
Aberystwyth University

Feedback Network Models for Quantum Transport
Gough, John

Published in:
Physical Review E

DOI:
10.1103/PhysRevE.90.062109

Publication date:
2014

Citation for published version (APA):
Gough, J. (2014). Feedback Network Models for Quantum Transport. Physical Review E, 90, [062109].
https://doi.org/10.1103/PhysRevE.90.062109

General rights
Copyright and moral rights for the publications made accessible in the Aberystwyth Research Portal (the Institutional Repository) are
retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the Aberystwyth Research Portal for the purpose of private study or
research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the Aberystwyth Research Portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

tel: +44 1970 62 2400
email: is@aber.ac.uk

Download date: 09. Jul. 2020

https://doi.org/10.1103/PhysRevE.90.062109
https://doi.org/10.1103/PhysRevE.90.062109


PHYSICAL REVIEW E 90, 062109 (2014)

Feedback network models for quantum transport

John Gough*

Aberystwyth University, Aberystwyth SY23 3BZ, United Kingdom
(Received 29 August 2014; published 3 December 2014)

Quantum feedback networks have been introduced in quantum optics as a framework for constructing arbitrary
networks of quantum mechanical systems connected by unidirectional quantum optical fields, and has allowed
for a system theoretic approach to open quantum optics systems. Our aim here is to establish a network
theory for quantum transport systems where typically the mediating fields between systems are bidirectional.
Mathematically, this leads us to study quantum feedback networks where fields arrive at ports in input-output
pairs, making it a special case of the unidirectional theory where inputs and outputs are paired. However,
it is conceptually important to develop this theory in the context of quantum transport theory—the resulting
theory extends traditional approaches which tend to view the components in quantum transport as scatterers
for the various fields, in the process allowing us to consider emission and absorption of field quanta by these
components. The quantum feedback network theory is applicable to both Bose and Fermi fields, moreover, it
applies to nonlinear dynamics for the component systems. We advance the general theory, but study the case of
linear passive quantum components in some detail.

DOI: 10.1103/PhysRevE.90.062109 PACS number(s): 03.65.−w, 05.60.Gg, 02.30.Yy, 42.50.Lc

I. INTRODUCTION

The aim of this paper is to extend the formalism of quantum
feedback networks [1,2] from their current applications in
quantum optical and, more recently, optomechanical systems,
into the rapidly developing field of quantum transport net-
works. In quantum optics applications, one usually treats the
noise fields interacting with the system as unidirectional. In the
input-output approach of Gardiner and Collett (see Ref. [3]),
this arises naturally and may be understood as a specific case
of the Lehmann-Symanzik-Zimmermann (LSZ) formalism of
quantum field theory, however, physically this is also justified
by the fact that bidirectional quantum optical fields may always
be made unidirectional by using an optical isolator.

The quantum feedback network theory is built on the gen-
eral theory of open quantum stochastic evolutions developed
by Hudson and Parthasarathy [4], which goes beyond Gar-
diner’s theory by allowing the system to scatter noise quanta
as well as emit and absorb them—now generally referred to as
the SLH formalism, which we recall in the next section.

There has been an increasing motivation to develop control
theory for quantum transport models. An example is the control
of solid state cavity quantum electrodynamics (QED) devices
(see, e.g., Refs. [5,6] for superconducting qubit examples),
which replaces traditional photonic systems as hardware. This
has spurred the application of control theoretic techniques,
originally devised to control quantum optical devices, to
different settings. Coupling a QED cavity to a quantum dot has
been shown to allow control of the cavity reflectivity [7], as
well as the possibility to generate nonclassical states of light [8]
(see Refs. [9,10] for an overview of recent applications to
photonics and quantum dots in photonic-crystal technologies).
Quantum dots have also been used to stabilize mesoscopic
electric currents by means of feedback [11], with proposals
for delayed feedback [12] and stabilization of pure qubit
states [13]. As with quantum optical devices, there has been a
move away from table top experimental setups towards on-chip
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devices, and strong photon-photon interactions have been
shown to be implementable on integrated photonic chips were
quantum dots embedded in photonic-crystal nanocavities [14].

A first step in extending quantum feedback networks to
quantum transport problems has been made in Ref. [15]: Here,
control methodologies were introduced for purely scattering
models. However, we now wish to extend the theory to
general linear systems which allow for more general models
of dissipation. This leads to the framework in which to apply
the standard techniques of measurement-based and coherent
quantum feedback techniques. We expect that the theory
presented here should be readily implementable with existing
toolboxes for simulating quantum feedback networks [16,17].

Although the theory is applicable to general coupling of the
fields to the components, we will develop the linear theory in
some detail. Here the chain-scattering representation proves
to be the essential concept. We point out that there exists a
well-developed theory of control based on this approach due
to Kimura [18], and which we exploit here. The results on
lossless systems are particularly relevant to the linear passive
models which we consider here. We also wish to acknowledge
the prior work of Yanagisawa and Kimura [19,20] on quantum
linear models, which as far as we know was the first to apply
chain-scattering techniques to linear quantum networks.

For transparency we restrict to passive systems [21],
however, it is clear that many of the results presented here
should carry over to quantum transport networks having active
components [22].

II. SLH FORMALISM

For open Markov systems driven by n vacuum noise inputs,
the model is specified by a triple

G ∼ (S,L,H ),

referred to as the set of Hudson-Parthasarathy coefficients, or
more prosaically as the “SLH.” Their roles are to describe
respectively the input-to-output scattering S = [Sjk] of the
external noise fields bk(t), the coupling L = [Lj ] of the noise
to the system, and the internal Hamiltonian H of the system.
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The SLH formalism for quantum Markov models deals with the category of models

S =

⎡
⎢⎣

S11 · · · S1n

...
. . .

...
Sn1 · · · Snn

⎤
⎥⎦ , L =

⎡
⎢⎣

L1
...

