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Topological Modelling and Classification of
Mammographic Microcalcification Clusters

Zhili Chen, Harry Strange, Arnau Oliver, Erika R. E. Denton, Caroline Boggis, and Reyer Zwiggelaar

Abstract—Goal: The presence of microcalcification clusters is
a primary sign of breast cancer; however, it is difficult and
time consuming for radiologists to classify microcalcifications
as malignant or benign. In this paper, a novel method for
the classification of microcalcification clusters in mammograms
is proposed. Methods: The topology/connectivity of individual
microcalcifications is analysed within a cluster using multiscale
morphology. This is distinct from existing approaches that tend to
concentrate on the morphology of individual microcalcifications
and/or global (statistical) cluster features. A set of microcalcifica-
tion graphs are generated to represent the topological structure of
microcalcification clusters at different scales. Subsequently, graph
theoretical features are extracted which constitute the topological
feature space for modelling and classifying microcalcification
clusters. k-Nearest Neighbours based classifiers are employed for
classifying microcalcification clusters. Results:The validity of the
proposed method is evaluated using two well-known digitised
datasets (MIAS and DDSM) and a full-field digital dataset. High
classification accuracies (up to 96%) and good ROC results
(area under the ROC curve up to 0.96) are achieved. A full
comparison with related publications is provided, which includes
a direct comparison. Conclusion: The results indicate that the
proposed approach is able to outperform the current state-of-
the-art methods. Significance: This work shows that topology
modelling is an important tool for microcalcification analysis
not only because of the improved classification accuracy but
also because the topological measures can be linked to clinical
understanding.

Index Terms—mammography, microcalcifications,

topology, classification.

graphs,

I. INTRODUCTION

REAST cancer is currently the most common cancer

affecting women worldwide [1]. In European women it
is the leading cause of cancer death, causing 1 in 6 of all
deaths from cancers [2]. In the United States, a woman has
a 12.15% (about 1 in 8) risk of developing breast cancer
during her lifetime [3]. Mammography is one of the most
reliable and effective methods for detecting breast cancer
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at its early stages [4]. In developed countries, population-
based mammography screening programmes have been imple-
mented [1]. Women are encouraged to participate in regular
breast examinations through mammography. In the United
States, annual mammographic screening is recommended for
women at normal risk, beginning at age 40 [5]. In the UK,
women aged between 50 and 70 years are invited for breast
screening every three years [6].

Microcalcifications are small deposits of calcium salts
within breast tissue that appear as small bright spots in mam-
mograms [7]-[10]. The presence of microcalcification clusters
is a primary sign of breast cancer. The radiological definition
of a microcalcification cluster is an area of 1 cm? that
contains ,in general, no fewer than 3 microcalcifications [10],
[11]. The spatial resolution of mammography is very high
(normally in the range of 40 — 100um per pixel) and therefore
mammography enables the detection of microcalcifications at
an early stage. However, not all microcalcification clusters
necessarily indicate the presence of cancer, only certain kinds
of microcalcifications are associated with a high probability of
malignancy [12], [13]. The first column of Fig. 1 shows two
mammographic image patches taken from the Mammographic
Image Analysis Society (MIAS) database [14], containing
a malignant microcalcification cluster and a benign micro-
calcification cluster, respectively. In clinical practice, it is
difficult and time consuming for radiologists to distinguish
malignant from benign microcalcifications. This results in
a high rate of unnecessary biopsy examinations [9], [11].
In order to improve the diagnostic accuracy of radiologists
interpreting microcalcifications in mammograms, computer-
aided diagnosis (CAD) systems have been applied to reduce
the false positive rate while maintaining sensitivity [9], [15].

