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Research Highlights

• Behaviour of the coefficient of restitution is studied in detail.

• Fung’s quasi-linear viscoelastic model is used to characterize articular cartilage.

• Fung’s model explains the impact process better than the Hunt–Crossley model.

*Highlights (for review)
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On application of Fung’s quasi-linear

viscoelastic model to modeling of impact

experiment for articular cartilage

N.S. Selyutina1,2, I.I. Argatov2, G.S. Mishuris ∗2,3

1Saint Petersburg State University, St. Petersburg, Russia
2Aberystwyth University, Aberystwyth, Wales, UK

3Rzeszow University of Technology, Rzeszow, Poland

Abstract

A one-dimensional impact problem for articular cartilage is considered. Behavior
of the coefficient of restitution, peak strain, maximum stress in the drop-weight
impact experiment is studied in detail. The non-linear viscoelastic Hunt–Crossley
model previously used to fit experimental data is compared with a new quasi-linear
viscoelastic Kelvin–Voigt model enriched in Fung’s non-linear assumptions. It has
been shown that the new model, having clear physical sense, better describes the
experimental data.

Key words: Articular cartilage, coefficient of the restitution, Fung’s model,
Hunt–Crossley model

1 Introduction and preliminary results

A recent experiment on impact testing of articular cartilage samples (Edelsten
et al., 2010) has shown that the coefficient of restitution decreases with the
impactor velocity. Though such a phenomenon is well known for collision of
metal balls (Goldsmith , 1960), where the dissipation is governed by plastic
deformations while the effect of non-linearity is caused by the variability of
the contact area during the impact process, a physical explanation of the
phenomenon for articular cartilage is still missing.
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In the drop-weight impact experiments (Edelsten et al., 2010), the contact
area coincides with the cross-sectional area of the specimen, and, therefore,
the non-linearity of damping observed in measurements of the coefficient of
restitution could be associated with the material deformation response only.
In particular, it was shown that a special case of the Hunt–Crossley model

σ = Eε+ c|ε|ε̇ (1)

can formally explain the decrease of the coefficient of restitution, e∗, with the
increase of the impactor velocity, v0, as follows (Stronge, 2000):

e∗ ≈
(
cv0
h0E

+ exp
(
−0.4

cv0
h0E

))−1
. (2)

Here, h0 is the initial thickness of cartilage sample, and we employ the notation
different from (Edelsten et al., 2010).

In (Edelsten et al., 2010), the non-linear model (1), (2) was applied to fit the
experimental data for the coefficient of restitution providing a good matching.
However, perfectly extrapolating the few experimental points for significant
initial velocity, the Hunt–Crossley model (2) predicts full cartilage recovery
and e∗ = 1 for small velocities what is rather difficult to interpret physically.
Moreover, as we show this below, such a model is not capable to reconstruct
the other experimental data (strain-stress diagrams) reported in the mentioned
paper.

In the case of the linear Kelvin–Voigt model, the coefficient of restitution is
given by the following formula (Butcher and Segalman, 2000; Popov, 2010;
Wineman and Rajagopal, 2000):

e∗ = exp

− 2
√
AEτ 2R√

4mh0 − AEτ 2R
arctan

√
4mh0 − AEτ 2R√

AEτ 2R

. (3)

It is readily seen that e∗ does not depend on the initial velocity of the impactor.
Therefore, this simple model being more physically motivated than the model
(1), where the coefficient c lacks its physical interpretation, cannot explain the
decrease of restitution coefficient with the velocity.

Observe that the Hunt–Crossley model differs from the linear Kelvin–Voigt
by the variable damping coefficient which is proportional to the level of de-
formation. However, no physical motivation for Eq. (1) has been suggested so
far in application to articular cartilage testing.

Fig. 1 shows the behavior of the peak values of strain and stress and how it
changes when introducing the non-linearity according to Fung’s model into
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the linear Kelvin–Voigt model.
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Figure 1. Comparison between the linear Kelvin-Voigt model and the QLV Kelv-
in-Voigt model: (a) Maximum deformation of the cartilage sample dependent on
the relative incident velocity; (b) Peak value of the contact stress dependent on the
relative incident velocity.