Ln

⎤
⎥⎦ , H,

where the Sjk,Lk,H are operators on the component system Hilbert space.
These may be assimilated into the model matrix

V =
[
− 1

2L∗L − iH −L∗S

L S

]
=

⎡
⎢⎢⎢⎣

− 1
2

∑
j L∗

jLj − iH −∑
j L∗

j Sj1 · · · −∑
j L∗

j Sjm

L1 S11 · · · S1n

...
...

. . .
...

Ln Sn1 · · · Snn

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎣

V00 V01 · · · V0m

V10 V11 · · · V1n

...
...

. . .
...

Vn0 Vn1 · · · Vnn

⎤
⎥⎥⎦ .

We recall briefly the class of Markov models for open
quantum systems. The system with Hilbert space h driven
by n independent Bose quantum processes with Fock space F

will have a unitary evolution VG(t) on the space h ⊗ F, where
VG(t) is the solution to the quantum stochastic differential
equation [4]

dVG(t) = {
(Sjk − δjk) ⊗ d�jk(t) + Lj ⊗ dB∗

j (t)

−L∗
j Sjk ⊗ dBk(t) − (

1
2L∗

kLk + iH
) ⊗ dt

}
VG(t),

with initial condition VG(0) = I . (We adopt the convention
that repeated latin indices imply a summation over the range
1, . . . ,n.) Formally, the Bose noise can be thought of as
arising from quantum white noise processes bk(t) satisfying
the singular of commutation relations

[bj (t),bk(s)∗] = δjkδ(t − s),

with

Bj (t) =
∫ t

0
bj (s)ds, B∗

j (t) =
∫ t

0
bj (s)∗ds,

�jk(t) =
∫ t

0
bj (s)∗bk(s)ds.

The conditions guaranteeing unitarity are that S = [Sjk] is
unitary, L = [Lj ] is bounded, and H self-adjoint. In the
autonomous case we may assume that the operator coefficients
Sjk,Lj ,H are fixed system operators, however, there is little
difficulty in allowing them to be time dependent, or, more
generally, be adapted processes, that is, Sjk(t),Lj (t),H (t)
depend on the noise up to time t . The process VG(t) will
inherit this adaptedness property. (See Fig. 1.)

For a fixed system operator X we set

jG
t (X) � VG(t)∗[X ⊗ I ]VG(t). (1)

Then from the quantum Itō calculus [4] we get the Heisenberg-
Langevin equations,

djG
t (X) = jG

t (LjkX) ⊗ d�jk(t) + jG
t (Lj0X) ⊗ dB∗

j (t)

+ jG
t (L0kX) ⊗ dBk(t) + jG

t (L00X) ⊗ dt, (2)

where the Evans-Hudson superoperators Lμν are explicitly
given by

LjkX = S∗
ljXSlk − δjkX,

Lj0X = S∗
lj [X,Ll], L0kX = [L∗

l ,X]Slk

L00X = 1
2L∗

l [X,Ll] + 1
2 [L∗

l ,X]Ll + i[X,H ].

In particular, L00 takes the generic form of a Lindblad
generator.

The output processes are then defined to be

Bout
j (t) � VG(t)∗[I ⊗ Bj (t)]VG(t).

Again using the quantum Itō rules, we see that

dBout
k = jG

t (Skl)dBl(t) + jG
t (Lk)dt.

The input-output relations for the column vector Bout =
[Bout

j ] can be written as a Galilean transformation,[
dtout

dBout(t)

]
= jG

t (M)

[
dt

dB(t)

]
, M =

[
1 0
L S

]
.

FIG. 1. (Color online) A component representing a quantum
mechanical system driven by several input fields. There will be the
same number of output fields. It is often convenient to think of grouped
inputs with multiplicity greater than one, as in the lower figure.
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FIG. 2. (Color online) Several SLH models run in parallel: They
may be collected into one single SLH model.

A. Networks

The rules for construction arbitrary network architectures
were derived in Ref. [1].

1. Parallel sum rule

If we have several quantum Markov models with indepen-
dent inputs, then they may be assembled into a single SLH
model (see Fig. 2),

�n
j=1(Sj ,Lj ,Hj )

=

⎛
⎜⎝

⎡
⎢⎣

S1 0 0

0
. . . 0

0 0 Sn

⎤
⎥⎦ ,

⎡
⎢⎣

L1
...

Ln

⎤
⎥⎦ ,H1 + · · · + Hn

⎞
⎟⎠ .

Note that the components need not be distinct—that is,
observables associated with one component are not assumed
to commute with those of others. In this case the definition is
not quite so trivial as it may first appear.

2. Feedback reduction rule

If we wish to feedback an output back in as an input, we
obtain a reduced model, as depicted in Fig. 3.

The feedback reduction yields the model matrix [1]

[F(r,s)(V,T )]αβ = Vαβ + VαrT (1 − VrsT )−1Vsβ (3)

FIG. 3. (Color online) We feed selected outputs back in as inputs
to get a reduced model.

FIG. 4. (Color online) An arbitrary quantum feedback network.

for α �= r and β �= s. We remain in the category of SLH models
provided that T is unitary and the network is well posed, that
is, 1 − VrsT is invertible.

3. Construction

If, for instance, we wished to determine the effective SLH
model for the network shown in Fig. 4, then we would
proceed as follows: First of all, we disconnect all the internal
lines, and this leaves us with an “open-loop” description
where all the components are have independent inputs and
outputs. At this stage we use the parallel sum to collect all
these components into a single open-loop quantum Markov
component. The next step is to make the connections and this
involves feeding selected outputs back in as inputs from the
open-loop description, and to this end we use the feedback
reduction formula. This process has recently been automated
using a workflow capture software QHDL [16,17].

B. Systems in series

The simplest model consists of two systems cascaded
together, as shown in Fig. 5, and is equivalent to the single
component (see Ref. [2]),

(S2,L2,H2) � (S1,L1,H1)

= (S2S1,L2 + S2L1,H1 + H2 + Im{L†
2S2L1}).

We refer to G = G2 � G1 above as the series product of the
G1 and G2. It is an associative, but clearly noncommutative,
product on the class of suitably composable SLH models.