Many methods for computer-aided diagnosis of microcal-
cifications in mammograms have been proposed [9], [17].
A variety of features have been studied in the literature to
characterise microcalcifications and classify these abnormali-
ties into malignant and benign, such as shape, morphological,
cluster, intensity-based, and texture features [9], [17]. Early
research showed how the morphological characteristics of
microcalcifications could be used to differentiate between
malignant and benign cases [18]. The shape and morpholog-
ical features are mainly extracted from individual microcal-
cifications and describe the morphological characteristics of
individual microcalcifications, such as roughness, size, and
shape [7], [10], [19]-[21]. Complementary to the shape and
morphological features, cluster features concentrate on the
global properties of microcalcification clusters [8], [15], [20],
[22]-[25]. Some were used to describe the morphology of mi-
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Fig. 1.

Example microcalcification clusters: malignant (top row) and benign (bottom row). First column: mammographic image patches; second column:

manual annotations; third column: automatic detections [16]; fourth column: dilated microcalcifications using a disk-shaped structuring element (radius equal

to 6 pixels).

crocalcification clusters, such as cluster area, cluster perimeter,
cluster diameter, cluster circularity, cluster eccentricity, and
cluster elongation. Others were intended to capture the spatial
distribution of individual microcalcifications within a cluster,
such as average and standard deviation of distances between
microcalcifications. In addition, a novel model-based method
was presented to reconstruct and analyse microcalcification
clusters in 3D from two mammographic views [26].
Although a broad variety of techniques for computer-aided
diagnosis of breast cancer have been developed in the past
two decades, some of which have achieved a high sensitivity
and specificity for specific abnormalities, the automatic and
accurate classification of microcalcification abnormalities as
malignant or benign remains a challenge due to their inherent
nature; furthermore, most of the existing approaches have their
own specific disadvantages. Firstly, for the approaches based
on the shape/morphology of individual microcalcifications [7],
[10], informative features cannot be attained when microcal-
cifications are very small (occupying only a few pixels) so
that it seems meaningless to analyse the shape/morphological
properties of such small objects. Secondly, microcalcifications
may have very low contrast with respect to the surrounding
tissue especially when microcalcifications form within dense
tissue which has high and homogeneous intensity. As such,
the lack of useful texture information within the background
region affects the capability of the approaches based on the
intensity variations and texture features [8], [27]. In addition,
for the approaches describing the spatial distribution of micro-
calcifications within a cluster, the global cluster features were
computed based on a fixed resolution and the distance-based
features rely on the original spatial resolution of mammog-
raphy. This results in a lack of robustness and adaptiveness
to different spatial resolutions of mammograms in particular
screen-film mammograms acquired by different digitisers.
According to some studies on the evaluation of breast
microcalcifications, malignant microcalcifications tend to be

small, numerous (> 5 per focus within 1 cm?) and densely dis-
tributed because they lie within the milk ducts and associated
structures in the breast and follow the ductal anatomy [12],
[13], [28]. However, benign microcalcifications are generally
larger, smaller in number (< 4 — 5 per 1 cm?) and more
diffusely distributed as these microcalcifications arise within
the breast stroma, benign cysts or benign masses [12], [13],
[28]. These differences result in variations in the distribution
and closeness of microcalcifications within the clusters and
provide radiologists with information which enables decisions
regarding the need for further assessment and possible breast
biopsy. Hence, we propose a novel method for modelling and
classifying microcalcification clusters in mammograms based
on their topological properties. The topology of microcalcifica-
tion clusters is analysed at multiple scales using a graph-based
representation of their topological structure. This method is
distinct from existing approaches that mainly concentrate on
the morphology of individual microcalcifications and only
compute the distance-based cluster features at a fixed scale. In
this method, a set of topological features are extracted from
microcalcification graphs at multiple scales and a multiscale
topological feature vector is subsequently generated to dis-
criminate between malignant and benign cases.

A preliminary version of this work has been reported in
[29], where the idea of analysing microcalcification clusters
using their topological structure is initially investigated based
on a small number of cases. In this paper, the evaluation
has been extended by including additional data (from several
databases). We have also investigated the effect of variation in
microcalcification segmentation, the dataset size, the individ-
ual significance of eight graph metrics for malignancy diag-
nosis, and a direct comparison with state-of-the art methods.

