )b

[1] to Gc lead to − ∈f f C G( )b
c

1 2 0,
[1] , thus a unique element in

C G C G( ) ( )c b
c

0,
[1] . Write q for the corresponding quotient map and =f q f: ( )[1] , for every

∈f C G( )c , so that =f g f g( ) ( )[1] if ∈g G[1]. Then we get the quotient semigroup ∈ +T( )t t
[1]

as in the appendix, with infinitesimal generator = −K q Lq( (·))1 and =Kdom( )
≃q L C G(dom( )) ( )b

2 [1] , the twice differentiable functions on G[1] which and whose first
and second order derivatives are all bounded.

In order to achieve a description of the time evolution ρ ∈ +( )t t of the density matrix, the
idea is to study every entry of ρt in a certain orthonormal basis. To this end, let = …e( )k k d1 be
an arbitrary fixed orthonormal basis of A. We consider, for every k l, , the function

∈ ↦f g G e g e: , ( ) ,kl l k

which is νt-integrable (because bounded by 1 on the support) and which lies in ∞C G( ) but not
in Cc(G). Write ∞fkl

[ ] for an arbitrary but fixed function in ∞C G( )c (and hence ∞C G( )c )

coinciding with fkl on G[1], which can always be achieved, e.g. by multiplying with a
smoothed indicator function on G[1] (easy exercise); moreover, following the notation of the
preceding paragraph we write =∞ ∞f q f: ( )kl kl

[ ,1] [ ] . Then

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦  α α′ = ′ = = ∈ ∈∞ ∞ ∞
+( ) ( )f g f g T f g T f g t g G(·) (·) ( ) ( ), , .kl t kl t t kl t kl

[ ] [ ] [1] [ ,1] [1]

Noticing furthermore that ∈∞f C G( )kl b
[ ,1] 2 [1] , we have, for every ∈g G[1],

 

 

∑

∑

τ

τ

= =

= +

= ↾ + ↾

∞ ∞ ∞

∈

∞

=
∈

= =

( )
( )Kf g q Lf g Lf g

J
D D f g

t
e g e

J t
e g e

( ) ( ) ( )

1
( )

d

d
, e ( )

d

d
, e ( )

kl kl kl

j J
kl

l
t

k t

j J

l
t

k t s

[ ,1] [ ] [ ]

¯
2 [ ]

¯
0

2

2 0

j

j
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⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ∑τ= +

=

∈

e
J

ge

e L ge

, ¯ ( )

, ˆ ( ) (10)

l

j J
j k

l k

2

with

 ∑τ= + ∈
∈

L
J

B Aˆ : ¯ ( ).
j J

j
2

Analogously = 〈 〉∞K f g e L ge( ) , ˆ ( )n
kl l

n
k

[ ,1] , which is bounded by ∥ ∥L̂ n uniformly in ∈g G[1].
Therefore,

 ∑ ∑∈ ↦ = = ∈
=

∞
∞

=

∞
∞z

z

n
K f

z

n
e L e e e C K

! !
, ˆ ( · ) , e ( · ) ( )

n

n
n

kl
n

n

l
n

k l
zL

k

0

[ ,1]

0

ˆ

converges and is an analytic continuation of ↦ ∞t T ft kl
[1] [ ,1] , so ∈∞ ∞f C K( )kl

[ ,1] is an entire

analytic vector for Tt
[1] (see the appendix).

Recalling (9) and noticing that ∈ G11

2
[1] and that fkl is linear in its argument, this enables

us to compute the expectation value

⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

   α α α α′ = ′ = ′ = ′

= = =

∞

∞ ∞

( )e e f f f

T f T f e e1 1

, ( ) (·) 2
1

2
(·) 2

1

2
(·)

2
1

2
2

1

2
, e ( ) ,

l t k kl t kl t kl t

t kl t kl l
tL

k

[ ]

[ ] [1] [ ,1] ˆ

for every k l, , so  α ′ =e e[ ( )] e ( )t k
tL

k
ˆ . Since this holds for every basis vector ek, it holds for

all elements in A. Applying it to the A-valued ‘density matrix stochastic process’
ρ α ρ= ′ ∈ +( : ( ))t t t0 , we find

 ρ ρ=[ ] e ( ),t
tL̂

0

concluding our second step, too.
We summarize this all in

Theorem 4. The continuous-time limit α ′ ∈ +( )t t of the above random walk determined by a
quantum system  ( , ) and random dynamical decoupling with decoupling set = ∈V v( )j j J

and (6) leads to a contraction semigroup with generator (8). The density matrix ρ ∈ +( )t t is
then a stochastic process in A with expectation

 ρ ρ= ∀ ⩾t[ ] e ( ), 0,t
tL̂

0

where

 ∑τ= +
∈

L
J

ˆ ¯ .
j J

j
2

Remark 5. If the intrinsic time evolution is not constant (but still continuously
differentiable), then the continuous-time limit can be carried out in the same way, resulting
in a time-dependent generator
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   ∑τ= + ◦ − ◦ ∀ ∈
∈

+( )( )L t t
J

v t t v tˆ ( ) ¯ ( ) Ad( ) ( ) ¯ ( ) Ad , ,
j J

j j
2 *

and just a time-ordered integral [LB13]

 ∫ ∫ ∫∑∫ρ ρ= ′ = … ′ … ′ ′… ′
′ ′′

=

∞

( ) ( )L t L t t t[ ] e ( ) ˆ ˆ d d (11)t
L t t

n

t t t

n n
ˆ ( )d

0
0

0 0 0
1 1

t
n

0

2

instead of the semigroup. However, this analytic expression will be a good approximation of
the original random walk usually only if τ is sufficiently small such that

 τ
′

′ ≪ ∥ ′ ∥ ∀ ′ ∈
t

t t t t
d

d
( ) ( ) , [0, ].

