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Universal quantum computation requires the implementation of arbitrary control operations on the quantum
register. In most cases, this is achieved by external control fields acting selectively on each qubit to drive
single-qubit operations. In combination with a drift Hamiltonian containing interactions between the qubits, this
allows the implementation of arbitrary gate operations. Here, we demonstrate an alternative scheme that does
not require local control for all qubits: we implement one- and two-qubit gate operations on a set of target qubits
indirectly, through a combination of gates on directly controlled actuator qubits with a drift Hamiltonian that
couples actuator and target qubits. Experiments are performed on nuclear spins, using radio-frequency pulses as
gate operations and magnetic-dipole couplings for the drift Hamiltonian.

DOI: 10.1103/PhysRevA.91.012330 PACS number(s): 03.67.Lx, 03.67.Pp, 76.60.−k

I. INTRODUCTION

Techniques for controlling quantum systems [1–3] have
been developed in various fields including quantum comput-
ing, where quantum mechanical two-level systems (qubits) are
used to store information and external control fields process
the information by driving quantum gate operations [4–6]. A
general purpose quantum computer requires that the control
operations can implement all possible logical operations.
This can be achieved, e.g., by generating arbitrary rotations
of all qubits and a static system Hamiltonian that includes
interactions between pairs of qubits [5,6].

In some cases, this approach is difficult or impossible to
implement. Examples include systems, where some qubits
couple weakly or not at all to external fields, e.g., when qubits
are stored in noiseless or decoherence-free subspaces [7] or in
the case of hybrid quantum registers consisting of electronic
and nuclear spins [8–10]. While qubits in noiseless subsystems
do not interact with control fields by design, the interaction
of nuclear spins with control fields is some four orders
of magnitude weaker than that of electronic spins. Control
operations generated by direct irradiation of nuclear spins
are therefore slow, and it might be desired to avoid them.
A number of recent papers [11–16] proposed schemes for
implementing quantum control by directly manipulating only
a small subset of qubits. In the following, we distinguish
between the directly controlled qubits, the actuator qubits,
and the indirectly controlled qubits, to which we refer as
target qubits. Two similar examples were recently reported
for the case of spin systems consisting of an electron spin as
actuator and nuclear spins as target qubits, where the hyperfine
interaction was exploited for controlling one or two nuclear
spin qubits [15,16].

Obviously the type of the exploited couplings between
qubits and the size of the whole system are crucial factors for
the degree of controllability. This point is the main motivation
for the current work. Here, we use heteronuclear spin systems,
where one spin species is the actuator subsystem, while the
other species represents the target subsystem, to investigate
the degree of controllability of the qubits with magnetic-dipole

couplings in three- and five-qubit systems. Compared to
previous work, we extend the size of the total quantum register
to five qubits. We first determine the dynamical Lie algebra to
determine to what degree our system is controllable [17]. The
algebra contains several interesting quantum gates, including
an entangling gate used in previous work [16].

II. LIE ALGEBRA AND CONTROLLABILITY

We use two different systems to demonstrate the indirect
control approach. All the qubits are nuclear spins, and the
interactions between them are magnetic-dipole couplings. The
smaller one consists of one actuator qubit and two target qubits,
and the larger of three actuator qubits and two target qubits.

A. AT2 system

In the smaller system, we denote the actuator qubit as
qubit 1, and two target qubits as qubits 2 and 3. The static
Hamiltonian for the whole system is

H = HA + HT + HAT , (1)

where HA refers to the actuator system, HT to the target
system, and HAT describes the interaction between them. Their
structure is

HA = −πν1Z1, (2)

HT = −π (ν2Z2 + ν3Z3)

+πD23

2
(2Z2Z3 − X2X3 − Y2Y3), (3)

HAT = π (D12Z1Z2 + D13Z1Z3). (4)

Here Xi,Yi,Zi denote Pauli matrices acting on qubit i,νi denote
the chemical shifts, and Dij the dipolar coupling constants.
The control fields are applied only to qubit 1, so the control
Hamiltonian can be written as