C. Fermion fields

In the above, we have set out the theory for bosonic field
inputs, however, in many applications to quantum transport it
would be natural to also consider fermionic fields. We are in
the fortunate situation that the quantum stochastic calculus has
a fermionic version where we may consider anticommuting
fields bin

k (t),bin†
k (t). The theory turns out to be structurally

FIG. 5. (Color online) Systems in series.

062109-3



JOHN GOUGH PHYSICAL REVIEW E 90, 062109 (2014)

FIG. 6. (Color online) Single component with multiple lead
contacts.

identical to the Bose theory provided the S and H operators
are even parity (commuting with the fields) and the L operators
are odd (anticommuting with the fields). The theory of fermion
quantum stochastic calculus is presented in Ref. [23].

III. QUANTUM TRANSPORT NETWORKS

In quantum transport models we encounter devices which
may have several contact points (or leads) that accept quantum
field signals. For definiteness, let us label the leads as
1,2, . . . ,m and let nk denote the multiplicity of the kth lead.
Our aim is to describe these devices as open quantum Markov
models using the SLH formalism, and to develop network rules
to describe interconnected quantum transport components.
(See Fig. 6.)

The main difference between the quantum transport models
and quantum feedback networks is that in the former the fields
are bidirectional while in the latter they are unidirectional.
This means that we may use the SLH models to describe
quantum transport components, but typically have to have both
an input and an output field to model each field terminating
at a given lead (see Fig. 7). As such, the quantum transport
models can be thought of as a special form of the SLH model,
and their networks as a restricted class of quantum feedback
networks.

A two-lead system is sketched in Fig. 8 (for simplicity we
may assume that each lead has multiplicity one, but this readily
extends to multiple fields) and we formally identify this as a
two-input, two-output port SLH system with

S =
[
S11 S12

S21 S22

]
, L =

[
L1

L2

]
, H.

The usual convention of displaying an SLH model, with
all inputs on one side and all outputs on the other, needs to
be modified so that we end up with both input 1 and output
1 on one side, and both input 2 and output 2 on the other.
The transmission and reflection coefficients are listed in Fig. 9
and we identify the matrix S with the usual quantum transport

FIG. 7. (Color online) A bidirectional contact may be considered
as an equivalent unidirectional input/output pair.

FIG. 8. (Color online) A two-lead quantum transport device is
naturally modeled as a two-input, two-output SLH component.

FIG. 9. (Color online) The usual input/output description is mod-
ified to have inputs and outputs corresponding to a given lead all
appearing grouped on one side.

FIG. 10. (Color online) A pair of cascaded quantum transport
systems is reinterpreted as a quantum feedback network.

FIG. 11. (Color online) The algebraic loop appearing in the
cascaded quantum transport setup in Fig. 10.
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scattering matrix as

S =
[
SYY SYX

SXY SXX

]
≡

[
r t ′
t r ′

]
. (4)

Quantum transport components in series

Our first step to build a network is to place two components,
A and B, in series, as shown in Fig. 10. Here we connect
the quantum transmission line between two contact leads,
as indicated in the upper part. In the SLH framework, we
connect up the inputs and outputs, as shown in the lower part
of Fig. 10.

Let us take the SLH description of device A to be

GA ∼
(

SA =
[
S−+

A S−−
A

S++
A S+−

A

]
,LA =

[
L−

A
L+

A

]
,HA

)
,

with a similar convention for B. Here the indices + and −
indicate right and left propagating noise fields.

The situation of two quantum transport systems in series
differs dramatically from the series product for unidirectional
networks as now we have the presence of an algebraic feedback
loop (see Fig. 11).

In particular, we need the feedback reduction formula (3)
of Ref. [1] to compute the resulting SLH. The construction is
a Redheffer star product, and is given by (see Ref. [1])

GA�B ∼ (SA�B,LA�B,HA�B),

where

SA�B =
[
S−+

A + S−−
A W−+

BABS++
B S−−

A Z−
BAS−−

B

S++
B Z+

ABS++
A S+−

B + S++
B W+−

ABAS−−
A

]
,

LA�B =
[
L−

A + S−−
A Z−

BA(L−
B + S−+

B L+
B),

L+
B + S++

B Z+
AB(L+

A + S+−
A L−

B)

]
, (5)

HA�B = HA + HB + Im

{
[L+†

A + L
+†
B S++

B ,L
−†
B + L

−†
A S−−

A ]
[

Z+
AB W+−

ABA

W−+
BAB Z−

BA

] [
L+

A

L−
B

]}
,

with the following operators arising from the algebraic loop:

Z+
AB = (1 − S+−

A S−+
B )+1,

Z−
BA = (1 − S−+

B S+−
A )+1,

W+−
ABA = S+−

A Z−
BA = Z+

ABS+−
A ,

W−+
BAB = S−+

B Z+
AB = Z−

BAS−+
B .

IV. QUANTUM LINEAR PASSIVE MARKOV MODELS

It is convenient to assemble the inputs into the following
column vectors of length n,

bin(t) =

⎡
⎢⎣

b1(t)
...

bn(t)

⎤
⎥⎦ .

The input-output relations may then be written more compactly
as bout(t) = jt (S) bin(t) + jt (L).

We now specialize to a linear model of a quantum
mechanical system consisting of a family of harmonic
oscillators {aj : j = 1, . . . ,m} with canonical commutation
relations [aj ,ak] = 0 = [a†

j ,a
†
k] and [aj ,a

†
k] = δjk . We collect

into column vectors:

a =

⎡
⎢⎣

a1
...

am

⎤
⎥⎦ . (6)

Our interest is in the general linear open dynamical system
and this corresponds to the following situation: (1) The Sjk are
scalars. (2) The Lj ’s are linear, i.e., there exist constants cjk

such that Lj ≡ ∑
k cjkak . (3) H is quadratic, i.e., there exist

constants ωjk such that H = ∑
jk a

†
jωjkak .