1I. DATA

The data used in the experiments consists of three datasets
which are composed of image patches of different cases (taken
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Fig. 2. Methodology framework for topology based modelling and classifying malignant and benign microcalcification clusters in mammograms. The scales

shown are s = 1,4, 8, 16, 32, 64 displayed left-to-right and top-to-bottom.

from different mammograms). The first dataset was taken from
the MIAS database [14], containing 20 image patches with
the same size of 512 x 512 pixels. The mammograms were
digitised to 50 microns per pixel with a linear optical density
in the range 0 — 3.2. The second dataset was extracted from
the Digital Database for Screening Mammography (DDSM)
database [30], containing 300 image patches with varied sizes
(the average size of these image patches is 482 x 450 pixels).
The mammograms in the DDSM database were digitised by
one of four different scanners: DBA M2100 ImageClear (42
microns per pixel, 16 bits), Howtek 960 (43.5 microns per
pixel, 12 bits), Lumisys 200 Laser (50 microns per pixel, 12
bits), and Howtek MultiRad850 (43.5 microns per pixel, 12
bits). In contrast to the first two datasets, the third dataset
contains 25 full-field digital image patches extracted from
a non-public mammographic database. These mammograms
were acquired using a Hologic Selenia mammography unit,
with a resolution of 70 microns per pixel and a depth of 12 bits.
The size of these image patches also varies and the average
size is 352 x 301 pixels. In this work, all microcalcifications
in each image patch are considered to be part of a single mi-
crocalcification cluster. The diagnostic gold standard (benign
or malignant) of all microcalcification clusters in this study
has been provided by biopsy: there are 9 malignant and 11
benign clusters in the MIAS dataset, 141 malignant and 159
benign clusters in the DDSM dataset, and 14 malignant and
11 benign clusters in the Digital dataset, respectively.

The proposed method works on binary images where Os
stand for “normal” tissue and s represent microcalcifications
that can be automatically detected by an automatic detection
approach or manually annotated by experts. The approach
developed by Oliver et al. [16] for automatic detection of
microcalcifications is applied to the three datasets (the original
work by Oliver et al. [16] showed better results for digi-
tal data when compared to digitised data). For the MIAS
dataset, in addition to automatic detection, the exact location
of individual microcalcifications was manually annotated by

an expert (each microcalcification in every image patch was
labelled and segmented from the surrounding tissue). The
manual annotations and the automatic detection results of the
example microcalcification clusters are shown in the second
and third columns of Fig. 1, respectively. It appears that the au-
tomatic detection approach tends to under-segment individual
microcalcifications, such that the pixels close to the boundaries
of individual microcalcifications are lost.

III. METHODOLOGY

We propose to investigate the potential correlation between
the topology of microcalcification clusters and their patholog-
ical type. We construct a series of microcalcification graphs to
describe the topological structure of microcalcification clusters
at different scales. A set of graph theoretical features are
extracted from these graphs for modelling and classifying
microcalcification clusters. The proposed methodology con-
sists of four main phases: estimating the connectivity between
microcalcifications within a cluster using morphological dila-
tion at multiple scales; generating a microcalcification graph
at each scale based on the spatial connectivity relationship
between microcalcifications; extracting multiscale topological
features from these microcalcification graphs; and using the
extracted features to build classifier models of malignant
and benign microcalcification clusters. The framework of our
methodology is summarised in Fig. 2. All image analysis
development work was done within MATLAB 7.8.0.