In order to characterize the deformation behavior of articular cartilage spec-
imen, one can employ the classic quasi-linear viscoelastic model (QLV) for
soft tissues (Fung, 1981) with the exponential approximation of instantaneous
elastic response, considered in (Simon et al., 1984; Muliana and Rajagopal,
2012; Rajagopal et al., 2007):

σ(ε, t) = E

t∫
0−

G(t− s) exp
(
Bε(s)

)dε
ds

(s) ds. (4)

Here, G(t) is the reduced relaxation function defined by the formula

G(t) = G∞

(
1 + C

(
E1(t/τ2)− E1(t/τ1)

))
(5)

with the normalization condition G(0) = 1, where G(∞) = 1/(1+C ln(τ2/τ1)).

The relaxation function (5) contains three positive constants C, τ1, τ2, while
E1(y) is the exponential integral (Gradshteyn and Ryzhik, 1965) defined as
follows:

E1(y) =

∞∫
y

exp(−ξ)
ξ

dξ.

One can observe from this analysis, that the QLV Fung’s model cannot com-
prehensively and adequately describe the impact experiments. Indeed, the
numerical simulation of the experiment performed by (Edelsten et al., 2010)
based on the QLV model (4) gives a significant deviation from the experi-
mental data. In Fig. 2, we present the results of the least-squares fit for the
strain-stress curve and the corresponding the coefficient of restitution. Low

3
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Figure 2. Experimental data (Edelsten et al., 2010) (red color) and Fung’s QLV
model (4), (5) in the case of C = 2.02 τ1 = 0.006 s, τ2 = 8.38 s, described in
(Fung, 1981): (a) Coefficient of restitution against the initial impact velocity; (b)
Stress-strain curves.

sensitivity of the coefficient of restitution has been observed for any reason-
able values of the model parameters. At the same time, the stress-strain state
could be better approximated, while giving simultaneously a practically con-
stant value of the restitution coefficient.

It should be emphasized, however, that a general Fung QLV model can be con-
sidered depending on the choice of the stress-relaxation function. Such models
demonstrate different behavior of the respective coefficient of restitution as a
function of the initial velocity. In the present paper, we consider another phe-
nomenological model, based on the results of our previous study (Argatov et
al., 2015). Namely, we will deal with the following Fung’s quasi-linear model:

σ(ε, t) = E

t∫
0−

K(t− s) exp
(
Bε(s)

)dε
ds

(s) ds, (6)

where B is the dimensionless non-linearity parameter, and K(t) is the relax-
ation function given by

K(t) = 1 + δ
(
t

τR

)
(7)

with δ(x) being the Dirac delta function and τR being a characteristic relax-
ation time.

The constitutive equation (6) represents the so-called quasi-linear viscoelastic
(QLV) Kelvin–Voigt model, as it was derived from the generalised Fung QLV
model for the stress-relaxation function corresponding to the Kelvin–Voigt
model. This model can be also written in the form

σ(ε, t) = E

{
1

B

[
exp

(
Bε(t)

)
− 1

]
+ τR exp

(
Bε(t)

)
ε̇(t)

}
, (8)

allowing direct comparison with the Hunt–Crossley model (1). It is important
to note that the damping coefficient in Eq. (8) also exhibits nonlinear be-
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haviour being increasing with the level of strain, ε, but, in contrast to Eq. (1),
it does not vanish at ε = 0.

2 Description of the impact experiment

Impactor 

Specimen 

(a) 

0h

H

x

m
(b) 

x

)(th

Figure 3. Scheme of impact loading of the tissue specimen: (a) Initial configuration
before the contact; (b) Current configuration.

Let us consider the schematic representation for impact loading of articular
cartilage shown in Fig. 2. The impact experiment in (Edelsten et al., 2010)
was consisted of dropping a rigid flat impactor from a drop height, H, to the
properly prepared articular cartilage samples of the same initial thickness, h0.
Manipulating with the value of H, one can impose different initial impactor
speed, v0 =

√
2gH. As a result of the contact interaction, the current thickness

of the cartilage sample, h(t), changes in time.

