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Abstract: Analysis of Earth Observation (EO) data, often combined with Geographical Information 
Systems (GIS), allows monitoring of changing land cover dynamics which may occur after a natural 
hazard such as a wildfire. In the present study, the vegetation recovery dynamics of one such area are 
evaluated by exploiting freely distributed EO data and GIS techniques. The relationships of re-growth 
dynamics to the exposure under topographical characteristics of the burn scar are also explored. As a 
case study, a typical Mediterranean ecosystem in which a wildfire occurred during 2007 is used.  
Vegetation recovery dynamics of the whole area under the burn scar were investigated based on 
chronosequence analysis of the normalized difference vegetation index (NDVI) derived from 
anniversary Landsat TM images. The spatio-temporal patterns of post-fire NDVI on each image date 
were statistically compared to the pre-fire pattern to determine the extent to which the pre-fire spatial 
pattern was re-established and the recovery rate. The relationships between NDVI as an expression of 
recovery rates and aspect were also statistically investigated and quantified using a series of statistical 
metrics. Results suggested a generally low to moderate vegetation recovery of the local ecosystem five 
years after the fire event, with the post-fire NDVI spatial pattern generally showing a gradual but 
systematic return to pre-fire conditions. Re-growth rates appeared to be somewhat higher in north-
facing slopes in comparison to south facing ones, in common with other similar studies in 
Mediterranean type ecosystems. All in all, this study provides an important contribution to the 
understanding of Mediterranean landscape dynamics, and corroborates the usefulness particularly of 
NDVI in post-fire regeneration assessment via a well-established methodology presented herein which 
can also be transferable to other regions. It also provides further evidence that use of EO technology 
which combined with GIS techniques can offer an effective practical tool for mapping wildfire 
vegetation dynamics and ecosystem recovery after wildfire. 
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ABSTRACT 7 

Analysis of Earth Observation (EO) data, often combined with Geographical 8 

Information Systems (GIS), allows monitoring of changing land cover dynamics which may 9 

occur after a natural hazard such as a wildfire. In the present study, the vegetation recovery 10 

dynamics of one such area are evaluated by exploiting freely distributed EO data and GIS 11 

techniques. The relationships of re-growth dynamics to the exposure under topographical 12 

characteristics of the burn scar are also explored. As a case study, a typical Mediterranean 13 

ecosystem in which a wildfire occurred during 2007 is used.  Vegetation recovery dynamics 14 

of the whole area under the burn scar were investigated based on chronosequence analysis 15 

of the normalized difference vegetation index (NDVI) derived from anniversary Landsat TM 16 

images. The spatio-temporal patterns of post-fire NDVI on each image date were 17 

statistically compared to the pre-fire pattern to determine the extent to which the pre-fire 18 

spatial pattern was re-established and the recovery rate. The relationships between NDVI 19 

as an expression of recovery rates and aspect were also statistically investigated and 20 

quantified using a series of statistical metrics. Results suggested a generally low to 21 

moderate vegetation recovery of the local ecosystem five years after the fire event, with the 22 

post-fire NDVI spatial pattern generally showing a gradual but systematic return to pre-fire 23 

conditions. Re-growth rates appeared to be somewhat higher in north-facing slopes in 24 

comparison to south facing ones, in common with other similar studies in Mediterranean 25 

type ecosystems. All in all, this study provides an important contribution to the 26 

understanding of Mediterranean landscape dynamics, and corroborates the usefulness 27 

particularly of NDVI in post-fire regeneration assessment via a well-established 28 

methodology presented herein which can also be transferable to other regions. It also 29 

provides further evidence that use of EO technology which combined with GIS techniques 30 

can offer an effective practical tool for mapping wildfire vegetation dynamics and 31 

ecosystem recovery after wildfire.  32 

 33 
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1. INTRODUCTION 39 

Altering land cover dynamics is currently regarded as the single most important 40 

variable of global change affecting ecological systems (Otukei and Blaschke, 2010). 41 

Wildfires are considered to be one of the most widespread ecological disturbances of 42 

natural ecosystems that dramatically affect land cover dynamics at a variety of spatial and 43 

temporal scales as a result of the complete or partial removal of vegetation cover 44 

(Lhermitte et al., 2011). In this context, knowledge of the spatio-temporal distribution of 45 

post-fire vegetation recovery dynamics is of key importance. Such information plays a 46 

significant role in various aspects of policy and decision-making as well as in the dynamics 47 

and structures of plant and animal communities of the affected ecosystems (Elvira and 48 

Hernando, 1989; Gouveia et al., 2010). Knowledge of vegetation recovery dynamics 49 

following a fire outbreak is essential to estimate the effects of the fire and to understand the 50 

forces driving changes in post-fire ecosystems (Grissino-Mayer and Swetnam, 2000; Casady 51 

and Leeuwen, 2009). Such information, if available in a consistent, repetitive and cost-52 

effective manner, is also a crucial element of successful landscape management (Wittenberg 53 

et al., 2007). It can assist in identifying areas needing intensive or special restoration 54 

programs aiming to reduce soil erosion and runoff, thus mitigating long-term site 55 

degradation (Keeley, 2000; Malak and Pausas, 2006; Gouveia et al., 2010). Given that future 56 

changes in climate could potentially lead to increases in fire frequency, severity and extend 57 

into ecosystems that include species that have not evolved to be able to easily regenerate 58 

(Politi et al,. 2009), information on regeneration vegetation is of key importance.  59 