For simplicity we shall only deal with the time-independent version here below.

Remark 6. Let us write L̂
(drift)

for the generator and ν ∈ +( )t t
(drift) for the convolution

semigroup of measures corresponding to the drift-like continuous-time limit of the random
walk with μn

(drift) as in (7) instead of (6), and accordingly (drift) and Var(drift) for expectation
and variances with respect to ν ∈ +( )t t

(drift) . Then going through the construction of theorem 4,
we see that the generator of ∈ +T( )t t

(drift) becomes =L D(drift) ¯ . Hence =L̂ ¯(drift) , which
vanishes iff the decoupling condition is fulfilled iff the original time evolution α was unitary,
according to theorem 2. In this case =T idt

(drift) , for all t ∈ +, hence  ρ ρ=[ ]t
(drift)

0.

Example 7. (1) We continue our example 1 from the preceding section, the N-qubit system,
with V the group of tensor products of N Pauli matrices. Suppose our time evolution is
unitary, so  = HiAd( ) with H the system Hamiltonian. Then we find = =L̂ ¯ 0(drift)

, so
 = v Hvi[ , ·]j j j and

⎡⎣ ⎡⎣ ⎤⎦⎤⎦∑τ= −
∈

L
J

v Hv v Hvˆ , , · .
j J

j j j j

Now a variety of special cases may be investigated. If e.g. H acts only on the first qubit,
i.e., it can be written as = ⊗ ⊗ −H H 1 n

1
( 1), then so does L̂. If moreover ρ0 splits as a product

state on the tensor factors, then so does  ρ[ ]t , for all >t 0 with only the first tensor factor
changing over time.

(2) Another example, which shall turn up in figure 1 and which is treated in detail in
[AHB14] is the amplitude-damping model. In this setting  is the one-qubit Hilbert space 2,

=A M ( )2 and

 γ σ σ σ σ σ σ σ σ σ σ= − − − − − − − ∈( )x x x x x x x x x A( ) 2 i i i i , ,3 3 1 1 2 2 1 2 2 1

with a certain coefficient γ ∈ +. The Pauli matrices constitute the decoupling set

σ= = = =V v v j1{ , : 1, 2, 3}j j0 . In order to compute the generator  = + ∑τ
=L̂ ¯

j j4 0
3 2,

one checks:

 γ σ σ σ σ= − − −( )x x x x¯ ( ) 2 1 1 2 2

and

    γ σ σ σ σ σ σ= − = − = = − + + − ∈x x x x x x x x x A( ) ( ) ( ) ( ) i ( ), .0 1 2 3 3 3 1 2 2 1
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A computer can now easily calculate  ρ ρ=[ ] e ( )t
tL̂

0 , for any given >t 0 and initial density
matrix ρ ∈ A0 . The result should be a good approximation for the actual random walk if

τ ≪ ∥ ∥1 .
Important related quantities like gate fidelity shall be computed in the following section.

Before concluding the present section let us derive here a tool that shall allow us to compute
higher moments (including variance) of random variables, beyond the present linear ones
(expectation value).

Proposition 8. In the setting of theorem 4, for all … … ∈x x y y A, , , ,n n1 1 , let

= ⋯ = ⋯ ∈… … ( )f g y g x y g x f f g g G( ) : , ( ) , ( ) ( ), ,x x y y n n x y x y, 1 1 , ,n n n n1 1 1 1

and define the linear operator L̂
n( )
on ⊗A n by

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟





 

∑

∑ ∑

∑

τ

⊗ … ⊗ = ⊗ … ⊗ ⊗ … ⊗

+ ⊗ … ⊗ ⊗ … ⊗

+ ⊗ … ⊗ ⊗ … ⊗ ⊗ … ⊗

=

∈ =

= >

( )L x x x x x

J
x x x

x x x x

ˆ : ¯ ( )

( )

2 ( ) ( )

n
n

l

n

l n

j J l

n

j l n

k l k

n

j k j l n

( )
1

1

1

1

1
2

1,

1

and linear extension. Then

⎡
⎣⎢

⎤
⎦⎥ α◦ ′ = ⊗ … ⊗ ⊗ … ⊗… … ( ) ( )f y y x x, e .x x y y t n

tL
n, 1

ˆ
1n n

n

1 1

( )

Proof. Following the notation and the truncation and quotient space procedure exactly as in
the case of fkl, we can define (not uniquely) a smooth function ∈… …

∞ ∞f C G( )x x y y,
[ ]

n n1 1
from

… …fx x y y,n n1 1
and hence a function ∈… …

∞f C G( )x x y y b,
[ ,1] 2 [1]

n n1 1
, which is analytic for K, i.e., in

∞C K( ); we can and do choose it such that = ⋯… …
∞ ∞ ∞f f fx x y y x y x y,

[ ,1]
,

[ ]
,

[ ]
n n n n1 1 1 1

. Exploiting then the
product rule for differentiation, we obtain

⎛
⎝
⎜⎜





 ∑

∑

∑ ∑

τ

τ

=

= ⋯

= ⋯ + ⋯

= ⋯ ⋯

+ ⋯ ⋯

… …
∞

… …
∞

∞ ∞

∞ ∞

∈

∞ ∞

=

∈ =

( )
( ) ( )