Let us introduce the following notation: σ(t) is the reaction stress of the tissue
specimen (which is assumed to be positive), ε(t) is the resulting strain within
the cartilage layer, which is supposed to react as a homogeneous material.
The mass of rigid impactor is denoted by m, while A and h0 are the cross-
sectional area of the specimen and its initial thickness, respectively, and ε̇0 =
v0/h0 is the initial strain rate with v0 being the initial impactor velocity at
incidence. Finally, let tc be the contact duration which denotes the instant,
when the specimen reaction force changes its sign and the strain acceleration,
ε̈, vanishes, so that

σ
∣∣∣
t=tc

= 0. (9)

The test data is recorded from the moment when the impactor reaches the
cartilage surface, t0 = 0, to the moment t = tc, when the impactor still remains
intact with the cartilage.

Note that the impactor mass m plays a crucial role in the impact process,
whereas its weight is usually omitted in the analysis of forces acting on the
impactor. This was the case when the results of the experiments reported in
(Edelsten et al., 2010) were interpreted by means of formula (2). On the other
hand, it is well known (see, e.g., (Varga et al., 2007)) that the weight of the
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impactor may influence the experimental results. It has been also shown in (Ar-
gatov, 2013) that, in the case of linear Kelvin–Voigt model, the gravity effect
implies that the coefficient of restitution increases with velocity for relatively
high impact velocities (to be more precise for low values of the dimensionless
ratio g/(ω0v0), where g is the gravitational acceleration).

Thus, in order to compare the specific models for articular cartilage in ques-
tion and to be absolutely sure that the gravity factor does not influence the
obtained experimental results (Edelsten et al., 2010), we also addressed this
issue. For this reason, we estimate how the impactor weight influences typi-
cal stress-strain curves during the impact for specimens with the mechanical
properties modelled by Eqs. (1) and (8). Since two impactors with masses
m=0.1 kg and m = 0.5 kg were used in the experiments, we utilized the larger
value together with the typical material parameters provided in (Shepherd
and Seedhom , 1999; Barker and Seedhom , 2001; Kempson , 1979).

The respective results are presented in Fig. 4 in the normalised form to fit the
graphs into the same frame as the maximal values of stress and strain may
differ for those two models even in the order of five times.

0 1 

1 

σ
 

σmax 

ε / εmax 

(a) 

0 1 ε / εmax 

1 

σ
 

σmax 

(b) 

Figure 4. Stress-strain curves for the Hunt–Crossley model (solid green line) and
QLV Kelvin–Voigt model (solid black line) superimposed on the experimental data
(Edelsten et al., 2010) (red dotted line): (a) Without the impactor weight taken
into account; (b) With the impactor weight taken into account.

One can observe that, by taking into account the impactor weight in the
force analysis within the QLV Kelvin–Voigt model, the stress-strain state of
cartilage changes insignificantly, while in the case of Hunt–Crossley model,
the difference is almost invisible. So, comparing the maximal values with and
without impactor weight, we observed the difference less than 1%. This allows
us to concentrate on the models avoiding this insignificant detail of the impact
process. Clearly, if one uses a more heavy impactor, the impact deformation
would be more pronounced, however, such experiment would make a minor
physical sense in view of the fracture phenomenon.

It is interesting also to highlight here different features of the impact process

6



Page 8 of 16

Acc
ep

te
d 

M
an

us
cr

ip
t

for the models. In particular, the QLV Kelvin–Voigt model exhibits a jump-
like instantaneous response of the contact force (that is σ(0+) > 0) and a
residual imprint left at the end of the impact process, t = tc, that is ε(tc) > 0,
while for the Hunt–Crossley model those values both vanish, i.e., σ(0+) = 0
and ε(tc) = 0.