The speed of vegetation recovery can control the extent of various environmental, 60 

social, economic and political impacts (Minchella et al., 2009). Indeed, the rate of vegetation 61 

biomass re-growth can vary significantly; some areas can show complete vegetation 62 

recovery after a few years while others are still not completely recovered decades after the 63 

fire. In the Mediterranean region in particular where fire has been an important ecological 64 

factor for millennia (Naveh, 1974; Mayor et al., 2007), rates of post-fire recovery dynamics 65 

are usually spatially variable and contingent upon a number of factors. This is because of 66 

the complexity of landscape structure and the range of responses of such systems to the 67 

diverse types of fire regimes. At the landscape level, various studies have shown post-fire 68 

regeneration to be mainly dependent on the initial vegetation and site-specific climatic and 69 

terrain parameters (Pausas and Vallejo, 1999; Wittenberg et al., 2007). Climatic factors, 70 

such as heavy autumn rainfalls, generally also lead to a higher potential for post-fire soil 71 

erosion (Millán et al., 1995), which also affect vegetation re-growth dynamics (Pausas et al., 72 

2004). Moreover, various studies have shown that in such environments, post-fire growth is 73 

frequently affected by topography and aspect. South-facing slopes experience higher 74 

insolation and evapotranspiration rates than north-facing slopes. This results in vegetation 75 

tending to grow back more quickly on north-facing slopes with more favourable moisture 76 

conditions (Mouillot et al., 2005; Fox et al., 2008). Unfortunately, interactions between such 77 

parameters and plant regeneration are poorly known, especially at the scale of a single 78 

large fire. At this scale, use of Earth Observation (EO) technology has proved to be a suitable 79 

option tool for monitoring plant regeneration after fire.   80 

When combined with Geographic Information Systems (GIS) techniques, EO data 81 

have demonstrated promising potential in providing an effective set of tools for analysing 82 

and extracting spatial information related to wildfires (Chen et al., 2005; Durduran, 2010; 83 

Chen et al., 2011; Kalivas et al., 2013). This integration provides an excellent framework for 84 
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data capture, storage, synthesis and analysis of acquired spatial data. Indeed, EO data can be 85 

combined with GIS and can provide an efficient approach for analysing and extracting 86 

spatial information to support decision making reliably and consistently (Chen et al., 2005; 87 

Gens, 2010). Both have been used extensively in a range of post-fire applications at different 88 

scales of observation; from burnt area mapping (Kokaly et al., 2007; Petropoulos et al., 89 

2011), to mapping changes in soil erosion after fire (Quintano et al., 2006; Mayor et al., 90 

2007; Fox et al., 2008) to evaluating post-fire ecosystem recovery (Segah et al., 2010). The 91 

recent advancements in EO technology have made it possible to evaluate patterns of 92 

vegetation recovery after wildfires at different spatial, spectral and temporal scales, and a 93 

variety of techniques have been developed for this purpose.  94 

Some of the most widely used image analysis approaches employed to characterize 95 

the vegetation recovery include image classification (Jakubauskas et al., 1990; White et al., 96 

1996; Viedma et al., 1997; Hall et al., 1991; Steyaert et al., 1997; Stueve et al., 2009), the use 97 

of spectral vegetation indices (Diaz-Delgado et al., 2003; Hope et al., 2007; Lhermitte et al., 98 

2011; Chen et al., 2011) and Spectral Mixture Analysis (Smith et al., 2007; Solans Vila and 99 

Barbosa, 2010; Veraverbeke et al., 2012). Out of the wide range of techniques available, 100 

spectral indices have been used evidently most extensively (Veraverbeke et al., 2010). Their 101 

use has largely been based on the hypothesis that the ratio of red (R) to near infrared (NIR) 102 

reflectance for green vegetation changes when the foliage containing chlorophyll is 103 

destroyed by the fire. Subsequently, the use of a spectral index that is sensitive to the R and 104 

NIR regions of the electromagnetic spectrum can be used to identify and potentially 105 

quantify vegetation change. The most widely used index for studying regeneration 106 

processes is the Normalized Difference Vegetation Index (NDVI, Rouse et al., 1973). NDVI 107 

combines the reflectance in the R and NIR spectral region and is a measure of the green 108 

vegetation amount. A significant number of studies have utilized this index to monitor post-109 

fire vegetation dynamics, some conducted in Mediterranean climates (Roder et al., 2008; 110 

Solans Vila and Barbosa, 2010; Veraverbeke et al., 2010). Also, although a wide range of EO 111 

data have been exploited in such studies, it is evident from a review of the literature that 112 

imagery from the Landsat series of platforms has been one of the most widely exploited.  113 

Landsat is the only freely-available multispectral satellite high spatial resolution 114 

sensor providing a synoptic coverage of the Earth extending back to 1972. Therefore, the 115 

value of data from this satellite radiometer is unique and they have been extensively used to 116 

monitor the spatial and temporal variations in post-fire vegetation conditions and 117 

landscape-scale trends in vegetation dynamics (Hope et al., 2007; Wittenberg et al., 2007; 118 

Chen et al., 2011). Landsat spatial resolution allows the detection of both large and small 119 

fires and its large sensor field of view allows the observation of several burnt areas in one 120 

image. The sensor also has a NIR band which is useful for evaluating vegetation recovery 121 

processes (Pereira et al., 1999). Furthermore, its shortwave infrared (SWIR) channels allow 122 

highlighting of the internal variability of burnt areas that can be linked to the spatial 123 

patterns of damage severity and fire intensity (Justice et al., 1993; Bisson et al., 2008). 124 

Yet, while remote sensing is currently being applied to estimate the vegetation 125 

recovery dynamics in different ecosystems, information on the relationships between post-126 

fire recovery and topographic factors is scarce (e.g. Sunee et al., 2001), particularly so in the 127 

Mediterranean. This is despite the importance of this issue, as for example identification, at 128 

the landscape level, of areas with low recovery dynamics could improve land management 129 

and help prioritizing post-fire restoration actions in the fire-affected areas. Results from 130 

relevant studies published so far suggest that vegetation recovery dynamics of south-facing 131 
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slopes can be very different from that of north-facing ones (e.g. Hope et al., 2007; 132 