Kf Lf

L f f

D f f
J

D f f

y x y x y x

J
y x y x y x

1 1

1

1 1

( ) ( )

( )

( ) ( )

, , ¯ ( ) ,

, , ( ) ,

x x y y x x y y

x y x y

y x y x
j J

y x y x

l

n

l l n n

j J l

n

l j l n n

,
[ ,1]

,
[ ]

,
[ ]

,
[ ]

¯ ,
[ ]

,
[ ] 2

,
[ ]

,
[ ]

1
1 1

1
1 1

2

n n n n

n n

n n j n n

1 1 1 1

1 1

1 1 1 1
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⎞
⎠
⎟⎟ ∑+ ⋯ ⋯ ⋯

= ⊗ … ⊗ ⊗ … ⊗

= >

( ) ( )

y x y x y x y x

y y L x x

2 , , ( ) , ( ) ,

, ˆ .

k l k

n

k j k l j l n n

n
n

n

1,
1 1

1
( )

1

Analogously, for higher powers we have

= ⊗ … ⊗ ⊗ … ⊗… …
∞ ( )( ) ( )K f y y L x x1( ) , ˆk

x x y y n
n k

n, , , ,
[ ,1]

1
( )

1
n n1 1

whence tLexp ( ˆ )n( )
is well-defined on ⊗A n. Thus we find

⎡
⎣⎢

⎤
⎦⎥ α◦ ′ = = ⊗ … ⊗ ⊗ … ⊗… … … …

∞ ( ) ( )f T f y y x x1( ) , e .x x y y t t x x y y n
tL

n, , , ,
[1]

, , , ,
[ ,1]

1
ˆ

1n n n n

n

1 1 1 1

( )

□

Analogously, one can prove

Proposition 9. In the setting of theorem 4, for all ∈x x y y A, , ,i i , let

⎜ ⎟
⎛
⎝

⎞
⎠

 
   ∑τ

⊗ = ⊗ + ⊗

+ ⊗ + ⊗ + ⊗
∈

( )
L x y x y x y

J
x y x y x y

ˇ ( ) : ¯ ( ) ¯ ( )

( ) 2 ( ) ( ) ( )
j J

j j j j

(2) †

2 † † 2

and

 
 

 

 
 

 
 

 

∑τ

⊗ ⊗ ⊗ = ⊗ ⊗ ⊗ + ⊗ ⊗ ⊗

+ ⊗ ⊗ ⊗ + ⊗ ⊗ ⊗

+ ⊗ ⊗ ⊗ + ⊗ ⊗ ⊗

+ ⊗ ⊗ ⊗ + ⊗ ⊗ ⊗

+ ⊗ + ⊗

× ⊗ ⊗ + ⊗

+ ⊗ ⊗ ⊗

+ ⊗ ⊗ ⊗

∈
(

( ) ( )

( )

)

( )

( )L x y x y x y x y x y x y

x y x y x y x y

J
x y x y x y x y

x y x y x y x y

x y x y

x y x y

x y x y

x y x y

ˇ : ¯ ( ) ¯ ( )

¯ ( ) ¯ ( )

( ) ( )

( ) ( )

2 ( ) ( )

( ) ( )

2 ( ) ( )

2 ( ) ( ) .

j J
j j

j j

j j

j j

j j

j j

(4)
1 1 2 2 1 1 2 2 1 1 2 2

1 1
†

2 2 1 1 2
†

2

2
1 1 2 2 1

2
1 2 2

1 1
† 2

2 2 1 1 2
† 2

2

1 1 1 1

†
2 2 2

†
2

1 1 2 2

1 1
†

2
†

2

Then

= ⊗ ⊗∞( )L f y x L x y1( ) ( ), ˇ ( )x y,
[ ] 2 (2)

and

= ⊗ ⊗ ⊗ ⊗ ⊗ ⊗∞( )L f y x y x L x y x y1( ) ( ), ˇ ( ) .x y,
[ ] 4 (4)
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4. Distribution of the gate fidelity

The most interesting quantity in control theory of a quantum system is its fidelity; as we want
to decouple independently of the state, we consider the gate fidelity [LB13], which is given by
the random variable

∑ α= − − ′
=

( )F
d

e e: 1
1

, id ( ) ,t

k l

d

l t k

, 1

2

independent of the actual choice of the orthonormal basis = …e( )k k d1 of A. Most other versions
of fidelity can be treated using similar ideas.

We are interested in  F[ ]t and FVar[ ]t .