The complex damping is 1
2L†L + iH = −a†Aa, where

A = − 1
2C†C − i�, (7)

with C = (cjk) and � = (ωjk). Note that � = �† because H

is self-adjoint, hence the real part of A is − 1
2C†C � 0.

The Heisenberg-Langevin equations for a(t) = jt (a) and
the input-output relations then become

ȧ(t) = Aa(t) − C†Sb(t), bout(t) = Sb(t) + Ca(t).

These linear equations are amenable to Laplace transform
techniques [19,20]. We define for Re s > 0,

X[s] =
∫ ∞

0
e−stX(t)dt,

where X is now any of our stochastic processes. Note that
ȧ[s] = sa[s] − a. We find that

a[s] = −(sIm − A)−1C†Sbin[s] + (sIm − A)−1a,

bout[s] = Sbin[s] + Ca[s].

The operator a[s] may be eliminated to give

bout[s] = 	(s) bin[s] + ξ (s)a, (8)

where the transfer matrix function is

	(s) � S − C(sIm − A)−1C†S, (9)

and ξ [s] = C(sIm − A)−1.
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If we average over the vacuum state of the environment,
then we would find that d

dt
〈a(t)〉vac = A〈a(t)〉vac. The system

is said to be internally stable if 〈a(t)〉vac → 0 as t → ∞. This
occurs if and only if A is Hurwitz, that is, all its eigenvalues
have a negative real part.

As an example, consider a single mode cavity coupling
to the input field via L = √

γ a, and with Hamiltonian H =
ωa†a. This implies A = −( γ

2 + iω) and C = √
γ . If the

output picks up an additional phase S = eiφ , the corresponding
transfer function is then computed to be

	cavity(s) = eiφ
s + iω − γ

2

s + iω + γ

2

. (10)

For a single mode a with two inputs bin
1 and bin

2 , the choice

S =
[

1 0
0 1

]
, C =

[√
γ1√
γ2

]
, � = ω0

describes the damped harmonic oscillator with unperturbed
Hamiltonian H = ω0a

†a and coupling operators L1 = √
γ1a

and L2 = √
γ2a to the respective inputs. The transfer function

is then

	(s) = 1

s + 1
2 (γ1 + γ2) + iω0

×
[
s − 1

2γ1 + 1
2γ2 + iω0

√
γ1γ2

√
γ1γ2 s + 1

2γ1 − 1
2γ2 + iω0

]
.

(11)

The models are therefore determined completely by the
matrices (S,C,�) with S ∈ Cn×n, C ∈ Cn×m, and � ∈ Cm×m,
which of course give the SLH coefficients. We shall use the
convention [ A B

C D ](s) = D + C(s − A)−1B for matrices

A ∈ Cm×m, B ∈ Cm×n, C ∈ Cn×m, and D ∈ Cn×n, and write
the transfer matrix function as

	(s) =
[
A −C†S
C S

]
(s), (12)

where A = − 1
2C†C − i�. We note the decomposition

	 = [In − C(sIm − A)−1C†]S ≡
[
A −C†

C In

]
S.

Lemma 1. (All-pass representation of 	.) We may write the
transfer function 	 for a passive linear quantum system as

	(s) = 1 − 1
2
(s)

1 + 1
2
(s)

S, (13)

where


(s) = C
1

s + i�
C†. (14)

Proof. From the Woodbury matrix identity we find

1

s + 1
2C†C + i�

= 1

s + i�
− 1

2

1

s + i�
C† 1

1 + 1
2C 1

s+i�
C†C

1

s + i�
,

which we substitute into (9) to get the result. �

Theorem 1. The transfer function of a passive system is
inner, that is, 	(iω) is unitary for all real ω not an eigenvalue
of �.

Proof. For ω not an eigenvalue of �, 
(iω) = −iC 1
ω+�

C†

is well defined and we have 
(iω)† = −
(iω), so that
unitarity of 	(iω) follows from (13). �

Transfer functions that are inner are otherwise referred to
as all-pass transfer functions as classically this means that
harmonic signals of arbitrary frequency pass through without
attenuation. In the current context it relates the fact that the
output processes are again canonical field processes.

A. Chain-scattering representation

We now consider a linear transformation[
z1

z2

]
= K

[
u1

u2

]
≡

[
K12 K12

K21 K22

] [
u1

u2

]
, (15)

where u1,u2,z1,z2 are all column vectors of equal length. Our
aim is to rewrite this in the form[

z1

u1

]
= CHAIN(K)

[
u2

z2

]
, (16)

which is possible if K21 is invertible, in which case we have

CHAIN(K) �
[
K12 − K11K

−1
21 K22 K12K

−1
21

−K−1
21 K22 K−1

21

]
, (17)

with inverse transformation

CHAIN−1(M) �
[
M12M

−1
22 M11 − M12M

−1
22 M21

M−1
22 M−1

22 M21

]
.

The linear system (15) is an input-output representation,
while the system (16) is called the chain-scattering represen-
tation. In the former we have a state-based model where the
system is driven by the inputs u1,u2 and produces the outputs
z1,z2, while in the latter the system is a wave scatterer from
the wave u2,z2 at port 2 to the wave z1,u1 at port 1.

In the case where K is unitary, we have that

|u1|2 + |u2|2 = |z1|2 + |z2|2,
and rearranging gives

|u1|2 − |z1|2 = |z2|2 − |u2|2.
This suggests that if K implements a unitary transformation
for field inputs, then CHAIN(K) implements a Bogoliubov
transformation. We shall establish this fact next.

Invariance symmetries of chain pairs

Definition. The �-conjugation is defined on matrices of
dimension 2n by

X� = JnX
†Jn,

where

Jn =
[
In 0
0 −In

]
.

We say that X is a �-isometry, �-coisometry, if we have X�X =
I2n, XX� = I2n, respectively. If X is both a �-isometry and a
�-coisometry, then we say that it is a �-unitary.
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We now state the main structural properties of the chain-
scattering transformation.

Theorem 2. A matrix K is an isometry, coisometry, unitary
if and only if M = CHAIN(K) is a �-isometry. �-coisometry,
�-unitary, respectively

The proof is somewhat cumbersome and not very enlight-
ening, so we relegate it to the Appendix.