A. Connectivity Estimation Using Morphological Dilation

Morphological dilation [31] is performed on each individual
microcalcification using a disk-shaped structuring element at
multiple scales. Here, the scale corresponds to the radius of
the structuring element measured in pixels. The effect of mul-
tiscale morphological dilation on a microcalcification cluster
is shown in Fig. 2. It can be seen that the multiscale mor-
phological dilation continuously absorbs neighbouring pixels
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Fig. 3. Microcalcification graphs of the example malignant cluster (top row) and benign cluster (bottom row) in Fig. 1 generated at three scales based on the
connectivity of the dilated cluster at these scales. The node colours and sequences are consistent with the corresponding microcalcifications in Fig. 1.

into individual microcalcifications resulting in a change in the
connectivity between microcalcifications within the cluster. To
illustrate the connectivity of microcalcification clusters with
respect to malignant and benign cases, the morphological
dilation results of the two example microcalcification clusters
are shown in the fourth column of Fig. 1, where the radius of
the structuring element is equal to six pixels (i.e. scale = 6).
The boundaries of dilated microcalcifications are displayed us-
ing different colours and each individual microcalcification is
labelled with a sequential number which is ordered according
to the spatial location of the corresponding microcalcification
in the image patch. As indicated in Section I, the malignant
cluster contains a larger number of microcalcifications that
are located more closely together within the cluster, while the
benign cluster contains fewer microcalcifications that are more
diffusely distributed within the cluster.

B. Microcalcification Graph Generation

We propose to represent the topology of microcalcification
clusters in graph form. A microcalcification graph is generated
based on the spatial connectivity relationship between micro-
calcifications within a cluster. In a microcalcification graph,
each node represents an individual microcalcification, and an
edge between two nodes is created if the two corresponding
microcalcifications are connected or overlap in the 2D image
plane. The resulting microcalcification graphs corresponding
to the two example microcalcification clusters in Fig. 1 are

shown in Fig. 3. The node locations in these two graphs are
in accordance with the original spatial distribution of micro-
calcifications within the two clusters, and the node sequences
are consistent with those in Fig. 1, which are sorted in a left-
to-right and bottom-to-top direction (but alternative directions
provide the same performance for the subsequent processing).
As shown in Fig. 3, the connectivity of the microcalcification
cluster increases from small to large scales and the correspond-
ing microcalcification graph becomes denser and denser (more
and more edges are created in the graph).

C. Multiscale Topological Feature Extraction

After generating microcalcification graphs over a range of
scales, a set of graph theoretical features can be extracted
to capture the topological properties of microcalcification
clusters. These features will constitute the feature space for
the classification of malignant and benign clusters. Before ex-
tracting the topological features of microcalcification clusters,
we first provide the following definitions for general graphs.
Further definitions for graphs can be found in Diestel [32].
Here, we use G(V, E) to represent a graph where V is the
vertex set and F is the edge set, and use |V| (the cardinality
of V) and |FE| (the cardinality of E) to denote the number
of vertices and the number of edges in G, respectively. G,
denotes the subgraph of G that corresponds to the largest
connected component.

Definition 1. The adjacency matrix A(i,j) of a graph
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G(V,E) is a |V|] x |V| matrix, defined as:

1 if (i,4) € E,
0 otherwise.

A(iyj) = 1)
where (i,j) € E indicates (¢,j) is an edge, i.e. there is an
edge between vertex ¢ and vertex j in G.

Definition 2. The degree matrix D(i, j) of a graph G(V, E)
is a |V| x |V| diagonal matrix containing the degree of vertex
i at entry (4,17), defined as:

o fa@) ifi=j

D(i,7) = 2

(i.5) {O otherwise. o

where d(i) = >y a;; is the number of edges incident to
vertex 7 and ),y d(i) = 2|E|.

Definition 3. The Laplacian matrix of a graph G(V, E),
denoted by L(i,7), is defined as the difference between the
degree matrix and the adjacency matrix, given by:

d(i) ifi=j,
L(,j)=D—-A=<-1 if(i,j) € E, 3)
0 otherwise.