Proposition 10. In the setting of theorem 4, the expectation and variance of the gate fidelity
of the quantum system  ( , ) with decoupling set V are given by

⎜ ⎟
⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟ ∑ δ δ− = − + + ⊗ ⊗

=
[ ] ( )F

d
e e e e e e1

1
, e e ( ) , et

k l

d

k l k l l
tL tL

k l k
tL

k l

, 1

, ,
ˆ ˆ ˇ† (2)

and

⎜ ⎟

⎜ ⎟

⎜ ⎟

⎜ ⎟

⎛
⎝⎜

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎞
⎠⎟

⎛
⎝
⎜⎜

⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟

⎞
⎠⎟

∑

∑

δ δ δ δ

δ

δ δ

δ

δ δ

= − +

+ ⊗ ⊗

+ ⊗ + + + ⊗

− ⊗ ⊗ + ⊗ ⊗

+ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗

− − +

+ ⊗ ⊗

=

=

( )

[ ]

( )

( )

( )

( )

F
d

e e

e e e e

e e e e

e e e e e e

e e e e e e e e

d
e e

e e e e

Var
1

2 , e e ( )

2 , e

, e e e e

2 , e e

, e

1
2 , e e ( )

, e .

t

i j k l

d

k l i j i j k l l
tL tL

k

i j l k
tL

k l

i j k l i k
tL tL tL tL

i k

i j i l k
tL tL

i k l

j i l k
tL

i j k l

k l

d

k l k l l
tL tL

k

l k
tL

k l

2
, , , 1

, , , ,
ˆ ˆ

,
ˇ

, ,
ˇ ˇ ˇ ˇ

,
ˇ ˇ

ˇ

2
, 1

, ,
ˆ ˆ

ˇ
2

†

(2)

(1,1) (1,2) (1,2) † (1,1) †

(3,1) (3,2)

(4)

†

(2)

with

 
   

 
   

∑

∑

τ

τ

⊗ = ⊗ + ⊗

+ ⊗ + ⊗ + ⊗

⊗ = ⊗ + ⊗

+ ⊗ + ⊗ + ⊗

∈

∈
( )

L x y x y x y

J
x y x y x y

L x y x y x y

J
x y x y x y

ˇ ( ) ¯ ( ) ¯ ( )

( ) 2 ( ) ( ) ( )

ˇ ( ) ¯ ( ) ¯ ( )

( ) 2 ( ) ( ) ( )

j J
j j j j

j J
j j j j

(1,1)

2 2

(1,2) †

† 2 † 2
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⎟

⎜

⎟

⎞
⎠

⎛
⎝

⎞
⎠

  
  

   
 

  
  

   
 

∑

∑

τ

τ

⊗ ⊗ = ⊗ ⊗ + ⊗ ⊗ + ⊗ ⊗

+ ⊗ ⊗ + ⊗ ⊗

+ ⊗ ⊗ + ⊗ ⊗

+ ⊗ ⊗ + ⊗ ⊗

⊗ ⊗ = ⊗ ⊗ + ⊗ ⊗ + ⊗ ⊗

+ ⊗ ⊗ + ⊗ ⊗

+ ⊗ ⊗ + ⊗ ⊗

+ ⊗ ⊗ + ⊗ ⊗

∈

∈

(

( )

( )

( )

L x y z x y z x y z x y z

J
x y z x y z

x y z x y z

x y z x y z

L x y z x y z x y z x y z

J
x y z x y z

x y z x y z

x y z x y z

ˇ ( ) ¯ ( ) ¯ ( ) ¯ ( )

( ) 2 ( ) ( )

2 ( ) ( ) 2 ( ) ( )

( ) ( )

ˇ ( ) ¯ ( ) ¯ ( ) ¯ ( )

( ) 2 ( ) ( )

2 ( ) ( ) 2 ( ) ( )

( ) ( ) .

j J
j j j

j j j j

j j

j J
j j j

j j j j

j j

(3,1) †

2

† †

2 † 2

(3,2) † †

† 2 †

† † †

2 † 2

Proof. Since we know α ′t , we find:

R

R

⎜ ⎟

⎡⎣ ⎤⎦

⎡⎣ ⎤⎦

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠
⎟⎟

⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟

 



∑

∑

∑

∑ ∑

∑

∑ ∑

∑

∑

α

δ δ α α

δ δ

δ δ

δ δ

δ δ

− = − ′

= − ′ + ′

= − +

= − +

+

= − +

+ ⊗ ⊗

= − +

+ ⊗ ⊗

=

=

=

∞ ∞

= =

∞
∞ ∞

=

∞
∞

= =

∞

=

∞

=

( )

( )

( )

( )

( )

( )

[ ] ( )

( )

( )

F
d

e e

d
e e e e

d
T f T f

d

t

n
K f f

t

n
K f

d

t

n
e L e e L e

t

n
e e L e e

d
e e

e e e e

1 1

1

1

1
1

, id ( )

1
2 , ( ) , ( )

1
2 ( ) ( )

1

!
( )

!
( )

1

!
, ˆ ( ) , ˆ ( )

!
, ˇ

1
, e e ( )

, e . (12)

t

k l

d

l t k
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Here the third equality follows from (9) and the quotient procedure; the fifth from the
Leibniz rule and proposition 9, noticing that = 〈 〉f g ge e( ) ,kk k k and =L f 1( )n

kk

〈 〉 = 〈 〉L e e e L eˆ ( ), , ( ˆ ) ( )n
k k k

n
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†
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The variance is obtained analogously:
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The terms in the first sum are all 0, 1, 2, 3, 4-(anti-)linear expressions, respectively, of the
type investigated in propositions 8 and 9. Following the proof there, we have
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For the other 2-(anti-)linear expressions we obtain similar results but with operators
L L Lˇ , ˇ , ˇ(1,1) (1,1) † (1,2) †

instead. The remaining terms are treated analogously, by letting L act
on the corresponding m-(anti-)linear functions, e.g. the 3-(anti-)linear case is obtained
writing
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Putting together all of this and expressing the power series back again as exponential
functions, we finally obtain the statement in the proposition:
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For comparison reasons and some applications in [AHB14], we would like to state the
analogous formulae for the case of the drift-like continuous-time limit in the sense of remark
6. Since L(drift) can be regarded as a special case of L with vanishing  j, the expressions in
proposition 10 simplify significantly and we obtain:

Proposition 11. In the setting of proposition 10 but with L(drift) instead of L, we obtain

⎜ ⎟
⎛
⎝

⎞
⎠ ∑= − −

=
[ ]F

d
e e1

1
, id e ( )t

k l

d

l
tL

k
(drift)

, 1

ˆ
2

(drift)

and =FVar [ ] 0t
(drift) .