Wittenberg et al., 2007; Fox et al., 2008).  133 

 In this context, the main aim of this study has been to assess vegetation recovery 134 

dynamics following a fire event using multi-temporal analysis of Landsat Thematic Mapper 135 

(TM) images and GIS techniques for a typical Mediterranean characteristics site located in 136 

Greece for which a wildfire occurred in 2007. The specific objectives were: first to determine 137 

the spatio-temporal patterns of vegetation re-growth dynamics established within the burn 138 

scar monitored by the NDVI response and second to analyse the influence of topographical 139 

parameters on these dynamics. In this preliminary study, we attempted to fit regression 140 

models to the dynamics of the regeneration process and to quantitatively investigate the 141 

correlation between post-fire recovery and topographic factors (slope and aspect) using EO 142 

data. 143 

 144 

  2. STUDY AREA  145 

The selected study site, Mt. Parnitha, is located approximately 30 km north of the 146 

Greek capital Athens (Figure 1). The area covers approximately 200 km2 of land with an 147 

altitude ranging from 200-1,400 m above sea level (a.s.l.). The region is covered mainly by 148 

Greek Fir (Abies cephalonica) and Aleppo Pine (Pinus halepensis) forests on the slopes 149 

beneath 1,000 m altitude, grasses and shrubs dominate above 1,000m, and under 300m 150 

farmlands dominate to the north with suburban housing to the east. The climate is 151 

continental, characterised by cold winters and warmer summers. Summer temperatures do 152 

not usually exceed 18°C, while in winter temperatures are frequently of around 0°C, 153 

(Arianoutsou et al., 2010), with an annual average of 11°C (Ganatsas et al., 2012). Average 154 

rainfall in the area is 822 mm (at 1,000 m elevation), with 70 rainy days per year. Snow is 155 

also relatively common, with an average of 33 snowy days per year and snow depth 156 

averaging 120 cm (Ganatsas et al., 2012). 157 

In the summer of 2007, Greece was hit by the most devastating large fires in its 158 

recent history (Kalivas et al., 2013). During the first half of that year average monthly 159 

temperatures in the study area increased from 11°C in January 2007 to 26°C in June (NOAA 160 

web site, 2013). The maximum monthly temperature in June reached 39°C and there were 161 

12 days in which the temperature rose above 32°C. On June 27th, 2007, at 19:30 local time, a 162 

fire, caused by sparks from an overloaded power line, erupted in the area of Dervenohoria, 163 

near a village called Stefani, approximately 15 km west of the core of mount Parnitha 164 

National Park. On the next day, fanned by a medium strength west wind, it entered the 165 

forested western slopes and canyons of the mountain and spread to the summit leaving 166 

only charred trees. Its main run stopped when it reached sparse vegetation on the east 167 

slope of the mountain in the morning of June 29th. Fought by aerial fire-fighting support, it 168 

was controlled three days later (July 1st, 2007). According to official estimates, the total area 169 

burnt was in the order of 45 Km2 (Petropoulos et al., 2010).  170 

Mt. Parnitha is a very suitable study site for this type of research from both scientific 171 

and practical aspects. First of all, it is one of the few mountains surrounding Athens, the 172 

capital of Greece, playing a very important role in the micro-climatic conditions of the 173 

capital. Second, due to its rich biodiversity the wider area has been designated as a national 174 

park as well as a biodiversity conservation site. It has also been included in the European 175 

network of protected areas Natura 2000 EC Habitats Directive, a network of Sites of 176 
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Community Importance and Special Areas of Conservation (Arianoutsou et al., 2010). Thus 177 

the area has a very significant ecological and aesthetic/recreational value for the local 178 

people. Third, the region is characterized by very variable topography characteristics, 179 

comprising plain areas and mountainous areas with slopes varying from between 3 % and 180 

90 %, which vary significantly in elevation and aspect. In particular, altitude varies from 181 

200 m.a.s.l to over 1,400 m.a.s.l (the highest elevation being 1,413 m.a.s.l.). Soils in the area 182 

are generally shallow and infertile, with the exception of some karstic plateaus, and overly 183 

bedrock consisting of sedimentary schists and limestone (Ganatsas et al., 2012). Fourth, all 184 

data required were already available from previous works conducted in the region 185 

(Petropoulos et al., 2010; 2011; 2012), and as such, the present work also builds on these 186 

previous studies conducted in the area.  187 

 188 

3. DATASETS  189 

Five Landsat TM images (path: 183, row: 33 / raster format) were used in this study 190 

to explore the vegetation regeneration dynamics of the selected study region over a period 191 

of 5 years, from 2007 to 2011. Images around the same dates (‘anniversary dates’; Lillesand 192 

and Kiefer, 2000) of different years were selected to circumvent the influence of seasonal 193 

differences in both spectral radiation (e.g. Sun elevation angle, Sun–Earth distance, 194 

meteorological conditions) and surface reflection. A TM pre-fire image acquired on 16 May 195 

2007 and four post-fire images acquired on 3 July 2007, 24 July 2009, 12 August 2010 and 196 

15 August 2011 were used. All images were obtained from the United Stated Geological 197 

Survey (USGS) archive (http://glovis.usgs.gov/) at no cost. They were acquired 198 

geometrically corrected, geometrically resampled, and registered to a geographic map 199 

projection with elevation correction applied (Level-1T processing).  200 

In addition, the Global Digital Elevation Model (GDEM) of the Advanced Spaceborne 201 

Thermal Emission and Reflection Radiometer (ASTER) sensor was used for obtaining 202 

topographical information about the study area. The ASTER GDEM product was released in 203 