B. Wave scattering in quantum transport

It is convenient to relabel the input and output fields (and
their Laplace transforms) appearing in the upper picture in
Fig. 9 as

bX+ = bout
X , bX− = bin

X, bY+ = bin
Y , bY− = bout

Y ,

where the subscripts + and − now indicate right and left
propagating fields, respectively. The relation between these
fields is then[

bY−
bX+

]
= 	

[
bY+
bX−

]
≡

[
	−+

YY 	−−
YX

	++
XY 	+−

XX

] [
bY+
bX−

]
,

where we break down the transfer matrix into block form. We
now perform the swap described in the lower picture in Fig. 9.

The equations may be rearranged as[
bY−
bY+

]
=

[
�−−

YX �−+
YX

�+−
YX �++

YX

] [
bX−
bX+

]
, (18)

or equivalently,

←→
bY = �YX

←→
bX ,

where we introduce the following shorthand notation for the
inputs and outputs at a contact lead X:

←→
bX �

[
bX−
bX+

]
. (19)

It immediately follows that

�YX(s) ≡ CHAIN(	(s)), (20)

that is,

�XY =
[
	−−

YX − 	−+
YY (	++

XY )−1	+−
XX 	−+

YY (	++
XY )−1

−(	++
XY )−1	+−

XX (	++
XY )−1

]
.

Inversely, we have

	 =
[
�−+

YX (�++
YX )−1 �−−

YX − �−+
YX (�++

YX )−1�+−
YX

(�++
YX )−1 −(�++

YX )−1�+−
YX

]
.

Theorem 3. The function �YX(s) = CHAIN(	(s)) is a �-
unitary for s on the imaginary axis, except for eigenvalues of
−i�.

This is an immediate corollary to Theorems 1 and 2.
Note that the transfer function �YX connects the inputs

and outputs at contact lead X to those at Y . As before, �−−
YX

is a Schur complement of the transfer function 	 in block
matrix form. We shall always suppose that the chain-scattering
representation is valid, that is, 	++

XY is invertible so that �YX is
well defined.

FIG. 12. (Color online) Several quantum transport components
in a chain series.

1. Chain scattering for quantum transport devices in series

Let us return to the devices in series shown in the upper
diagram in Fig. 10. We have

←→
bY1 = �Y1X1

←→
bX1 ,

←→
bY2 = �Y2X2

←→
bY2 ,

however, the identification bY2,+ ≡ bX1,+ and bY2,− ≡ bX1,−
(i.e.,

←→
bY2 ≡ ←→

bX1 ) now implies that

←→
bY1 = �Y1X1�Y2X2

←→
bY2 . (21)

The general rule is easy to state at this stage. For the chain of
components shown in Fig. 12 we have

�Y1Xn
= �Y1X1�Y2X2 · · · �YnXn

. (22)

2. Coprime factorizations

We say that transfer function �YX has a factorization if we
may write it as

�YX = ϒ−1
Y ϒX,

and in this way we may write the lead-to-lead equations in a
more symmetric form as

ϒX

←→
bX = ϒY

←→
bY .

So far we have not done anything particularly useful, however,
we could ask for more properties of the factorization.

Let H∞ denote the set of Hardy functions, that is, the class
of complex-matrix valued functions M(s) that are analytic
in the closed right hand complex plane (Re s � 0) with the
property that the limit values M(iω + 0+) exist for almost all
ω ∈ R and there is a finite upper bound on the largest singular
value of M(s) over Re s � 0.

A factorization �YX = ϒ−1
Y ϒX will be useful for control

and design purposes if both ϒY and ϒX are rational functions
in the Hardy class with the property that they have no common
zeros on the closed right hand plane, including s = ∞. The
appropriate definition from control theory is given below (see,
for instance, Ref. [24]).

Definition. A pair of matrix valued functions ϒX and ϒY are
left coprime if there exists a pair of rational matrix functions
Q,P in the Hardy class such that

ϒY P − QϒX = I.

A left coprime factorization of rational proper function �YX

is a factorization �YX = ϒ−1
Y ϒX, where ϒX and ϒY are left

coprime, with ϒ−1
Y proper.

An important property of the chain-scattering representa-
tion is that

�YX =
[
I −	−+

YY

0 	++
XY

]−1 [
	−−

YX 0

−	+−
XX I

]
, (23)
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and if the original transfer function 	 is stable, this corresponds
to a left coprime factorization of �YX (see Kimura [18],
Sec. 4.1). A right coprime factorization is given by

�YX =
[
	−−

YX 	−+
YY

0 I

] [
I 0

	+−
XX 	++

XY

]−1

.

3. Worked example

We study a simple device corresponding to a single mode a

with a pair of contact leads X and Y , both of which have
one input and one output field. Here we assume that the
device scatters the input fields as a beam splitter. but also
is damped by these inputs, as well as undergoing its own
harmonic frequency ω0. In the Heisenberg-Langevin picture
we consider the dynamical equations

d

dt
a(t) = −(γ + iω0)a(t) − √

γ bin
X(t) − √

γ bin
Y (t),

bout
X (t) = 1√

2
bin

X(t) − 1√
2
bin

Y (t) + √
γ a(t),

bout
X (t) = 1√

2
bin

X(t) + 1√
2
bin

Y (t) + √
γ a(t).

which correspond to the choice

S = 1√
2

[
1 −1
1 1

]
, L =

[√
γ a

√
γ a

]
, H = ω0a

†a,

that is, C = √
γ [1

1] and � = ω0. The transfer function is then

	[s] = 1√
2

[
�(s) −1
�(s) 1

]
,

with �(s) = s−γ+iω0

s+γ+iω0
. Using the chain transformation (20) we

find that

�YX =
[ −√

2 1
−1/�(s)

√
2/�(s)

]
,

which admits the coprime factorization �YX = ϒ−1
Y ϒX with

ϒY =
[

1 − 1√
2
�(s)

0 1√
2
�(s)

]
, ϒX =

[− 1√
2

0

− 1√
2

1

]
.