Some readers might find the vanishing variance intuitively expected, given that the
limiting procedure corresponds somehow to the classical law of large numbers where con-
vergence is almost surely to the (non-constant but time-dependent) expectation value.
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Proof. The expression for (drift) follows immediately from that of  in the preceding proof,
specialising to L̂

(drift)
: since
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For Var(drift), we analogously compute:
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Example 12. We return to our former illustrative example 1. Since  = HiAd( ), we find
that  = −† and hence

= =L L L Lˆ ˆ , ˇ ˆ ,
† (2) (2)

as follows immediately from the respective definition in propositions 8 and 9. For short times
t the results of proposition 10 become:
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which for special cases of H can be further simplified, but in general will be used in this form
for a computer and is of order τ ∥ ∥O t H( ). A similar procedure may be applied to variance.
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In contrast, in the case of the drift-like limit, we would simply get

 = = ∈ +[ ] [ ]F F t1, Var 0, ,t t
(drift) (drift)

which is obviously less realistic than the diffusion-like limit, but on the other hand confirms
that for unitary time-evolution α ∈ +( )t t dynamical decoupling works (i.e., decouples)
optimally, in contrast to other types of α, see also theorem 2!

Remark 13 (Errors). Theorem 4 gives us the expectation of our quantities in the continuum
limit, but we must ask two questions.

(1) How big is the difference between continuum limit and original discrete random paths?
(2) What is the distribution of the actual (continuum limit) paths around the expectation

value?

These two errors add up to give the total maximal error, which we have to estimate
now. Concerning (1), one has to work with a kind of Berry–Esseen theorem [Shi96] on the
approximation of random walks by Brownian motion. This is quite complicated, but we
satisfy ourselves here with the fact that this error tends to 0 as τ → 0. Concerning (2), the
deviation around the expectation value is expressed in the quantiles, which can be
efficiently estimated using Chebychevʼs inequality [Shi96] together with the variance
expression.

5. Estimates and application: intrinsic/extrinsic decoherence

Suppose a given quantum system  ( , ) undergoes decoherence caused by interaction with
an external quantum heat bath described by another quantum system  H( , iad( ))1 1 . Then
according to standard axioms of quantum mechanics, time evolution of the total (closed)
system is unitary, thus described by a one-parameter automorphism family on the operators of
the total Hilbert space   ′ = ⊗ 1, namely

 ∫∈ ↦ ′ ′
+

′t e ,H t ti ad( ( ))d
t

0

and ′H is the (possibly time-dependent) Hamiltonian of the total system on ′ and the time-
ordered integral is defined in analogy to (11). The heat bath may be infinite-dimensional
separable, but the involved Hamiltonian ′H is henceforth supposed to be uniformly bounded
on compact intervals. It is unclear whether dynamical decoupling works without this
assumption, and maybe alternative requirements would have to be made in case of
unboundedness, see [AHB14, appendix] for further discussion.

The actual dynamics perceived on the subsystem  is given by

 ∫α ρ∈ ↦ = ◦ ⊗′ ′ θ
+

′( )t : e · ,t
H t ti ad( ( ))d

t

0

where   ′ →B B: ( ) ( ) is the partial trace (conditional expectation) onto the subsystem and
ρθ the initial state of the heat bath [LB13, BP02]. The resulting perceived dynamics α ∈ +( )t t

then becomes a family of CPT maps. Under special assumptions on ′H , it actually produces
the CPT semigroup with infinitesimal generator , the Lindblad operator, but usually αt is no
longer an automorphism. We call this phenomenon, where a CPT semigroup time evolution
arises from interaction with an external quantum heat bath and unitary time evolution on the
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total system, extrinsic decoherence because the non-unitarity of time evolution of the original
system is caused by interaction with the external heat bath.

In contrast to this, intrinsic decoherence we call the situation where time evolution of a
closed system  ( , ) is no longer unitary and the non-unitarity is intrinsic to the system,
i.e., does not arise from (unitary) interaction with a heat bath. It is a fundamental question
whether this actually occurs in nature or whether the axiom of unitarity is always fulfilled —

on a sufficiently large total system. Mathematically the two cases are described in the same
way (by CPT semigroups with unitary dilations), and also physically with usual observations
they seem to be indistinguishable.