Definition 4. The normalised Laplacian matrix of a graph
G(V,E), denoted by L(i,j), is defined as the normalised
version of the Laplacian matrix of G, given by:

1 ifi = j and d(i) # 0,
. . 1 . . .
L(i,5) = ~ Tawao if (i,7) € E, 4)
0 otherwise.

According to the above definitions, the normalised Lapla-
cian matrix of G can also be given by:

L(i,j) = D™Y2LD71/?
=D Y*D-A)D1/? )
=1—D'2AD"1/?

with the convention that D~1(i,i) = 0 if d(i) = 0 (i.e.
D(i,i) = 0), where I is the |V| x |V| identity matrix. It should
be noted that £ is a symmetric positive semi-definite matrix
and all eigenvalues of £ are real and non-negative. In addition,
it can be seen from Eq. (5) that the eigenvalues of L are all
between 0 and 2, which are closely related to many structural
properties for general graphs and play an important role in
spectral graph theory [33]. The multiplicity of the eigenvalue
0, denoted for ease of notation as k, corresponds to the number
of connected components in the graph, and the multiplicity
of the eigenvalue 2 coincides with the number of bipartite
connected components in the graph.

Definition 5. The distance between two vertices ¢ and j in a
graph G(V, E), denoted by dist(i, j), is defined as the length
of the shortest path between 7 and j, equal to the minimum
number of edges between them.

Definition 6. The eccentricity of a vertex ¢ in a graph
G(V, E), denoted by e(4), is defined as the maximum distance
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Fig. 4. The resulting eight graph feature sets extracted from the example
malignant and benign microcalcification clusters in Fig. 1.

from itself to any of the reachable vetices in G, given by
e(t) = max;ey dist(i, j).

Definition 7. The clustering coefficient of a vertex ¢ in a
graph G(V, E), denoted by c(i), is the ratio of the number
of actually existing edges between ¢’s neighbours (vertices
adjacent to 7) and the number of all possible edges between
i’s neighbours, given by c(i) = E(i)/C? = 2E(i)/(k(k—1)),
where F(i) is the number of actually existing edges between
1’s neighbours, and k is the number of ¢’s neighbours.

Definition 8. A vertex is considered isolated if it has degree
equal to 0. The set X denotes the set of vertices within
a graph G(V, E) that are isolated, that is, ),y d(i) = 0
and 37, e\ x) d(é) > 0. Therefore, | X| is equal to the total
number of isolated vertices within G.

Following these definitions, we explain a set of graph
metrics in Table I that will be extracted from the generated
microcalcification graphs and concatenated into the feature set
for the subsequent classification process.

We construct a set of microcalcification graphs based on the
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TABLE I
GRAPH METRICS INVESTIGATED FOR MALIGNANCY ANALYSIS OF MICROCALCIFICATION CLUSTERS ALONG WITH THEIR DEFINITIONS AND CLINICAL
INTERPRETATIONS

No. Metric Definition Clinical Interpretation
1 Number of k (See Def. 4)  Malignant clusters tend to have a higher number of microcalcifications and therefore their
Subgraphs corresponding graphs contain a higher number of subgraphs at smaller scales
2 Average Vertex Y iev d(@)/|V]  Malignant microcalcifications appear to be more densely distributed within a cluster and therefore
Degree malignant clusters generally have a larger average vertex degree
3 Maximum Vertex max;ey d(7) Malignant microcalcifications appear to be more connected in a cluster and therefore malignant
Degree clusters tend to have a larger maximum vertex degree
4 Average Vertex > iev e(@)/|V]  Malignant clusters tend to have a linear distribution and therefore have larger eccentricity values
Eccentricity
5 Diameter max;ey e(4) Malignant clusters tend to have a linear topology and therefore have longer diameters
6  Average Clustering > icv c(@)/IV|  Malignant microcalcifications tend to be more connected in a cluster and therefore malignant
Coefficient clusters have a higher average clustering coefficient
7 Giant Connected I“/‘égc‘ i Malignant microcalcifications tend to be more closely grouped and therefore malignant clusters
Component Ratio have a higher giant connected component ratio
8 Percentage of |X1|/IV] Malignant microcalcifications tend to be more densely distributed and therefore malignant clusters