2009 and was updated (Version 2) at the end of 2011. Estimated accuracies of the product 204 

are for 20 meters at 95 % confidence for vertical data and 30 meters at 95 % confidence for 205 

horizontal data (ASTER GDEM, 2009). The dataset is provided in geotiff format, in 206 

geographic lat/long projection and WGS84/EGM96 datum. It is available to download at no 207 

cost from the Earth Remote Sensing Data Analysis Center (ERSDAC) of Japan or the NASA’s 208 

REVERB (http://reverb.echo.nasa.gov/). ASTER GDEM is distributed as separate tiles of 209 

elevation data. Herein, the tile covering the study site was acquired from REVERB.  210 

Last but not least, an estimate of the burnt area was obtained from work that had 211 

been carried out previously in the study area. In particular, Petropoulos et al., (2011) 212 

obtained a burnt area cartography from the analysis of the same TM post-fire imagery used 213 

herein, acquired shortly after the fire extinction (i.e. July 3rd, 2007) by applying a pixel-214 

based classifier based on Support Vector Machines (Vapnik, 1995).  215 

 216 

4. METHODS 217 

All analysis of the vegetation regeneration for the studied region was carried out 218 

using ENVI (v. 5.0, ITT Visual Solutions) and ArcGIS (v. 10.1, ESRI) software platforms. An 219 

overview of the methodology implemented is depicted in Figure 2.  220 

 221 

http://reverb.echo.nasa.gov/
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4.1 Data Pre-processing 222 

All pre-processing of the spatial datasets were carried out in ENVI. TM images pre-223 

processing entailed a series of steps (Figure 2). First, for each date of TM image acquired, 224 

each spectral band was imported to ENVI and was converted to top of the atmosphere 225 

reflectance (TOA) according to the methodology described by Irons (2011). Subsequently, 226 

all the spectral bands from each acquisition date excluding the thermal infrared (i.e. band 6) 227 

were layer stacked to form a single image file corresponding to the acquisition date. Then, 228 

an empirical line normalization to all images was implemented using the pre-fire Landsat 229 

image (acquisition date: May 16th 2007) as a base (ENVI User's Guide, 2008). This is a 230 

relative atmospheric correction method which provides an easy way to correct for 231 

radiance/reflectance variations due to solar illumination condition, phenology and detector 232 

performance degradation (Latifovic et al., 2005). No further topographic correction was 233 

necessary as images were already terrain corrected. Next, the slope and aspect maps of the 234 

study region were computed from the ASTER GDEM (i.e. elevation map). Subsequently, 235 

image to image co-registration between the TM images and the ASTER DEM was performed.  236 

In order to analyze imagery from different dates, the data layers must be spatially 237 

co-registered so that satellite data are in the same spatial reference frame (Schmidt and 238 

Glasser, 1998). The TM pre–fire image was used as a base image to which all other available 239 

images were co-registered. Approximately 45 commonly identified ground control points 240 

(GCPs) were selected randomly from easily detectable corner points (e.g. road junctions). 241 

Image warping was performed by applying the nearest neighbour method, allowing a co-242 

registration of all the images into a common UTM 34N projection under a WGS84 ellipsoid. 243 

This resampling method was used to better preserve the digital number (DN)/reflectance 244 

values in the original images. To check the co-registration accuracy, the coordinates of 15 245 

additional control points not previously included in the transformation were determined 246 

from the base image used. Displacement of these points relative to the other images was 247 

examined and results showed a positional accuracy within the sensor pixel range (i.e. < 30 248 

m), which was considered satisfactory.  249 

Then, the TM images and the ASTER DEM were layered stacked and subsequently 250 

clipped to a smaller area covering an area that included the burn scar and sufficient ample 251 

land outside its perimeter. This allowed us to enhance the computational efficiency of the 252 

processing that would follow. Next, this dataset was intersected with the burnt area 253 

polygon. This last dataset was the one used in analysing the vegetation dynamics occurring 254 

within the burn scar area of the Mt. Parnitha region. Some of the datasets derived after the 255 

end of pre-processing are illustrated in Figure 3.  256 

 257 

4.2 Vegetation re-growth mapping 258 

The approach used to detect the vegetation recovery rate for the fire-affected area 259 

for the whole area under the burn scar is shown in Figure 2. Vegetation dynamics of re-260 

growth after the fire was evaluated through multi-temporal analysis of the NDVI. The latter 261 

was calculated from the R and NIR bands of each pre-processed TM image using the formula 262 

originally proposed by Rouse et al., (1973):  263 

 
NIR R

NIR R

NDVI
 

 





           (1) 264 
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    where ρNIR and ρR denote the near-infrared and the red surface spectral 265 

reflectance respectively. NDVI values can in theory scale between -1 and +1. The 266 

photosynthetic activity in plants, and their ability to strongly reflect NIR radiation, is 267 

expressed by lower reflectance in R and higher reflectance in NIR. As values approach +1, 268 

photosynthetic activity becomes very strong. Thus, NDVI is an expression related to the 269 

amount of photosyntetically active vegetation exposed to the sensor within each pixel, and 270 

typical NDVI values for vegetated areas are in general well above 0.1 (Jensen, 2000; 271 

Petropoulos and Kalaitzidis, 2011). Designed to capture the contrast between R and NIR 272 

reflection of solar radiation by vegetation, NDVI has been widely used in studies of 273 

vegetation phenology dynamics and inter-annual variability of vegetation greenness with 274 

different types of EO data including Landsat (Gouveia et al., 2008) and has proved to be 275 

particularly useful for monitoring post-fire plant regeneration dynamics (Gouveia et al., 276 

2010).  277 

Following the NDVI computation for each TM image, the derived NDVI layers were 278 

layered stacked to the pre-processed dataset (section 4.1) to form a single dataset to 279 

facilitate further analysis in the GIS environment. The dynamics of the regeneration process 280 

were subsequently analysed by comparing post-fire NDVI spatial patterns to the pre-fire 281 

pattern. This allowed determining the extent to which the pre-fire pattern was re-282 

established, and the rate of this recovery. In accordance to previous works (e.g. Hope et al. 283 