However, applying dynamical decoupling in the case of the above type of extrinsic
decoherence, the time evolution of the total system is unitary, and so the perceived evolution
on the subsystem is given by the discrete stochastic process

 ∏ ∫α ρ= ◦ ⊗ ◦ ◦ ⊗ ⊗′ ′
τ
τ θ

=

′
τ

τ

−( ) ( )( )v v1 1Ad e Ad · .n
i

n

j
H t t

j
( )

1

i ad( ( ))d *
i

i

i

i
( 1)

Now we notice that, if (1) is satisfied for all ∈x B ( ), then it is also satisfied for all
∈ ′x B ( ) modulo ⊗ B1 ( )1 . In fact, ∈ ′x B ( ) can be written as a finite sum

∑ ⊗ + ⊗y z z1 ˜k k k , with certain traceless ∈y B ( )k and with ∈z z B, ˜ ( )k 1 , and then

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑∑ ∑ ∑⊗ ⊗ ⊗ + ⊗ = ⊗

+ ⊗ = ⊗
∈ ∈

( ) ( )( )
J

v y z v z
J

v y v z

z z

1 1 1

1 1

1 * ˜
1

˜ ˜.
j J k

j k k j

k j J

j k j k
*

Consider now for x the (possibly time-dependent) Hamiltonian ′ =H
∑ ⊗ + ⊗H H H1k k k0, 1, 1. The heat bath is by definition in a thermal equilibrium state ρθ

independent of time, i.e., ρ =θHad( )( ) 01 . Let ′ = ′H: iad( ) be the (purely unitary) Lind-
bladian of the total system and thus ′ = ⊗ H1¯ iad( )1 , so  ρ⊗ =θx¯ ( ) 0, for all ∈x A.
Then we obtain

  ∑τ′ = ′ + ⊗ ◦ ′ − ′ ◦ ⊗
∈

( )( ) ( )L
J

v v1 1ˆ ¯ Ad ¯ Ad ,
j J

j j
2 *

and hence

  ∫ρ ρ ρ= ◦ ⊗′ θ′ ′( )[ ] e .t
L t tˆ ( )d

0

t

0

The main dynamics comes from ′¯ , which leaves ρ ρ⊗ θ invariant, but ′j changes it, so that
higher-order terms disturb the invariance of the state.

We can conclude: if the system dynamics is determined by extrinsic decoherence then
the decoupling condition is satisfied in first-order approximation and the total time evo-
lution under decoupling in first-order approximation in τ and t is described as in the unitary
case; ρ⊗ θ1 will in general not be invariant under ′j, but those effects are of higher order
in τ .

We would like to have an estimate of  F[ ]t that depends only on t and the coupling
strength, distinguishing between the two extremal cases of purely extrinsic decoherence
(i.e., purely unitary on the dilation: Ψ ′ = 0 and ′ = − ′a a * in the notation of theorem 2) and
purely intrinsic decoherence (Ψ ′=0 and =a a*).
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Theorem 14. Given a quantum system  ( , ) with decoupling set V and the previous
notation, write   Γ = ∥ ∥ ∥ ′∥ ∥ ∥: max { , , ¯ }. Then in the drift-like limit of remark 6, for
purely extrinsic decoherence we have

⎡⎣ ⎤⎦ =F 1.t
(drift) (extr)

An approximate upper bound for the expectation of the fidelity in the case of purely intrinsic
decoherence, in the limit of τ Γ≪ ≪t 1 , is asymptotically given by

⎡⎣ ⎤⎦ ≲ − ∥ ∥F
d

t L1
1 ˆ .t

(drift) (intr) 2 (drift) 2

If in addition  = † (so-called purely intrinsic dephasing) this can be made more precise:

⎡⎣ ⎤⎦  ⩽ − − − ∥ ∥( )F
d

1
1

1 e .t
t J(drift) (intr) 2

In the (physically more realistic) diffusion-like limit of theorem 4, a lower bound for the
fidelity of purely extrinsic decoherence is asymptotically given by

⎡⎣ ⎤⎦  ∫τ≳ − ∥ ′ ′ ∥ ′F
d

J
t t1

2
( ) d ,t

t
(extr)

0
0

2

in terms of the (possibly time-dependent) Lindbladian ′ on the dilated system, while an
upper bound in the case of purely intrinsic decoherence is asymptotically given by

⎡⎣ ⎤⎦    τ≲ − ∥ − ∥ − ∥ ∥F
d J

t
d

t1
2 ¯ 1 ¯ .t

(intr) 2 2 2

Figure 1. Numerical evaluation of average Ft
ext (dotted blue line) coinciding with the

lower bound for  ≡F[ ] 1t
(drift) ext , average Ft

int (solid orange line), and the upper

bound for  F[ ]t
(drift) int from theorem 14 (dashed red line) as a function of t, for

γτ = −10 3 and the so-called amplitude-damping channel model with coupling strength γ
(see example 7(2) and [AHB14] for further explanation). The average was taken over
25 paths, one of them illustrated for Ft

ext in the inset plot.
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Proof. We appeal to proposition 10 for notation and the exact formulae underlying our
estimates here.