C. Stability and the lossless property

We have seen from Theorem 1 that the transfer function
	 of a linear passive quantum system is inner (unitary almost
everywhere on the imaginary axis). In addition, if the system is
stable, that is, the matrix A appearing in the state-based model
is Hurwitz, then following control theoretic terminology we
say that the system 	 is lossless. For lossless systems, we have
that

	†(s)	(s) � I

in the closed right hand complex plane.
Similarly, we say that a chain-scattering transfer function

� is �-lossless if

��(s)�(s) � I,

for all Re s � 0.

Generally speaking, connecting an assembly of stable
components into a network may result in marginal instability.
For instance, some marginal stability may arise, which in
quantum devices corresponds to a decoherence free subspace,
which may be of importance in designing quantum memory
storage. It is imperative to know when a given system is
lossless. Fortunately, the two notions of losslessness above
coincide.

Theorem 4. 	 is �-lossless if and only if it takes the form
� = CHAIN(	), where 	 is lossless.

This is proved as Lemma 4.4 of Kimura’s book [18].

State space realizations

If we have the triple (S,C,�) of the form

S =
[
SYY SYX

SXY SXX

]
, C =

[
CY

CX

]
,

leading to the transfer function

	 =
⎡
⎣A BY BX

CY SYY SYX

CX SXY SXX

⎤
⎦ ,

where A = − 1
2C

†
XCX − 1

2C
†
Y CY − i� and Bk =

−∑
j C

†
j Sjk . It follows that

�YX ≡

⎡
⎢⎣

A − BY S−1
XY CX BX − BY S−1

XY SXX BY S−1
XY

CY − SYY S−1
XY CX SYX − SYY S−1

XY SXX SYY S−1
XY

−S−1
XY CX −S−1

XY SXX S−1
XY

⎤
⎥⎦

(see Kimura [18], Sec. 4.2).

D. Feedback and termination

We wish to consider now the effect of terminating a
scattering sequence with a terminal component � (see Fig. 13).
The chain-scattering picture has a corresponding input-output
representation where we see that the component � is in fact

FIG. 13. (Color online) A standard procedure in circuit theory is
to terminate a cascade of devices with a terminal load T. In the
input-output representation, this amounts to a feedback arrangement
as shown.
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FIG. 14. (Color online) The chain-scattering representation of
the terminal load.

in loop. With the identifications

bout
Y = bY−, bin

Y = bY+, (24)

and from the relation bX−[s] = �(s)bX+[s], we may derive
the input-output relation

bY−[s] = �(s) bY+[s],

where � is a fractional linear transformation (see Ref. [21]),

� = 	−+
YY + 	−−

YX � [I − 	+−
XX �]−1	++

XY . (25)

We stress that the setup in Fig. 13 is the special linear
dynamical situation of the more general situation appearing
in the feedback reduction rule in Fig. 3, where we have the
operator theoretic fractional linear transformation (3).

We may obtain a similar expression in terms of the chain-
scattering representation � (see Fig. 14). Indeed, we have

bY− = (�−−
YX � + �−+

YX )bX+,

bY+ = (�+−
YX � + �++

YX )bX+,

and so we deduce that

� = (�−−
YX � + �−+

YX )(�+−
YX � + �++

YX )−1. (26)

This is equivalent to the homographic transformation from
classical circuit theory, and we write � ≡ HM(�,�), follow-
ing Kimura [18].

Theorem 5. Let 	 be a quantum passive transfer functions
determined by ([SYY SYX

SXY SXX
],[CY

CX
],�) and let � = [A� B�

C� D�
],

where both representations are minimal [25]. A minimal
realization of � = HM(CHAIN(	),�) is given by

� =
[
A� B�

C� D�

]
,

where

A� =
[
− 1

2C†C − i� −C
†
Y C�

0 A�

]

+E� (SXY D� + SXX)−1 [CX,SXY C�] ,

B� = E�(SXY D� + SXX)−1,

C� = [CY − D�CX,(SYY − D�SXY )C�],

D� = (SYY D� + SYX)(SXY D� + SXX)−1,

where E� is[
(C†

Y SYY + C
†
XSXY )D� + (C†

Y SYX + C
†
XSXX)

BS�

]
,

provided that the network is well posed (that is, the operator
SXY S� + SXX is invertible). Given 	 fixed, there will exist

a � such that the network is internally stable, that is, A� is
Hurwitz, if and only if 	 is lossless.

Proof. The state-based representation derives from
Eqs. (4.84)–(4.87) of Kimura with the explicit form of a
quantum transfer function employed for 	. The internal
stability result follows from Theorem 4.15 of Kimura, which
states that for �-unitary �, there will exist a � that make � =
HM(�,�) internally stable if and only if � is �-lossless, along
with the observation that � = CHAIN(	) is automatically
�-lossless whenever 	 is lossless (see Theorem 4). �

Note that the theorem makes no claim that the stabilizing
� belongs to the class of transfer function corresponding to a
(active or passive) quantum transfer function, only that it takes
on a state-based model form. In favorable situations, this may
be synthesized as another quantum device, however, it may
entail using classical components.

E. Time delays

We now consider the network with delays in the transmis-
sion line. In the case of linear circuits, this is easily modeled
by the transfer function

θ (s) = e−sτ ,

where τ is the time delay in the transmission line. A simple
network of two connected systems with delay is depicted in
Fig. 15.

In this case the formula (21) for the cascade of quantum
transport models takes the form

←→
bY1 = �Y1X1��Y2X2

←→
bX2 ,

where

� =
[
θ 0
0 θ−1

]
.

Trapped mode
In the special case where we have only scattering, the

transfer function takes the form

	−+ = rA + θ2t ′A tArB
1

1 − θ2rA r ′
A

,

	−− = θt ′A t ′B
1

1 − θ2rA r ′
A

,

	++ = θtA tB
1

1 − θ2rA r ′
A

,

	+− = r ′
B + θtBt ′Br ′

A

1

1 − θ2rA r ′
A

.