2007), descriptive statistics of NDVI within the burn scar were computed from each TM 284 

image, which together with scatter plot and non-parametric correlation analysis were used 285 

in evaluating the NDVI variations under the burnt area envelope.  286 

In the next step, relationships between vegetation recovery dynamics and aspect 287 

were investigated. Aspect analysis was conducted in ArcGIS using the aspect map produced 288 

from the ASTER GDEM. In accordance to previous studies (Wittenberg et al., 2007; Fox et al., 289 

2008), pixels with an orientation between NW (315°) and NE (45°) were classified as north 290 

facing slopes, whereas south facing slopes were classified those that had an orientation 291 

between SE (135°) and SW (225°). Pixels within the burn scar not falling within these value 292 

ranges were excluded from this type of analysis. All relevant statistical analyses were 293 

performed using SPSS v. 18 software package (SPSS Inc., Chicago, IL). 294 

 295 

5. RESULTS 296 

 Firstly the spatio-temporal patterns of vegetation re-growth dynamics established 297 

within the whole burn scar and monitored by the NDVI response were evaluated. 298 

Subsequently, the influence of topographical parameters on these dynamics was 299 

investigated. In regards to the first step, Figure 4 illustrates the NDVI maps area computed 300 

for the whole area under the burn scar and Table 1 provides the corresponding descriptive 301 

statistics. Furthermore, several NDVI difference maps were produced to assist in evaluating 302 

the spatio-temporal changes in NDVI between both before and just after the fire 303 

suppression with the post-fire conditions and all subsequent dates (Figure 5).  304 

 A visual comparison of the pre-fire NDVI with the immediate post-fire NDVI maps 305 

(Figure 4a and b) clearly shows the regional extend of the destruction of vegetation caused 306 

by the fire. This is further evidenced by the abrupt changes in the descriptive statistics of 307 

NDVI under the burnt area, when comparing the pre-fire to post-fire conditions. For 308 

example, mean NDVI for the area under the burn scar decreased from 0.499 before the fire 309 

to 0.087 after the fire. A decrease in the NDVI maximum value after fire suppression is also 310 

noticeable (from 0.789 before the fire to 0.309 after the fire) which shows that some of the 311 
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vegetation inside the burn scar was only partially destroyed by the fire. In terms of 312 

vegetation re-growth dynamics for the area, a visual inspection of the post-fire NDVI maps 313 

in combination with the associated NDVI descriptive statistics in Table 1 is indicative of 314 

vegetation regeneration taking place in the affected area. Clearly, there is a gradual but 315 

steady increase in the maximum and mean NDVI within the fire-affected region towards the 316 

pre-fire conditions (Figures 4 and 5), which is indicative of vegetation regeneration in the 317 

area. Findings also suggest that during the first two years following the fire suppression, 318 

regeneration dynamics were higher in comparison to the subsequent years (Figure 4). Also, 319 

as can be observed (Figures 4 and 5), different regeneration dynamics are prevailing within 320 

the previously burnt area, with stronger dynamics in regeneration particularly at the centre 321 

and west area of the fire-affected region in comparison to the rest of the burnt scar area.  322 

 In addition, we attempted to fit regression models on the dynamics of the 323 

regeneration process. Following other studies (e.g., Hope et al., 2007), scatterplots of the 324 

NDVI between pre-fire conditions against subsequent post-fire dates were plotted and 325 

slope, intercept and R2 statistics for the regression line plotted through the data were 326 

calculated. Figure 6 illustrates the relevant scatterplots produced and Table 2 summarises 327 

the statistics relating to those scatterplots. These data clearly mirror the patterns shown by 328 

the NDVI change maps and tables, in that they show a very slow regeneration process. 329 

Indeed, the movement of the regression line to back towards the 1:1 line with time is very 330 

progressive and gradual, and the increase in R2 value for the entire burn scar although small 331 

is also clear (Table 2).  332 

 As noted earlier, further analysis was concerned with the investigation of the 333 

patterns in vegetation regeneration dynamics - as captured from NDVI- to topographic 334 

aspect. Table 3 summarises the descriptive statistics for the NDVI across the whole area 335 

under the burn scar separately for the north- and south-facing slopes under the burn scar. 336 

Figure 7 also illustrates the spatial variation of the NDVI difference between the pre-fire 337 

and most recent to today post-fire TM image separately for the south- and north-facing 338 

slopes. In common to the analysis conducted earlier, we also attempted to fit regression 339 

models to quantitatively investigate the correlation between post-fire recovery dynamics 340 

and aspect. As can be observed from these results (Table 4), the general trajectory of 341 

regeneration on north-facing slopes and south-facing slopes also appears to be very slow. 342 

Yet, some differences are indeed apparent. A greater level of vegetation destruction is 343 

evident on north-facing slopes compared to south-facing slopes and the burnt area in 344 

general (a decrease in NDVI of 0.43 on north facing slopes compared to 0.39 on south facing 345 

slopes and 0.41 on the burn scar in general). Post-fire regeneration seems to be faster on 346 

north-facing slopes in comparison to south-facing slopes. For example, mean NDVI on 347 

north-facing slopes increased from 0.09 to 0.30 between July 2007 and July 2009 and then 348 

to 0.34 in August 2011, after a very slow period with no real increase in NDVI between July 349 