For the case of pure dephasing (i.e.,  =† ), we first notice that L̂
(drift)

, being a sum of
double commutators, is a selfadjoint operator on the Hilbert space A. Moreover, it must be

negative since etL̂
(drift)

is a contraction. We may suppose that the orthonormal basis = …e( )k k d1

consists of the eigenvectors of L̂
(drift)

in decreasing order of eigenvalues. The smallest
eigenvalue of L̂

(drift)
is less than −∥ ∥ J| |: in fact, the smallest eigenvalue of  is −∥ ∥, and

⩽L̂
J

(drift) 1

| |
. Then we find
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e e
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k l
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l
tL

k

tL t J

(drift)

, 1

ˆ
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1
ˆ

1

2
2

(drift)

(drift)

For general , we can say at least

⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠ ∑− = − −
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k

tL
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1

ˆ ˆ

ˆ 2 2 (drift) 2

(drift) (drift)

(drift)

Let us come to the actual diffusion-like limit. Using the power series of the exponential
function and neglecting higher order terms, we obtain
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† (2)

where ∈j J is arbitrary, ϕ denotes the flip unitary on ⊗A A, and ⊗trA A the standard (non-
normalised) trace on ⊗B A A( ).

For the case of extrinsic decoherence, we have to work in the dilation algebra
⊗A B ( )1 . Let ′ be the corresponding (possibly time-dependent) Lindbladian on that

algebra, corresponding to unitary time evolution. Then after decoupling we obtain
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    ∑τ′ = ′ + ′ ′ = ⊗ ◦ ′ − ′ ◦ ⊗
∈

( )( ) ( ) ( )L
J

v v1 1ˆ ¯ , : Ad ¯ Ad ,
j J

j j j j
2

*

with the commutator ′¯ vanishing on ρ⊗ θA . As in the preceding case, we find
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1 1

because  ρ⊗ =θ
⊗ d1tr ( )A B( )1 and  ρ′ ⊗ =θx¯ ( ) 0 for all ∈x A. □

Notice that these bounds are probably not sharp at all, but they should rather serve as an
inspiration and starting point for finding more specific and sharper bounds. The interesting
fact, in any case, is that they separate the fidelity of intrinsic and extrinsic decoherence
dynamics, respectively, in the region τ Γ≪ ≪t 1 , see figure 1.

Moreover, under further assumptions on  like e.g.  =† we can try to use a similar
procedure in order to achieve better bounds involving directly ∥ ∥.

Conclusion 15 (Application to experiment—sketch). If τ is sufficiently small, then for
suitable t the last two bounds in theorem 14 provide a separation into two disjoint ranges of
the fidelity in the two intrinsic interaction cases, which allows the experimenter to identify the
type of decoherence. He would have to proceed as follows.

(1) Given the intrinsic or extrinsic coupling strength   Γ = ∥ ∥ ∥ ′∥ ∥ ∥: max { , , ¯ }, choose
Γ≪t 1 .

(2) Choose and vary τ ≪ t in that range.
(3) Compute the fidelity of many decoupling pulse sample paths for these given values of Γ

and varying τ t, , then average and extrapolate to get his averaged fidelity F̄t as a function
of τ and t.

(4) Compare it with the bounds for these given values of Γ τ, : then in the above limit, he will
find either
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∫τ

τ

≳ − ∥ ′ ′ ∥ ′

≲ − ∥ − ∥ − ∥ ∥ ∈ +

F d t t

F
d J

t
d

t t

¯ 1 2 ( ) d or

¯ 1
2 ¯ 1 ¯ , .

t

t

t

0
0

2

2 2 2

the first case corresponding to extrinsic, the second to intrinsic dephasing.

If he cannot carry out many runs, then it would also be necessary to take into account the
quantiles from above in order to understand how well his experimental mean value F̄t

describes the analytical  F[ ]t . This can be done by considering higher moments  F[ ]t
n and

FVar[ ]t as in proposition 10. For an arbitrarily large number of runs, however, this is not
necessary. Figure 1 illustrates the bounds with an average of concrete sample paths.

Although the precise relation between    ∥ ∥ ∥ ∥ ∥ ∥ ∥ ′∥, , ¯ ,0 etc is not clear and it is
therefore difficult to compare the above bounds quantitatively, these values depend somehow
monotonically on one another, i.e., increase or decrease synchronically. In any case, when
τ → 0 then the higher-order terms can be neglected and the difference between discrete
random walk and continuum-limit tends to 0. At this point boundedness of ′H is needed;
otherwise alternative assumptions would have to be made that lead to future work, see also
[AHB14]. Moreover, it follows from the above bounds then that →F̄ 1t in the extrinsic case,
whereas F̄t converges to some function ≲ − ∥ ∥f t t d( ) 1 ¯2 2 in the intrinsic case.

If extrinsic and intrinsic decoherence appear together: since the respective coupling
strengths will not be known, it is impossible to compute the above bounds; yet, for fixed t,
letting τ → 0, the experimenter can check whether or not F̄t goes to 1, meaning pure extrinsic
or intrinsic/mixed decoherence, respectively. □
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Appendix. Lie groups and convolution semigroups

The aim of this appendix is to sketch the necessary definitions and facts about Lie groups and
convolution semigroups necessary to understand sections 3 and 4. For a comprehensive study
and the notation used in section 3 we refer to any suitable textbook: e.g. [FH91] for (linear)
Lie groups and algebras [Dav80, EN00], for one-parameter semigroups [Gre08, Hey79,
chapter 4], for probability and convolution measures on Lie groups.

An N-dimensional (real) Lie group G is an N-dimensional smooth manifold which has a
group structure with neutral element 1 such that multiplication and inversion are smooth
maps. In this paper G is always a linear algebraic Lie group, i.e., a group of linear mappings
on a finite-dimensional real vector space. The tangent space T G1 of G in 1 forms a Lie algebra
and is called the Lie algebra of G, denoted g with scalar product (nondegenerate bilinear
form) g〈 〉· , · .