If we suppose that the transmittivity is weak with both |tA|2
and |tB|2 of order τ , then we may obtain a well-defined limit

FIG. 15. (Color online) Cascaded system with delay.
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for small delay τ . In particular, we set

SA =
[√

1 − 2γA τ −√
2γA τ√

2γA τ
√

1 − 2γA τ

]
,

SB =
[√

1 − 2γB τ −√
2γB τ√

2γB τ
√

1 − 2γB τ

]
,

where γA and γB are positive constants. The limit τ → 0 leads
to

lim
τ→0

	(s,τ ) = 1

s + 1
2 (γA + γB)

×
[
s − 1

2γA + 1
2γB

√
γA γB√

γA γB s + 1
2γA − 1

2γB

]
,

which is the transfer function of a single mode with ω0 = 0 and
two inputs damping with rates γA and γB [compare with (11)].
The limit corresponds to an effective trapped mode associated
with the algebraic loop (see, for instance, Refs. [22,26]).

V. NONLINEAR ELEMENTS

In our final example, we consider a nonlinear element in
a quantum transport network. Our example will consist of a
quantum dot, modeled as a qubit system, acting as the terminal
load of a network, as shown in Fig. 16.

FIG. 16. (Color online) A cavity QED component is connected
to a quantum dot (qubit system) so that the qubit is a nonlinear
terminal load element. The chain-scattering representation is sketched
underneath.

We take the SLH coefficients for the two-lead component
device (a cavity QED mode a) and the quantum dot to be
respectively

GQED ∼
([

r t ′
t r ′

]
,

[√
γ+a√
γ+a

]
,ω0a

)
and

GQD ∼ (eiφ,
√

κσ,ω′σz),

where σ is the lowering operator for the quantum dot
qubit.

Following the network rules, we first form the parallel sum
GQED � GQD which has the model matrix

V =

⎡
⎢⎢⎢⎣

K0 −(
√

γ+r + √
γ−t)a† −(

√
γ+t ′ + √

γ−r ′)a† −eiφ
√

κσ †

√
γ+a r t ′ 0

√
γ−a t r ′ 0√
κσ 0 0 eiφ

⎤
⎥⎥⎥⎦ ,

with K0 = − 1
2 (γ+ + γ−)a†a − 1

2κσ †σ − iω0a
†a − iω′σ †σ .

We now need to specify the connections we need to make:
These are the pairs (s,r) consisting of an output source s

and an input range r label, and to wire up the open-loop
system (Fig. 17) these are (1,3) and (3,2). The corresponding
adjacency matrix is

η =
[
η12 η13

η32 η33

]
=

[
0 1
1 0

]
,

where ηsr = 1 if (s,r) is a connection, and =0 otherwise.
(The adjacency matrix ranges over the indices s,r labeling the
outputs and inputs, respectively, that are to be connected to
form the feedback network.)

The feedback reduction formula (3) now gives the closed-
loop network as

F(V,η−1) =
[

K0 −(
√

γ+r + √
γ−t)a†√

κσ 0

]

+
[−(

√
γ+t ′ + √

γ−r ′)a† −eiφ
√

κσ †

0 eiφ

]

×
([

0 1
1 0

]
−

[
t ′ 0
r ′ 0

])−1 [√
γ+a r√
γ−a t

]

≡
[
K −L†S
L S

]
,

with K = − 1
2L†L − iH . After a little algebra we find the

equivalent SLH model to be

S = eiφ

(
r + t t ′

1 − r ′

)
,

(27)

L = eiφ

(√
γ+ + t ′

1 − r ′
√

γ−

)
a + √

κσ,

K = −
(

γ+ + γ−
2

+ √
γ−

(
√

γ+t ′ + √
γ−r ′)

1 − r ′ + iω0

)
a†a

−
(

1

2
κ + iω′

)
σ †σ − eiφ

√
κ

(√
γ+ + t ′

1 − r ′
√

γ−

)
σ †a,

(28)
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FIG. 17. (Color online) The equivalent quantum feedback net-
work for the cavity-qubit system. Below it is the open-loop setup
before the feedback connections are made—note that the outputs and
input are labeled so that output 1 goes to input 3, output 3 goes to
input 2, while output 2 and input 1 are the external fields that remain
after the feedback reduction.

with the Hamiltonian H determined as the solution to

−1

2
L†L − iH = K0 − √

γ−(
√

γ+t ′ + √
γ−r ′)

1

1 − r ′ a
†a

− eiφ
√

κ

(√
γ+ + t ′

1 − r ′
√

γ−

)
σ †a.

The input-output relation is then (with bin
Y = bY+ and bout

Y =
bY−)

bout
Y (t) = eiφ

(
r + t t ′

1 − r ′

)
bin

Y (t)

+ eiφ

(√
γ+ + t ′

1 − r ′
√

γ−

)
jt (a) + √

κjt (σ ),

where jt (a) and jt (σ ) are the Heisenberg picture values of the
operators a and σ . The master equation for joint density states

� of the QED cavity and qubit quantum dot are therefore

d

dt
� = 1

2
L�L† − �K† − K�,

with L and K given by (27) and (28), respectively.

VI. CONCLUSION

We have started the program of developing a systematic
network theory underlying interconnections of quantum trans-
port components in the direction that has proved successful
so far for quantum photonic networks. The existing quantum
feedback network is shown to be capable of describing a large
class of nonlinear quantum transport components assembled
into a network and is applicable to modeling control design,
especially as there is a growing interest in on-chip networks for
solid state quantum networks, and hybrid quantum transport-
photonic circuits. We did not consider applications to control
in this paper per se, but it is clear that many of the techniques
currently used in quantum feedback control for photonic
networks are immediately applicable to this domain.
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APPENDIX: PROOF OF THEOREM 2

The isometry condition K†K = I2n implies the identities

K
†
1iK1j + K

†
2iK2j = δij In.

Now

M� =
[

M
†
12 −M

†
22

−M
†
11 M

†
21

]
.