HC(t) = Bx(t)X1 + By(t)Y1. (5)
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The Lie algebra of the possible control operations on this
system is spanned by the operators that can be generated by
repeatedly evaluating the commutators between the control
Hamiltonian HC and the drift Hamiltonian H [17]. The
resulting Lie algebra includes 22 terms written as

{X1,Y1,Z1}
⊗{E2E3,Z2,Z3,Y2X3 − X2Y3,X2X3 + Y2Y3,Z2Z3},{E1}
⊗{Y2X3 − X2Y3,X2X3 + Y2Y3,Z2 − Z3,−ν2Z2 − ν3Z3

+D23Z2Z3}, (6)

where Ek is the unit operator of spin k. Clearly this allows
full quantum control of the actuator system, but it does not
allow full control of the whole system, which would require
43 = 64 operators. Nevertheless, it allows the implementation
of many useful control operations in the target system. The in-
teresting terms include the Dzyaloshinskii-Moriya interaction
Y2X3 − X2Y3, which is an exchange interaction relevant for
some multiferroic materials [18,19], the three-body interaction
Z1Z2Z3 [20], which is a useful resource for implement-
ing time-optimal operations [21,22], and the XY -interaction
X2X3 + Y2Y3, which allows, e.g., the implementation of a
quantum state transfer along a spin chain [23–25].

The terms in the Lie algebra (6) can be simplified by
choosing specific evolution times. For example, from the last
element

−(ν2Z2 + ν3Z3) + D23Z2Z3, (7)

we can generate

U (t) = e−it[−(ν2Z2+ν3Z3)+D23Z2Z3]. (8)

For times

tm = mπ

D23
, (9)

where m is an arbitrary integer, we obtain

U (tm) = eitm(ν2Z2+ν3Z3). (10)

Since Z2 − Z3 is in the Lie algebra, we can also implement

U (t) = e−it(ν2Z2−ν3Z3). (11)

By combining Eqs. (10) and (11), we can obtain single-qubit
z rotations as

Uz,k(θ ) = ei θ
2 Zk (12)

for certain angles, where k = 2,3.

B. A3T2 system

In the larger system, we denote the actuator qubits as qubits
1–3 and two target qubits as qubits 4 and 5. Compared with the
three-qubit system, this system contains two additional qubits
in the actuator system while the size of the target system is
the same. This larger system was chosen as a first step on
the way to implementing such control schemes in scalable
systems, which require larger numbers of controlled qubits. As
an example, the implementation of quantum error correction
requires at least five physical qubits for a perfect quantum error
correction code [26–28].

As in the three-qubit case, the actuator system of the five-
qubit system can be fully controlled; i.e., we can implement
the set of operations spanned by La = {E1,X1,Y1,Z1} ⊗
{E2,X2,Y2,Z2} ⊗ {E3,X3,Y3,Z3} − {E1E2E3}. The full set of
operations that can be applied to the five-qubit system includes
382 terms represented as

La ⊗ {E4E5,Z4,Z5,Y4X5 − X4Y5,X4X5 + Y4Y5,Z4Z5},
{E1E2E3} ⊗ {Y4X5 − X4Y5,X4X5 + Y4Y5,Z4 − Z5,

− ν4Z4 − ν5Z5 + D45Z4Z5}. (13)

The result is similar to that of the three-qubit system:
full quantum control of the actuator system is possible, in
combination with similar operators for the target system.

III. TEST SYSTEMS

For the experimental implementation, we chose the two
molecules shown in Fig. 1. They were dissolved in the
nematic liquid crystal solvents 1-(trans-4-hexylcyclohexyl)-
4-isothiocyanatobenzene, and ZLI- 1132 for molecules (a)
and (c), respectively. The measured parameters of the spins