In the next section we compare two nonlinear models: the Hunt–Crossley
model used in (Edelsten et al., 2010) to explain the experimental data and the
QLV Kelvin–Voigt model proposed in (Argatov et al., 2015). According to the
discussion above, the weight of the impactor is not taken into account in the
analysis. In particular it is shown (Edelsten et al., 2010) that the stress-strain
diagrams for the cartilage specimens monotonically depend on the level of the
impactor initial kinematic energy. Finally, based on the numerical experiments,
one can come to the conclusion that Fung’s model with the stress-relaxation
function (7) can explain the behavior of the articular cartilage in the context
of physical significance of impact process.

3 Impact test from the viewpoint of QLV Kelvin–Voigt model

The impactor motion is determined by Newton’s second law

mh0ε̈ = −Aσ, t ∈ (0, tc), (10)

with the contact stress σ being described by the QLV Kelvin–Voigt model (8).
This differential equation is complemented with the initial conditions

ε(0) = 0, ε̇(0) = ε̇0. (11)

Introducing the non-dimensional variables

z = exp
(
Bε(t)

)
− 1, τ =

t

τR
, (12)

we reduce the impact problem (8)–(11) to the following Cauchy problem:

z′′ − z′2

z + 1
= −α(z + z′)(z + 1), (13)

z(0) = 0, z′(0) = β. (14)

Here two new dimensionless constants are defined through the problem pa-
rameters as follows:

α =
AEτR

2

mh0
, β = Bε̇0τR (15)

7
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According to (9), the contact contact duration, tc = τRτc, is identified as

z + z′
∣∣∣
τ=τc

= 0, (16)

An important characteristic of the impact problem (10), (11) is the coefficient
of restitution, e∗, which is defined as the ratio of the absolute value of the
strain rate at separation, |ẋ(tc)|/h0, to the strain rate at the incidence, ε̇(0),
that is

e∗ =
|ε̇(tc)|
ε̇0

. (17)

Taking into account the variable substitution (12), we compute the coefficient
of restitution for the QLV Kelvin-Voigt model in the following form:

e∗ =
1

β

|z′|
z + 1

∣∣∣∣∣∣
τ=τc

. (18)

Note that in the case of small non-linearity (when B � 1), an approximate
analytical solution of the impact problem (10), (11) can be obtained by a
perturbation method (Argatov, 2008).

4 Numerical simulation of the impact experiments

In (Edelsten et al., 2010), the impact tests on full-depth articular cartilage
samples of diameter 5 mm and thickness 2.3 mm with different impactor
masses were carried out. The experimental data for the stress-strain diagrams
are presented in (Edelsten et al., 2010) for the impactor mass 0.5 kg and for
different drop heights H equal to 25 mm, 50 mm, 75 mm. The behavior of
the coefficient of restitution on the initial velocity of impactor is presented for
the same dropping heights (25 mm, 50 mm, 80 mm, 100 mm) but for another
impactor mass 0.1 kg. Apart of this inconsistency, the provided data allow to
carry out its comprehensive analysis. Based on the data available in the liter-
ature (Shepherd and Seedhom , 1999; Barker and Seedhom , 2001; Kempson
, 1979), we additionally assume that the elastic modulus of articular cartilage
is equal to 5.6 MPa, being estimated in the general case in range 1–10 MPa.
This value is necessary to match the stress-strain diagrams.

First we can estimate the values of the parameters α and β utilising the
data for the coefficient of restitution. Note that the parameters τR and B
are then obtained uniquely from Eqs. (15). On account of the test data from
(Edelsten et al., 2010) for the impactor mass of 0.1 kg and the observations
from (Argatov et al., 2015), the following value can be estimated: α = 0.051.