2009 and August 2010. On south facing slopes the increase appears lower, from 0.09 to 0.22 350 

between July 2007 and July 2009 and then to 0.25 in August 2011. The percentage increase 351 

in regenerated vegetation by August 2010 was similar on north- and south-facing slopes. On 352 

the north-facing and south-facing subsets, the highest regeneration was observed in the 353 

period immediately following the fire (July 2007-July 2009). After very slow (if not 354 

negligible) regeneration between July 2009 and August 2010, the rate of vegetation 355 

regeneration then increased during the most recent time period. These data also confirm 356 

the faster regeneration on north-facing slopes compared to south-facing slopes, with higher 357 

slopes and R2 values in all cases (R2 values of scatterplots on north-facing slopes were 358 

double that of south-facing slopes for the two most recent time intervals). 359 
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 360 

6. DISCUSSION 361 

The results presented here indicate the large degree of spatial variability in terms of 362 

vegetation regeneration in the study region. They also underline the significance of 363 

wildfires such as that occurred on Mt. Parnitha as agents of vegetation destruction and 364 

modifiers of the landscape. Results also clearly show that vegetation regeneration in the 365 

affected area is a process that can potentially take a long time. Indeed, four years after the 366 

fire the landscape had still not reached pre-fire vegetation coverage; in fact NDVI levels had 367 

only just passed half their original pre-fire levels. This is in common with previous studies 368 

of the fire regeneration of vegetation on Mount Parnitha and Mount Taygetos in Greece 369 

(Arianoutsou et al., 2010). Yet, those contrast those reported by Wittenberg et al., (2007) 370 

who showed that vegetation had recovered to pre-fire conditions within five years in Mount 371 

Carmel, Israel, even following multiple fires. The fact that the greatest regeneration was 372 

observed during a two year interval may be significant when comparing to lower 373 

regeneration during subsequent time intervals which were only one year long, or this 374 

pattern could reflect the rapid regrowth of vegetation immediately following the fire, and 375 

more gradual vegetation regrowth during subsequent periods as soil and hydrological 376 

characteristics improved.  377 

Arianoutsou et al (2010) found that the recovery for tree species (Abies cephalonia 378 

and Pinus nigra) was likely to be slow in general, with some localised differences in 379 

common with fire-disturbed ecosystems elsewhere in the Mediterranean (Southern Spain – 380 

Clemente et al., 2006 and Mayor et al., 2007; Portugal - Gouveia et al., 2010), in the United 381 

States (Chen et al., 2011) and Indonesian Borneo (Hoscilo et al, 2013). The concentration of 382 

dark green regions (indicating higher NDVI) in the central areas of the burn scar region in 383 

2009, 2010 and 2011 (Figure 4) and the orange and red areas in Figure 5 and Figure 7 384 

(indicating greater regeneration) indicate that vegetation regeneration was focused to a 385 

greater extent on these areas. This point to a spatial heterogeneity in vegetation and 386 

landscape response as a result of more localized factors. This more complex pattern of 387 

vegetation regeneration is also in good agreement with many studies (e.g. Inbar et al., 1998) 388 

reporting very fast regeneration rates within the first two years following wildfires and 389 

many other authors finding that regeneration was faster on north-facing slopes compared 390 

to south-facing slopes (e.g. Inbar et al., 1998; Pausas and Vallejo, 1999; Cerdá and Doerr, 391 

2005; Fox et al., 2008).  392 

Many studies (e.g. Gouveia et al., 2008, 2009) have identified that water availability is 393 

a major limiting factor on fire frequency and regeneration because vegetation is generally 394 

more dense in wetter areas compared to drier areas (Gouveia et al., 2010). In Greece, as well 395 

as the wider Mediterranean region, some studies suggest that hydrological changes (e.g. 396 

more frequent droughts) could lead to an increased frequency of fires similar to that of June 397 

2007 and that forest fires are increasingly occurring in higher latitude areas and at higher 398 

altitudes, where the forest species, in contrast to those growing at lower altitudes and 399 

latitudes in the Mediterranean regions, have not developed a regenerative response to 400 

regular disturbance by fire (Arianoutsou et al., 2010; Retana et al., 2012). If this is the case, 401 

then it is likely that it will be increasingly difficult for landscapes to recover to pre-fire 402 

conditions as the recovery process has been shown to be relatively long. As the present 403 

work has shown, the Mt. Parnitha burn scar area had not recovered to half its pre-fire 404 

vegetation levels within four years. If this region suffered further fires, then the resilience 405 

and sustainability of this economically and culturally valuable ecosystem would inevitably 406 

be threatened as has been shown in other regions of Greece (Christakopoulos et al., 2007). 407 



Page | 10  

 

One of the key factors that need to be considered when planning for the effects of 408 

such wildfires is the species composition of the ecosystems. Ganatsas et al., (2012) and 409 

Arianoutsou et al., (2010) have both demonstrated that the slow regeneration of vegetation 410 

(especially A. cephalonia) on the burn scar in Mt. Parnitha is, in part, due to the fact that they 411 

are obligate seeders whose seeds ripen in August. These seeds may be destroyed during 412 

summer wildfires and as such will not be able to regenerate. Ecosystem recovery in forests 413 

dominated by these species is then likely to be dominated by scrubland species, rather than 414 

the original forest species. This pattern was observed by Crotteau et al., (2013) in the 415 

southern Cascades, USA, where regions which had high-severity burns were dominated by 416 

greater shrub coverage. Puerta-Piñero et al. (2010) showed that long-standing, stable forest 417 

areas display faster regeneration than younger forests. The implications of this for the long 418 

term sustainability of these types of ecosystems in a future of more frequent fires are 419 

significant since forests may not be allowed the time to develop into stable communities that 420 

are able to recover quickly. The resilience of these ecosystems, will, therefore, be 421 

significantly reduced under a regime of increased fire frequency (Diaz-Delgado et al., 2002).  422 

In common with analogous studies conducted elsewhere (e.g. on the Iberian 423 

Peninsula – Pausas and Vallejo, 1999, Cerdá and Doerr, 2005; SE France – Fox et al., 2008; 424 