FIG. 1. (Color online) Structures and Hamiltonian constants of
the molecules used as quantum registers. The actuator and target
qubits are marked by solid and dashed rectangles, respectively.
(a) 4-fluoro-7-nitro-2,1,3-benzoxadiazole. The fluorine spin F is used
as the actuator qubit 1, and the proton spins H1 and H2 are the
target qubits 2 and 3. (b) Hamiltonian parameters of molecule (a) in
frequency units (Hz): the diagonal elements are the chemical shifts in
a 11.7 T field, the off-diagonal terms represent the dipolar coupling
constants. The liquid crystal solvent is 1-(trans-4-hexylcyclohexyl)-
4-isothiocyanatobenzene. (c) 1,2-difluoro-4-iodobenzene. The proton
spins H1–H3 are the actuator qubits 1–3, and the fluorine spins F1
and F2 are the target qubits 4 and 5. (d) The Hamiltonian parameters
of the molecule (c). The liquid crystal solvent is ZLI- 1132.

012330-2



EXPERIMENTAL IMPLEMENTATION OF QUANTUM GATES . . . PHYSICAL REVIEW A 91, 012330 (2015)

−2 −1 0 1 2

0

5

10
A

m
pl

itu
de

 (
ar

b.
 u

ni
ts

)
(a)

−5 0 5

0

2

4

6

Frequency  (kHz)

A
m

pl
itu

de
 (

ar
b.

 u
ni

ts
)

(b)

FIG. 2. (Color online) (a) 19F and (b) 1H -NMR spectra of
4-fluoro-7-nitro-2,1,3-benzoxadiazole obtained by hard π/2 pulses
from the thermal state, respectively, where the black curves indicate
the spectra obtained in experiment and the red by simulation. We
shifted the spectra by simulation for easier comparison with the
spectra in experiment.

are listed in tables shown in Fig. 1. We illustrate the spectra
obtained from the thermal states in Figs. 2 and 3. In molecule
(a), we assign the spins F, H1 and H2 as qubits 1–3. The
Hamiltonian of this system corresponds to Eq. (1) if we
neglect scalar couplings, which are significantly smaller than
the dipolar couplings.

As a test of controllability in the three-qubit system,
we performed a numerical search of shaped pulse for im-
plementing specific gates. The gate operations chosen for
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FIG. 3. (Color online) (a) 19F and (b) 1H -NMR spectra of 1,2-
difluoro-4-iodobenzen obtained by hard π/2 pulses from the thermal
state respectively, where the black curves indicate the spectra obtained
in experiment and the red by simulation. (b) Peaks indicated with an
asterisk come from the acetone in the coaxis capillary that is used for
locking the field.
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FIG. 4. (Color online) Fidelities reached in simulated optimized
gate operations as a function of the pulse duration for Uz,2(θ ) =
eiθZ2/2, with θ = −π/6 and −π/2. Fidelities above 0.99 are reached
for specific pulse durations. The panels in the bottom part of the
figure show the corresponding fidelities for the case of full control of
all qubits.

this test were single-qubit rotations Uz,2(θ ), as defined by
Eq. (12) of qubit 2 around the z axis, with rotation angles
θ1 =−π/6 and θ2 =−π/2. We optimized the time-dependent
amplitude and phase of the pulses, using a gradient ascent
pulse engineering (GRAPE) algorithm [29,30], and obtained
high fidelities (>0.99) with a control field amplitude of up
to 12.5 kHz. Figures 4(a) and 4(b) show the fidelities that
were obtained. In both cases, fidelities >0.99 were achieved
for certain durations. For comparison, we also present the
corresponding results with direct control, where the control
pulses are applied to all qubits. These results are shown as
Figs. 4(c) and 4(d).

One remarkable result of Figs. 4(a) and 4(b) is that high
fidelity cannot be reached for all pulse durations, but only for
some specific durations. This is an expected consequence of
the discussion around Eq. (9) and holds not only for the specific
rotation angles used in Fig. 4. Figure 5 illustrates this point by
plotting the pulse durations required to obtain fidelities >0.99
for various rotation angles θ .

IV. EXPERIMENTAL RESULTS

A. Three-qubit system

As specific examples, we implemented the following
operations in the three-qubit system:

Uz,k(−π/2) = e−i π
4 Zk , (14)

Uz(−π ) = e−i π
2 (Z2+Z3), (15)

U23(θ ) = eiθ(X2X3+Y2Y3). (16)
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FIG. 5. Pulse duration changing with the rotation angle θ for
implementing Uz,2(θ ) = eiθZ2/2 with the calculated fidelity higher
than 0.99.