There is a canonical diffeomorphism exp from a 0-neighbourhood in g to some 1-
neighbourhood ⊂U G mapping 0 to 1 and called the exponential map, which in the present
case can be identified with the standard exponential function of matrices. Given an ortho-
normal basis = …X( )k k N1 of g, the corresponding (coordinate) 1-chart is the smooth function
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→x U: N such that

∑= ∈
=( )g x g X g Uexp ( ) , ,

k

N
k k1

and →x U:k is called the k-th coordinate map. One may extend the functions ∈ ∞x C U( )k
to functions in ∞C G( )c denoted again by xk; write Gc for the one-point compactification of G if
G is noncompact, otherwise we take =G Gc , and every function ∈f C G( )c is extended by

∞ =f ( ): 0 to Gc; this is needed in section 3 for technical reasons.
One notes that

g

↾ ==t
x Y X

d

d
(e ) , ,k

tY
t k0

for every = …k N1, , and g∈Y . The directional derivative DY for g∈Y is defined by

= ↾ ∈ ∈=D f g
t
f g f C G g G( ):

d

d
(e ) , ( ), ,Y

tY
t c0

1

and one has λ= +λ+D D DX Y X Y , for g∈X Y, and λ ∈ .
The convolution of two probability measures μ μ,1 2 on G (with usual Borel σ-algebra

B G( )) is defined by

Bμ μ μ μ= × ∈ × ∈ ∈( )A g h G G gh A A G* ( ) : {( , ) : }, ( ).1 2 1 2

Suppose that μ1 and μ2 are supported in a subsemigroup ⊂H G. Then for every B∈A G( ),
we have

∩
∩

μ μ μ μ

μ μ

μ μ
μ μ

= × ∈ × ∈

= × ∈ × ∈

= × ∈ × ∈
=

( )
( )
( )

A g h G G gh A

g h H H gh A

g h H H gh A H

A H

* ( ) {( , ) : }

{( , ) : }

{( , ) : }

* ( ),

1 2 1 2

1 2

1 2

1 2

so μ μ*1 2 is supported in H, too.
Measures and convolution on G can be trivially extended to Gc by setting

∞ = ∞ = ∞g g: : , for all ∈g Gc. The set of probability measures on Gc, equipped with the
*-weak topology and convolution as multiplication, constitutes a topological monoid, where
the Dirac measure δ1 serves as the neutral element. Here the *-weak topology on Gc is defined
as follows: a net of measures μ ∈( )i i I converges to a limit measure μ if for all ∈f C G( )c (the

continuous -valued functions on Gc) the condition ∫ ∫μ μ→f fd d
G i Gc c

holds. A continuous

convolution semigroup of probability measures on G is a set μ ∈ +( )t t of probability measures
on G (trivially extended to Gc) such that μ μ μ= +*s t s t for every ∈ +s t, and

μ μ δ= =→limt t 10 0 *-weakly.
Let μ ∈ +( )t t be a continuous convolution semigroup of probability measures on G. For
∈ +t define the operator

∫ μ→ = ∈( ) ( ) ( )T C G C G T f g f gh h g G: , ( ) : ( )d ( ), .t c c t
G

t c
c

Then ∈ +T( )t t forms a strongly continuous one-parameter contraction semigroup on C G( )c .
To ∈ +T( )t t there corresponds an infinitesimal generator
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=
−

→
L

T

t
: lim

id
,

t

t

0

(in the strong operator topology) on a suitable Tt-invariant dense domain ⊂L C Gdom( ) ( )c .
Given a strongly continuous one-parameter semigroup ∈ +T( )t t with generator

L L( , dom( )) on a Banach space E, we write = ⋂∞
∈C L L( ) : dom( )n

n . A vector ∈ ∞f C L( )
is called entire analytic for L if

 ∑∈ ↦ ∈
=

∞
∞z

z

n
L f C L

!
( ),

n

n
n

0

is analytic, in which case it extends ∈ ↦ ∈+t T f Et to an entire analytic function. Nonzero
analytic vectors need not exist for one-parameter semigroups, whereas for one-parameter
groups they do.

If ∈ +T( )t t is a strongly continuous one-parameter semigroup on a Banach space E with
generator L L( , dom( )) which leaves invariant a closed subspace ⊂E E0 , then it induces a
strongly continuous one-parameter semigroup ∈ +S( )t t on the quotient Banach space E E0

with infinitesimal generator K K( , dom( )) as follows: denote the quotient map by
→q E E E: 0, then

= ∈( )S q f q T f f E( ) : , ,t t

and =Kq f q Lf( ) ( ) with dense = ⊂K q L E Edom( ) (dom( )) 0.
Given a continuous convolution semigroup of probability measures μ ∈ +( )t t on G, there

exists a probability space and a G-valued Markov process on this space such that its transition
probabilities from ∈ × +g G( , 0) c to B ∈ × +A t G( , ) ( )c are given by μ δ A( * )( )t g . The
most interesting processes on G are the ones we encounter in section 3, the so-called
Gaussian processes, whose contraction semigroups have generators of the form

∑ ∑= +
= =

L a D a D D ,
k

N

k X

k l

N

kl X X

1 , 1
k k l

with ∈ak and = …a( )kl k l N, 1 forms a positive-definite matrix, and with =L C Gdom( ) ( )c
2 .
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