Mt. Carmel, Israel - Kutiel, 1994, Inbar et al. 1998; Wittenberg et al. 2007) it is also clear that 425 

aspect is a key control on the rate of vegetation regeneration. It is likely that this reflects the 426 

local effects of microclimate on hydrological processes which play an important role in 427 

triggering vegetation re-growth. Such differences in post-fire regeneration can both reflect 428 

and influence localised hydrological variability through soil hydrophobicity (Cerdá and 429 

Doerr, 2005) and changes in overland flow patterns and soil erosion, especially through 430 

destroying protective vegetation and litter on the forest floor (Shakesby and Doerr, 2006). 431 

Mayor et al., (2007) showed that sediment yield and runoff in an unburned catchment in 432 

Spain were considerably less than in burned catchments, for six years following a wildfire. In 433 

small, upland catchments in particular, this may have significant impacts on flood risk.  434 

This study has focused on changes in land cover over a relatively short period (2007-435 

2011). However, it is recognised that post-fire ecosystem recovery is historically contingent 436 

and can be a function of pre-fire forest cover, land-use, species composition and fire history 437 

(Gouveia et al., 2010; Puerta-Piñero et al., 2010) and more long term land cover and fire 438 

history is needed in order to fully understand ecosystem dynamics (Chen et al., 2011). 439 

Analysis of historical maps, aerial photography and other documentary evidence may 440 

augment the high resolution spatial data provided by EO data. Historical reconstructions, 441 

similar to that performed by Korb et al., (2012) in south west Colorado, USA, can be 442 

particular useful when compared with more recent data. One of the principal areas in which 443 

EO could be deployed in this field is through the remote sensing of soil moisture (Bourgeau-444 

Chavez et al., 2007). In addition, it would be instructive to complement the inter-annual 445 

measurements of regeneration provided by EO data with intra-annual and seasonal data in 446 

order to provide a more complete picture of land cover dynamics following wildfires 447 

(Lhermitte et al., 2011). At this point, it is also worthwhile to note that it was not possible to 448 

quantify uncertainties in the DEM used to derive the topographical information for the study 449 

area (elevation, slope, aspect), and included herein. As such, potential inaccuracies in the 450 

predictions of these parameters and their relationships to the ecosystem recovery dynamics 451 

identified in the area could not be incorporated in the analysis and the results 452 

interpretation. Results are, however, in line with other studies examining the relationships 453 

between post-fire vegetation recovery and topographic parameters (Díaz-Delgado et al., 454 
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2003; Wittenberg et al., 2007; Fox et al., 2008), which also did not conduct any kind of 455 

analysis to examine such relationships.  456 

Accurate assessments of vegetation recovery in burnt areas requires not only a 457 

qualitative analysis (species, communities), but also the determination of abundance 458 

(vegetation cover, Leaf Area Index, biomass). The results of this study imply that routine 459 

assessment of a restoration process can be possible from the synergy of EO and GIS, 460 

providing that suitable imagery is available at no cost and at regular time intervals. As 461 

wildfires in Mediterranean areas and similar ecosystems across the globe are causing 462 

significant changes to land cover and pose a serious threat to ecosystem resilience, the 463 

complex, multi-scale cooperation required to effectively plan for, and manage the effects of 464 

these fires (described by Morehouse et al., 2011) can be aided by the use of EO data such as 465 

Landsat data. Such analysis, should, evidently, be combined with ground-truthed high-466 

resolution (both spatial and temporal) ecological surveys wherever possible. Images 467 

acquired at annual (or even sub-annual) resolution would be ideal as it would enable us to 468 

adequately factor seasonal and phenological factors in to the analyses. Such analyses would 469 

allow us to obtain a more detailed understanding of the response of such critical ecosystems 470 

to disturbance by fire. In a future of increased wildfire frequency as a result of climate 471 

change, such information is essential for ensuring landscape and ecosystem sustainability.  472 

In conclusion, it should be noted that the present study has focused on exploring 473 

vegetation re-growth based on the use of NDVI but without distinguishing between different 474 

vegetation types in the regeneration dynamics. This can be considered as a downside of the 475 

approach followed herein, given that knowledge of vegetation types and conditions is 476 

required to better understand and interpret the nature of the wildland fire damage (Milne, 477 

1986). Yet, NDVI is a parameter that can provide information on vegetation green biomass 478 

amount, which essentially is what is needed when decision need to be taken in forest 479 

management and planning, thus making it a very useful tool from a practical point of view 480 

(Malak and Pausas, 2006). Furthermore, it will be interesting in future work to explore the 481 

spatio-temporal relationships of vegetation re-growth with other factors, such as the type of 482 

the actual fuel burnt, slope angle or soil type.  483 

 484 

7. CONCLUSIONS 485 

In this study an analysis of vegetation recovery dynamics in a Mediterreanean 486 

ecosystem of high environmental and socio-economical importance impacted by a 487 

significant wildfire based on the analysis of multiple Landsat TM images was presented. 488 

These EO data were integrated in a GIS framework to enable the analysis of changes in NDVI 489 

on a burn scar on Mount Parnitha, Greece, on four dates following the fire that occurred on 490 