All three gates are important operations for quantum informa-
tion processing. The gate in Eq. (16) can be used as a SWAP
gate (up to a known phase factor) by choosing θ = π/4, or as
an entangling gate, with θ = π/8.

The strong coupling between the homonuclear spins makes
it difficult to excite only a single spin. Here we used
the GRAPE algorithm to generate the control pulses. The
calculated fidelities of the operations are >0.99. Table I
summarizes the pulse durations and the simulated fidelities
for these pulses.

The single-qubit gates should generate the transforma-
tions Uz,a(−π/2) : Xa → Ya → −Xa , where U : ρA → ρB

denotes UρAU † = ρB . The two-qubit gate Uab(π/4) is equiv-
alent to the SWAP gate, up to a phase gate, and can be
represented as

Uab(π/4) =

⎛
⎜⎝

1 0 0 0
0 0 i 0
0 i 0 0
0 0 0 1

⎞
⎟⎠ . (17)

TABLE I. Parameters of the pulses for implementing the quantum
gates. The maximum control field amplitudes are 12.5 and 20 kHz in
the three- and five-qubit systems, respectively.

Pulse Calculated
Gate Function duration (ms) fidelity

Uz(−π ) z rotation for qubits 2.36 >0.99
2 and 3 in 3 qubits

Uz,2(− π

2 ) z rotation for qubit 5.8 >0.99
2 in 3 qubits

Uz,3(− π

2 ) z rotation for qubit 5.8 >0.99
3 in 3 qubits

U23(θ ) XY interaction in 7 >0.99
3 qubits

U45(π/4) XY interaction in 14.2 >0.987
5 qubits
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FIG. 6. (Color online) Experimental 1H-NMR spectra of 4-
fluoro-7-nitro-2,1,3-benzoxadiazole demonstrating the implementa-
tion of quantum gates. The blue curves in (a)–(e) show reference
spectra for the states EYE + EEY,10X, 1X0,10Y , and 1Y0, respec-
tively. The red curves show the results of the implementation of
the gates Uz(−π ) to EYE + EEY,Uz,3(−π/2) to −10Y , U23(π/4) to
−10Y,U23(π/4) to 1X0, and Uz,2(−π/2) to 1X0. In (b)–(e) we shifted
the red spectra for easier comparison with the reference spectra.

1. Implementation of Uz(−π )

To demonstrate the operation Uz(−π ) defined in Eq. (15),
we applied it to the input state EYE + EEY, where we use
the abbreviated notation ABC = A1 ⊗ B2 ⊗ C3. Following
the usual convention for ensemble quantum computing, we
describe the system by its deviation density matrix, i.e., the
traceless part of the density operator [31]. The input state thus
corresponds to the target qubits oriented along the y axis, and
the z rotation should rotate them to the −y axis.

Figure 6(a) shows the experimental result. The spectra were
obtained by letting the two states before and after applying the
gate operation evolve under the drift Hamiltonian, measuring
the y magnetization of the system as a function of time
and applying a Fourier transformation. Comparing the two
spectra, we find the expected effect that the Uz(−π ) operation
inverts the transverse spin components and thus the observable
resonance lines. The absolute value of the spectral lines after
the inversion is reduced by ≈14%, to c = −0.86 ± 0.09.
This reduction can be attributed to relaxation: the transverse
relaxation times for H1 and H2 range from 14 to 36 ms, as
determined from the width of the resonance lines.

2. Implementation of Uz,k(−π/2) and U23(π/4)

For implementing the gates Uz,k(−π/2), and U23(θ ), we
chose elements from the set

{10X,−10Y,1X0,−1Y0} (18)

012330-4
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TABLE II. Measured overlaps obtained by fitting the spectra. The
input states are listed in the first column and the gate operations in
the first row. The state of the actuator qubit(s) is omitted. The values
in columns 1–3 were obtained with the three-qubit system, and the
last column with the five-qubit system.