8
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Then the remaining two fitting parameters τR and B for the QLV Kelvin–Voigt
model are calculated to yield the relaxation time of tissue τR ≈ 3.3 ·10−4s and
the non-linearity parameter B ≈ 6.2. The fitting parameters τR and B were
evaluated to fit the given discrete set e∗j, j = 1, 2, 3, 4, for the coefficient of
restitution corresponding to the given impact velocities v0j, j = 1, 2, 3, 4.
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HC 
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2 

1.0 
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Figure 5. Experimental data (Edelsten et al., 2010) for the coefficient of restitu-
tion against the initial impact velocity of the impactor of masses m = 0.1 kg and
m = 0.5 kg fitted according to the QLV Kelvin–Voigt model. The reconstruction of
the coefficient e∗ computed due to the the Hunt–Crossley model for the impactor
mass m = 0.1 kg is given be the green curve.

In Fig. 5, we show the experimental data (Edelsten et al., 2010) and the
behavior of the coefficient of restitution for the impactor mass 0.1 kg and 0.5 kg
predicted by the model (18). We also included into the figure the coefficient of
restitution computed in accordance with the Hunt–Crossley model. Note that
the experimental points are available from the experiment only for the mass
0.1 kg.

One can observe that the Hunt–Crossley model predicts the coefficient of resti-
tution better than the QLV Kelvin–Voigt model. However, when one tries to
reconstruct the stress-strain curves employing the same parameters as used to
predict the coefficient of restitution, it turns out that the Hunt–Crossley model
leads to completely unreliable results while the QLV Kelvin–Voigt model ap-
parently fits for purpose. Below we discuss this in more detail.

We also consider the additional impact characteristics having an important
practical interest. Namely, the peak value of the specimen strain, εm, which
occurs at the time moment tm = τRτm, and the peak value of the contact
stress, σM , reached at the time moment tM = τRτM , can be evaluated as
follows:

z′
∣∣∣
τ=τm

= 0, εm =
1

B
ln(z(τm) + 1), (19)

z′ + z′′
∣∣∣
τ=τM

= 0, σM =
E

B
(z(τM) + z′(τM)). (20)

On the basis of test data on cartilage (Edelsten et al., 2010) for the impactor

9
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mass 0.5 kg, the stress-strain diagrams for both the Hunt–Crossley model (1)
and the QLV Kelvin–Voigt model (10) are constructed in Fig. 6–8.
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Figure 6. Experimental data (Edelsten et al., 2010) (red dotted curve) and the
stress-strain diagrams in the case of impactor mass 0.5 kg and drop height 25 mm
for: (a) Hunt-Crossley model; (b) QLV Kelvin-Voigt model.

For this aim, the solution of the respective differential equations have been
used with the parameters taken from (Edelsten et al., 2010) for the Hunt–
Crossley model, while the evaluation of the material constants for the QLV
Kelvin–Voigt model was discussed above.
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Figure 7. Experimental data (Edelsten et al., 2010) (red dotted curve) and the
stress-strain diagrams in the case of impactor mass 0.5 kg and drop height 50 mm
for: (a) Hunt-Crossley model and (b) QLV Kelvin-Voigt model.

It is clear from the presented simulations that, although the QLV Kelvin–Voigt
model utilising Fung’s assumption is not ideal to predict the strain-stress
diagram, it is more suitable in comparison with the Hunt–Crossley model
proposed by Edelsten et al. (2010) to explain the impact test for the articular
cartilage.

The influence of the impactor mass on the stress-strain state of articular car-
tilage at a fixed drop height for the Hunt–Crossley (1) and QLV Kelvin–Voigt
(10) models is presented in Fig. 9. Thus, if the latter model is used for the
reconstruction of the experimental data, the value of the indentor mass has to
be taken into account and it plays an important role (even in the case when
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Figure 8. Experimental data (Edelsten et al., 2010) (red dotted curve) and the
stress-strain diagrams in the case of impactor mass 0.5 kg and drop height 75 mm
for: (a) Hunt-Crossley model and (b) QLV Kelvin-Voigt model.

one can omit this parameter in the force balance analysis due to the arguments
presented in the introductory section).
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Figure 9. The stress-strain diagrams in the case of impactor mass 0.1, 0.3, 0.5 kg
and drop height 25 mm for (a) Hunt-Crossley model; (b) QLV Kelvin-Voigt model.