June 2007. These changes enabled us to assess the regeneration of the ecosystem after the 491 

fire and to also explore the spatio-temporal variation of vegetation regeneration dynamics 492 

in respect to topographic aspect.  493 

Results suggested a very slow post-fire recovery, with the post-fire NDVI spatial 494 

pattern showing a relatively rapid regeneration in the two years following the fire, but 495 

becoming more gradual in subsequent years. It appears that vegetation in the fire-affected 496 

area has not yet reached pre-fire conditions and results suggest that it may take a number 497 

of years for this to occur. Interestingly, results suggested as well that north-facing slopes 498 

exhibited a slightly faster rate of recovery compared to south-facing slopes. This might be 499 

due to more favourable micro-climatic and hydrological conditions for vegetation growth in 500 

these areas. In this respect, similar findings have been reported by other investigators 501 
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examining the effect of topography on post-fire vegetation regeneration in Mediterranean 502 

ecosystems and elsewhere.  503 

An understanding of the spatial patterns of vegetation re-growth dynamics in fire-504 

affected areas can assist to better appreciate post-fire landscape processes, which can 505 

subsequently aid restoration actions in the affected region. In addition, the present study 506 

contributes to the understanding of Mediterranean landscape dynamics, and corroborates 507 

the usefulness of NDVI in post-fire regeneration assessment. Last but not least, it confirms 508 

that EO technology and GIS analysis techniques can provide a potentially operational 509 

solution to support local studies of land cover restoration after wildfires, provided that 510 

satellite imagery can be acquired at regular time intervals over a given region.  511 
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Subject: Research Highlights of submitted paper 
 

 

1. Investigate ecosystem recovery dynamics following a fire event occurred in a 

Mediterranean region, exploiting free distributed EO imagery and GIS analysis 

techniques. 

 

2. Explore the spatio-temporal relationships of re-growth dynamics under the burn scar 

to topographical characteristics of the fire-affected area.  

 

3. Findings can be helpful in restoration efforts taking place in the affected area, that 

being a setting of high ecological, environmental and cultural importance for the local 

community and not only.  

  

4. Our work contributes to the understanding Mediterranean landscape dynamics, and 

corroborates the practical usefulness of EO technology and GIS as an effective tool in 

policy decision making and successful landscape management, potentially as an 

operation service solution.   

*Highlights (for review)
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Figure 1: Study area location in Greece (indicated by the red colored box) 

Figure



 
 

Figure 2: Overall methodology implemented in our study for analyzing the regrowth dynamics of 

the studied region using the TM data. 

 

 

 

 



 
Figure 3: An illustration of some key datasets derived upon completion of the pre-processing steps. 

From left to right: a) the initial subset of the study area on the TM image acquired on July 3rd, 2000,  

(b) the masked area inside the burnt area envelope for the same image, (c)elevation and (d) aspect 

maps of the area covered by the burnt area envelop derived from ASTER Global Digital 

Elevation (GDEM) product.  

 

 

 

 



 
Figure 4: NDVI maps computed from the pre-processed Landsat TM images: (a) May 16th, 2007, (b) July 3rd, 2007, (c) July 24, 2009, (d) August 13th,, 2010 & 

and (e) August 15th, 2011.  The variation in the NDVI ranges between the different days of observation is evident. 



 
Figure 5: NDVI difference maps for the area under the burn scar, here between the post fire image in 2007 and 

all TM images after the fire suppression.  

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Scatterplots of pre-fire NDVI (May 2007) against (a) post-fire July 2007 (b) July 2009, (c) August 2010 and 

(d) August 2011. It can be observed the gradual increase of the slope to pre-fire conditions, which is suggesting re-

growth in the area.  
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Figure 7: NDVI difference maps for the area under the burn scar, here between the pre-fire image and the most recent postfire image acquired in 2011 for a) 

the entire study area b) north facing slopes only and (c) south facing slopes only.  

 

 



List of Tables: 

 

Table 1: NDVI changes for the area under the burn scar 

 NDVI 

Landsat TM 
image date 

Min  Max  Mean  Stdev  

16/05/2007 0.101 0.789 0.499 0.071 

03/07/2007 -0.114 0.309 0.087 0.052 

24/07/2009 0.083 0.597 0.259 0.092 

12/08/2010 0.082 0.608 0.264 0.090 

15/08/2011 -0.016 0.642 0.298 0.097 

 

 

Table 2: Scatterplot and correlation/regression analysis of the NDVI before and after the fire event for 

the whole area under the burn scar 

 

 

 

 

Period Slope Intercept R2 

May 2007-July 2007 

May 2007-July 2009 

May 2007 – August 2010 

May 2007-August 2011 

-0.215   

0.495  

0.567  

0.630  

0.194 

0.012 

- 0.019 

- 0.017 

0.086 

0.148 

0.202 

0.215 

Table



Table 3: NDVI changes for the area under the burn scar, separately for:   (A):  north 

facing,  and, (B)  south facing slopes. 

 

 NDVI 

(A).  North facing slopes only 

Landsat TM 
image date  

Min  Max  Mean  Stdev  

16/05/2007 0.104 0.716 0.515 0.069 

03/07/2007 -0.114 0.295 0.085 0.052 

24/07/2009 0.099 0.597 0.300 0.090 

12/08/2010 0.087 0.608 0.302 0.088 

15/08/2011 0.095 0.622 0.340 0.094 

  

(B).  South facing slopes only 

Landsat TM 
image date  

Min  Max  Mean  Stdev  

16/05/2007 0.116 0.719 0.478 0.070 

03/07/2007 -0.015 0.295 0.087 0.050 

24/07/2009 0.083 0.526 0.218 0.077 

12/08/2010 0.090 0.538 0.224 0.077 

15/08/2011 0.026 0.582 0.253 0.083 

 

 

Table 4:  Scatterplot and correlation/regression analysis of the NDVI before and after the 

fire event separately for the north and south facing slopes only 

 

Period Slope Intercept R2 

May 2007-July 2007 

North facing 

South facing 

May 2007-July 2009 

North facing 

South facing 

May 2007 – August 2010 

North facing 

South facing 

May 2007-August 2011 

North facing 

South facing 

 

-0.239   

-0.205   

 

0.537  

0.356   

 

0.641  

0.392  

 

0.716  

0.445  

 

0.2090 

0.185 

 

0.023 

0.048 

 

- 0.028 

0.037 

 

- 0.030 

0.042 

 

0.103 

0.081 

0.171 

0.103 

 

0.253 

0.125 

 

0.276 

0.139 
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