Uab(π/4) Uab(π/4)
Rz,a(−π/2) Rz,b(−π/2) (3 qubits) (5 qubits)

0aXb – 0.69 ± 0.04 0.67 ± 0.02 0.59 ± 0.04
−0aYb – 0.68 ± 0.04 0.68 ± 0.02 0.60 ± 0.03
Xa0b 0.70 ± 0.02 – 0.58 ± 0.04 0.64 ± 0.09
−Ya0b 0.71 ± 0.02 – 0.58 ± 0.04 0.68 ± 0.04

as input states, where 0 ≡ |0〉〈0| and 1 ≡ |1〉〈1|. The states
were chosen to give readily observable signals in NMR
spectra as shown in Figs. 6(b)–6(e). They constitute a basis
for the gates i.e., the set is closed under the effect of the
gates. We prepared these input states using the established
techniques [28,32]. The duration of the pulse sequence for
preparing each input state was 4 ms.

Figures 6(b)–6(e) show the experimental results. To quan-
tify the performance of the gates, we independently prepared
the predicted final states 10X,1X0, 10Y , and 1Y0 and
measured their spectra. These reference spectra are shown
as the blue curves. The red curves represent the results of the
operations. They are shown next to the reference spectrum
for the expected final state for ready comparison. The relative
amplitudes of the two spectra in each figure yields the overlap
of the state after the gate implementation with the predicted
final state. Table II lists the measured overlaps. The reduction
of the overlap, compared to the ideal value of 1, is mostly due
to the decoherence accumulated during the gate operation.

3. Implementation of U23(θ )

For an arbitrary angle θ,U23(θ ) transfers the input state to
a linear combination of two states from set (18) as

Uab(θ ) : Xa0b → Xa0b cos(2θ ) + 0aYb sin(2θ ),
(19)

Ya0b → Ya0b cos(2θ ) − 0aXb sin(2θ ).

For the experimental data, we determined the corresponding
coefficients by fitting the measured spectra to a linear com-
bination of the corresponding reference spectra, which are
shown as the blue curves in Figs. 6(b)–6(e). Figure 7 shows
the resulting overlap coefficients when U23(θ ) was applied to
the four input states. As a function of the rotation angle θ , the
individual data points can be fitted to A cos(2θ ) and B sin(2θ ).
By fitting the data in Fig. 7, we obtain A and B for the different
input states. The results are listed in Table III.

B. Five-qubit system

In the five-qubit system, we implemented U45(π/4) on
the target qubits. The control pulse was generated by the
GRAPE algorithm with a theoretical fidelity >0.987, with
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FIG. 7. (Color online) Experimental results of implementing
U23(θ ) in the three-qubit system for the input states 1X0,−1Y0,10X,
−10Y , shown as panels (a)–(d), respectively. The basis operators for
which the overlaps are determined are given in each panel. The solid
and dashed curves are fits to the experimental data points.

the contributions of the scalar couplings included. In Table I,
we summarize the parameters of the pulse.

For implementing U45(π/4) in the five-qubit system, we
chose the input states as

{0000X,−0000Y,000X0,−000Y0}. (20)

The pulse duration was 20 ms.
Figure 8 shows the experimental results. As in the case of

the three-qubit system, we show the experimental results after
the gate operation as the red curves next to the reference spectra
(blue curves) for the expected target state. The measured
spectra have the expected shapes but a reduced amplitude
mainly resulting from decoherence. The last column in Table II
quantifies this reduction, which is comparable to the values
obtained in the three-qubit system.

TABLE III. The amplitudes for the oscillations of the overlap
coefficients in Fig. 7. The input states are listed in the first column.
The amplitudes A and B are obtained through fitting the data marked
by circles and squares using functions A cos(2θ ) and B sin(2θ ),
respectively.