Isolated Points

tend to have a smaller percentage of isolated points

spatial connectivity relationship between microcalcifications
after performing morphological dilation at multiple scales,
denoted by G = G, G, ...,Gs_1, where S is the number of
scales, and G4(s = 0,1,...,5—1) denotes the microcalcifica-
tion graph generated at the s'" scale (the 0 scale corresponds
to the initial microcalcification cluster without morphological
dilation). We extract the eight graph metrics from each graph
in G, which produces eight graph feature sets covering S
scales. We then concatenate the eight feature sets to create a
feature vector, termed the multiscale topological feature vector
in this paper, representing the topological characteristics of
microcalcification clusters over multiple scales.

The resulting eight graph feature sets for the example
malignant and benign microcalcification clusters in Fig. 1
are shown in Fig. 4, where the graph metrics are extracted
from the microcalcification graphs generated at 65 scales, i.e.
G = Gy, G1,...,Ggq (S = 65). It can be seen from Fig. 4(a)
that the number of subgraphs corresponding to the malignant
cluster is larger than the benign cluster at the first few scales,
while it decreases more drastically as the scale increases due
to the fact that malignant microcalcifications are more densely
distributed. When the scale increases to a certain value, the
number of subgraphs remains stable and further decreases to 1
when all microcalcifications in the cluster get connected after
morphological dilation. As shown in Fig. 4(b), the average
vertex degree goes up continuously as the scale increases.
The maximum average vertex degree is achieved when a
complete microcalcification graph is formed, in which case all
microcalcifications within the cluster are connected with each
other. Moreover, it is shown in Fig. 4(b) that the average vertex

degree values of the malignant cluster are larger than those
of the benign cluster over the entire range of scales, which
indicates that the malignant microcalcification cluster is more
connected. Fig. 4(c) shows a set of values of the maximum
vertex degree against scale which also have an increasing
trend from small to large scales and tend towards stability
when reaching the maximum value. Similarly, as indicated
by the average vertex degree, the maximum vertex degree
values for the malignant cluster are also larger than those
of the benign cluster. The resulting values of the average
vertex eccentricity against scale are plotted in Fig. 4(d). At
the first few scales, most microcalcifications are isolated from
others in the cluster, which results in small average eccentricity
values (the eccentricity of isolated vertices is set to 0). When
the scale increases to a specific value, the maximum average
eccentricity is obtained, in which case the previously isolated
microcalcifications are absorbed into a connected component
with a relatively large diameter. After that, as the scale further
increases, more and more microcalcifications get connected
and the average vertex eccentricity starts to decrease. When
all microcalcifications in the cluster are connected with each
other, the average eccentricity is reduced to 1. Fig. 4(e) shows
how the diameter (the maximum vertex eccentricity) of the
malignant and benign clusters changes against scale, which is
similar to that of the average vertex eccentricity in Fig. 4(d). In
the beginning, the diameter value increases with the scale until
it reaches the maximum value. After that, the diameter value
gradually goes down towards the minimum value of 1 when
all microcalcifications are connected. Note that the maximum
diameter of the malignant cluster is larger than that of the
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benign cluster. As indicated above, microcalcifications in the
malignant cluster tend to present a linear topology and as such
form a connected component having a longer diameter. For the
resulting average clustering coefficients of the two clusters, as
shown in Fig. 4(f), the malignant cluster obtains larger values
at all scales than the benign cluster. Fig. 4(g) presents how the
giant connected component ratio varies with scale. As the scale
increases, more and more microcalcifications in the cluster are
absorbed into the giant connected component until all of them
are included. Thus, the resulting giant connected component
ratio continuously increases until it goes up to the maximum
value of 1. Note that the giant connected component ratio of
the malignant cluster reaches its maximum at a much smaller
scale than the benign cluster. The eighth feature set composed
of the percentage of isolated points is provided in Fig. 4(h). In
contrast to the giant connected component ratio, the percentage
of isolated points decreases as the scale increases, which is
reduced to O when all microcalcifications are linked together.
The values for the malignant cluster are smaller than those
of the benign cluster, and moreover the malignant cluster
achieves 0 percentage at a much smaller scale than the benign
cluster. These all indicate that the malignant cluster is more
densely distributed and therefore generates a more connected
microcalcification graph than the benign cluster at a specific
scale.