We establish the �-isometry property of M (we collect together
in square brackets the various terms where we use the isometric
property of K):

[M�M]11 = M
†
12M11 − M

†
22M21 = (

K
†
12 − K

†
22K

†−1
21 K

†
11

)(
K11K

−1
21

) − (−K
†
22K

†−1
21

)(
K−1

21

)
= [K†

12K11]K−1
21 − K

†
22K

†−1
21 [K†

11K11]K−1
21 + K

†
22K

†−1
21 K−1

21

= (−K
†
22K21)K−1

21 − K
†
22K

†−1
21

(
In2 − K

†
21K21

)
K−1

21 + K
†
22K

†−1
21 K−1

21 = 0,

[M�M]12 = M
†
12M12 − M

†
22M22 = (

K
†
12 − K

†
22K

†−1
21 K

†
11

)(
K12 − K11K

−1
21 K22

) − (
K

†
22K

†−1
21

)
K−1

21 K22

= K
†
12K12 − [K†

12K11]K−1
21 K22 − K

†
22K

†−1
21 [K†

11K12] + K
†
22K

†−1
21 [K†

11K11]K−1
21 K22 − K

†
22K

†−1
21 K−1

21 K22

= K
†
12K12 + (K†

22K21)K−1
21 K22 + K

†
22K

†−1
21 (K†

21K22) + K
†
22K

†−1
21

(
In2 − K

†
21K21

)
K−1

21 K22 − K
†
22K

†−1
21 K−1

21 K22

= K
†
12K12 + K

†
22K22 = In1 ,
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[M�M]22 = −M
†
11M12 + M

†
21M22 = −(

K
†−1
21 K

†
11

)(
K12 − K11K

−1
21 K22

) + K
†−1
21

( − K−1
21 K22

)
= −K

†−1
21 [K†

11K12] + K
†−1
21 [K†

11K11]K−1
21 K22 − K

†−1
21 K−1

21 K22

= K
†−1
21 K

†
21K22 + K

†−1
21

[
In2 − K

†
21K21

]
K−1

21 K22 − K
†−1
21 K−1

21 K22 = 0,

and

[M�M]21 = −M
†
11M11 + M

†
21M21

= −(
K

†−1
21 K

†
11

)(
K11K

−1
21

) + K
†−1
21 K−1

21

= −K
†−1
21 [K†

11K11]K−1
21 + K

†−1
21 K−1

21

= −K
†−1
21

(
In2 − K

†
21K21

)
K−1

21 + K
†−1
21 K−1

21

= In2 .

Therefore M�M = In as required. The demonstration that the
coisometry of K implies the �-coisometry of M is similar.

We now establish the “only if” part of the theorem. We note
that the �-isometry implies that

M
†
12M12 − M

†
22M22 = In1 , M

†
21M21 − M

†
11M11 = In2 ,

M
†
12M11 − M

†
22M21 = 0, M

†
21M22 − M

†
11M12 = 0,

and these imply respectively the following identities:

In1 = K
†
12K12 − K

†
12K11K

−1
21 K22 − K

†
22K

†−1
21 K

†
11K12

+K
†
22K

†−1
21 K

†
11K11K

−1
21 K22 − K

†
22K

†−1
21 K−1

21 K22,

(A1)

In2 = K
†−1
21 K−1

21 − K
†−1
21 K

†
11K11K

−1
21 , (A2)

0 = K
†
12K11K

−1
21 − K

†
22K

†−1
21 K

†
11K11K

−1
21 + K

†
22K

†−1
21 K−1

21 ,

(A3)

0 = −K
†−1
21 K−1

21 K22 − K
†−1
21 K11K12

+K
†−1
21 K

†
11K11K

−1
21 K22. (A4)

To show the isometry property of K we note that

K
†
12K11K

−1
21 K22

A3= [
K

†
22K

†−1
21 K

†
11K11K

−1
21 − K

†
22K

†−1
21 K−1

21

]
K22

= K
†
22

[
K

†−1
21 K

†
11K11K

−1
21 − K

†−1
21 K−1

21

]
K22

A2= −K
†
22K22. (A5)

Now we can compute the matrix elements:

K
†
12K12 + K

†
22K22

A1= In1 + K
†
12K11K

−1
21 K22 + K

†
22K

†−1
21 K

†
11K12 + K

†
22K22

−K
†
22K

†−1
21 K

†
11K11K

−1
21 M22 + K

†
22K

†−1
21 K−1

21 K22

= In1 + K
†
22

[−K
†−1
21 K

†
11K11K

−1
21 + K

†−1
21 K−1

21

]
K22

+K
†
12K11K

−1
21 K22 + (

K
†
12K11K

†−1
21 K22

)† + K
†
22K22

A2= In1 + 2K
†
22K22 + K

†
12K11K

−1
21 K22 + (

K
†
12K11K

−1
21 K22

)†
A5= In1 ,

K
†
12K11 + K

†
22K21

= (
K

†
12K11K

−1
21 + K

†
22

)
K21

A3= (
K

†
22K

†−1
21 K

†
11K11K

−1
21 − K

†
22K

†−1
21 K−1

21 + K
†
22

)
K21

= K
†
22

(
K

†
22K

†−1
21 K

†
11K11K

−1
21 − K

†−1
21 K−1

21 + In2

)
K21

A2= 0,

K
†
11K12 + K

†
21K22

= K
†
21

((
K

†
12K11K

−1
21

)† + K22
)

A5= K
†
21

(
K

†
22K

†−1
21 K

†
11K11K

−1
21 − K

†
22K

†−1
21 K−1

21

)† + K
†
21K22

= K
†
21

(
K

†−1
21 K

†
11K11K

−1
21 − K

†−1
21 K−1

21 + In2

)
K22

A2= 0,

and

K
†
11K11 + K

†
21K21

A2= K
†
11K11 + K

†
21

(
K

†−1
21 K−1

21 − K
†−1
21 K

†
11K11K

−1
21

)
K21

= In2 ,

from where K†K = In, as required.
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