A B

1X0 0.669 ± 0.021 0.651 ± 0.008
−1Y0 0.622 ± 0.026 0.607 ± 0.035
10X 0.644 ± 0.008 0.624 ± 0.007
−10Y 0.639 ± 0.007 0.630 ± 0.007
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FIG. 8. (Color online) Experimental 19F-NMR spectra of 1,2-
difluoro-4-iodobenzene, demonstrating the performance of operation
U45(π/4) in the five-qubit system. The spectra represented as the
blue curves in panels (a)–(c) are obtained from the states EEEXE +
EEEEX,000X0, and 0000X, respectively. The spectra represented as
the red curves in panels (b)–(c) result from the implementation of
U45(π/4) to −0000Y and −000Y0.

V. FIDELITY AND DECOHERENCE

The main contributions to the imperfections of the gate
implementation can be attributed to (i) finite precision
of the calculated control operations, (ii) relaxation, and

(iii) experimental errors in the implementation of the gate.
For the the single-qubit gates Uz,k(−π/2) in the three-qubit
system, we exploited quantum process tomography [5,33] to
quantitatively evaluate the experimental performance. The χ

matrix is exploited to completely characterize the process, and
it can map an arbitrary input state ρin into the output state as

ρout =
∑
ml

χmlemρine
†
l , (21)

where the operators em,l ∈ {E,X, − iY,Z} denote the basis
set for describing the process, and the indices m,l = 1, ..., 4
run over the elements of the basis set. The measurement of
χ requires the preparation of four input states ρin = E,X,Y ,
and Z. Here we have omitted the indices of the operators,
because we consider only single-qubit operations. Quantum
state tomography was used to determine the output state ρout for
each ρin. Since the unit operator E is always time independent,
the corresponding input state is omitted, assuming the output
state is E. Figure 9 shows the χ matrices for the ideal and
experimental gate operations.

For each process, we quantified the performance by
comparing the experimental (χexp) and theoretical expectation
(χth) χ matrices via the fidelity [34–36]

Fχ = |Tr(χexpχ
†
th)|/

√
Tr(χexpχ

†
exp)Tr(χthχ

†
th). (22)

The measured fidelities for Uz,2(−π/2) and Uz,3(−π/2) are
0.957 and 0.952, respectively.

In the five-qubit system, we used numerical simulations
of the experiment to quantify the contributions (i)–(iii) and
estimated that the fidelity loss for the gate U45(π/4) resulting
from (i)–(iii) is 4%, 26%, and 8%, respectively.

Our experimental setup allows direct control of all qubits.
As discussed in Sec. III, applying direct control operations can
reduce the durations of the gate operations. As an example,
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FIG. 9. (Color online) χ matrices obtained by quantum process tomography for e−iπZ/4 for the ideal gate and for the experimental
implementations on qubits 2 and 3.
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we compare the required pulse durations in the actuator-
and direct-control protocols for generating Uz,2(−π/6) and
Uz,2(−π/2), using the results by numerical simulation pre-
sented in Fig. 4. Achieving fidelities >0.99 in the actuator pro-
tocol requires minimal durations of 4.0 and 3.26 ms, while in
the direct control protocol 1.52 ms is sufficient. Nevertheless,
the actuator-control protocol is useful in certain cases, because
it reduces the requirements for hardware resources, which
may be a critical factor for implementing complex quantum
algorithms, such as magic state distillation [37] and quantum
error correction [38]. Furthermore, it can be significantly faster
if the Rabi frequency for the direct-control is smaller than that
of the actuator qubits.

VI. CONCLUSION

The purpose of this paper was the demonstration that
a suitable combination of local control operations to a
subsystem of the total quantum system, together with a suitable

drift Hamiltonian, allows control not only over the directly
controlled qubits (the actuator qubits), but also partial or full
control of the target qubits. For this demonstration, we used
two types of nuclear spins, with one type representing the
actuator qubits, the other the target qubits. The couplings
between the qubits were magnetic-dipole interactions. The
results show good agreement between theory and experiment.
While these results were obtained with nuclear spins, the
same concept should be applicable to other systems, such
as nitrogen-vacancy centers in diamond [39,40], where the
hyperfine interactions provide sufficient resources.
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