5 Discussion and conclusions

In this paper, we made an attempt to reconstruct the main characteristics
of the impact test for articular cartilage. Few models were analysed with the
particular interest to the Hunt–Crossley model and the QLV Kelvin–Voigt
viscoelastic model with Fung’s type nonlinear assumption. It should be noted
that the models are expected to hold only for small deformations, whereas
they are applied to describe the impact experiment inducing very high strain
values (i.e., up to 0.7) in the cartilage sample. More realistically, the deforma-
tion problem should be formulated in the framework of finite viscoelasticity,
by adopting a proper time-dependent form for the strain energy density. Note
also (Argatov and Mishuris, 2011a,b) that the short-time response of a linear
biphasic layer, whose deformation is described in the framework of the asymp-
totic model given by Ateshian et al. (1994), in blunt impact is approximately
equivalent to that of the Maxwell model.
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On the other hand, the phenomenological models do not take into account
the fractal structure of articular cartilage (Smyth et al., 2012), which can be
described using fractional-order models (Magin and Royston, 2010; Zhuravkov
and Romanova, 2014). Evidence of such a behavior in creep and relaxation of
articular cartilage can be found in the literature (Ehlers and Markert, 2000,
2001). The connection between fractance and effective relaxation in the form
of power law was established by Deseri et al. (2013), while a comprehensive
treatment of the associated one-dimensional models was given in (Deseri et
al., 2014).

Further, we note that Fung’s non-linear model explains only some of the
complex features accompanying the impact experiments for articular carti-
lage (Varga et al., 2007; Burgin and Aspden , 2008; Edelsten et al., 2010).
Damage of cartilage samples obviously introduces an extra, and yet crucial,
source of dissipation 1 , which is not addressed by either of the considered mod-
els. Dissipation through damage is certainly one of the reason for the detected
residual strain shown in Figs. 6–8. Observe that the damage process can be
monitored by method of acoustic emission (Argatov and Fadin, 2009; Shark
et al., 2011).

In the range of parameters used in the experiment (Edelsten et al., 2010), the
following main conclusions can be drawn from this comparative analysis:

• It is known (Stronge, 2000) that the mass of the impactor does not affect
the coefficient of restitution for Hunt–Crossley model. On the other hand,
for the QLV Kelvin–Voigt model, an increase of the impactor mass leads to
some increase of restitution coefficient (Fig. 5);
• The coefficient of restitution can be better approximated (at least from the

results obtained by Edelsten et al. (2010)), by the Hunt–Crossley model.
However, the model predicts the full restitution (in particular, e∗ = 1) for
small impactor velocities that seems to be not reliable for articular cartilage.
On the contrary, the QLV Kelvin–Voigt model shows that the cartilage
sample does not relax to its initial stage;
• The normalized stress-strain curve demonstrates non-vanishing stress in the

initial moment of time characterized by the dissipation, while the Hunt–
Crossley model does not allow to describe this probable behavior of the
cartilage at small impactor velocity;
• It is shown that the QLV Kelvin–Voigt model gives much better description

than the Hunt–Crossley model for the stress-strain diagrams in the impact
test of articular cartilage.

1 I. Argatov, G. Mishuris, A coupled impact problem for articular cartilage: Phe-
nomenological modeling of damage in a biological tissue under dynamic loading,
Submitted for Euromech Colloquium 575, 30 March – 2 April 2015, IMT Institute
for Advanced Studies, Lucca, Italy.
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Summarizing, the proposed QLV Kelvin–Voigt model based on Fung’s assump-
tion overall improves the description of the impact test for articular cartilage in
comparison with the proposed earlier Hunt–Crossley model, and by no means
is more helpful in explaining the impact experiment for articular cartilage. In
particular, the QLV Kelvin–Voigt model definitely describes better the stress-
stain diagram and explains the behaviour of the coefficient of restitution for
small initial impactor velocity. However, it is clear that this model is not the
best choice. More experimental data is necessary to make the justified de-
cision for the improved approximate mathematical model, while any of the
developed impact models can be already used for a preliminary decision on
impact experiment and systematizing the obtained experimental data.
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