D. Classification of Microcalcification Clusters

Four k-Nearest Neighbours (kNN) based classifiers are used
for classifying microcalcification clusters into malignant and
benign. The classical kNN classifier [34] is a popular and
conceptually intuitive instance-based learning approach. A
number of alternatives are employed which attempt to address
some inherent shortcomings of the classical KNN. Fuzzy
Nearest Neighbours (FNN) [35] extends the classical kNN by
fuzzifying the memberships for test and training objects. Fuzzy
Rough Nearest Neighbours (FRNN) [36], [37] models two
different types of uncertainty: fuzziness and indiscernibility.
Vaguely Quantified Nearest Neighbours (VQNN) [38] incor-
porates the uncertainty modelling of FRNN and also employs
vague quantifiers which limit the influence that noisy data
might have on the classification outcomes. These approaches
offer further flexibility, improved generalisation, and retain
human interpretability when compared to techniques such as
ANN and SVM. In addition, it should be noted that the
classical kNN is employed for the classification task such that
the proposed method can be easily compared with existing
work in the literature.

The kNN classification is based on a simple majority vote,
unless equal class probability is indicated, in which case a
Euclidean weighted approach is used. The default fuzzifier
value of m = 3.0 is used for FNN. FRNN is stable with
respect to the value of k£ and returns similar results but slightly
different models. VQNN on the other hand results in different
models when the value of k is altered. A range of values for k
are employed when generating the experimental results which
are documented in the following section.

IV. EXPERIMENTAL EVALUATION

A. Experimental Set-up

To evaluate the performance of the classifier models built
using the multiscale topological feature vectors, a leave-
one-out cross-validation (LOOCV) scheme was employed
for all datasets, and an additional stratified 10 runs 10-
fold cross-validation (10-FCV) scheme was employed for
the DDSM dataset to investigate how significantly these two
cross-validation schemes may affect the performance. Two
evaluation metrics were used for this work. The first was
overall classification accuracy (CA), which is defined as the
percentage of microcalcification clusters correctly classified,
providing a summary of the performance for balanced datasets
(such as the datasets used here). ROC analysis was used as the
second evaluation approach. An ROC curve is a plot of the true
positive rate (TPR) against the false positive rate (FPR), which
describes the whole range of possible operating characteristics
for a binary classifier model. Here, TPR is defined as the
number of correctly classified malignant cases divided by the
total number of malignant cases, and FPR is defined as the
number of benign cases incorrectly classified as malignant
divided by the total number of benign cases. ROC analysis
can be employed in order to assess the predictive ability of
a classifier by using the area under the ROC curve denoted
by A, [39]. A, is a statistically consistent measure and is
equivalent to the Wilcoxon signed-ranks test, which is a non-
parametric alternative to the paired t-test [40], [41]. All of the
classification and evaluation aspects were completed using the
WEKA data mining suite [42].

Moreover, to provide a comparison between the classifica-
tion results based on manually and automatically segmented
microcalcifications (and also to investigate the robustness
of the proposed method to microcalcification segmentation
variations), it was tested using both manual annotations and
automatic detection results for the MIAS dataset.

In addition, to evaluate the stability of the proposed ap-
proach with respect to the size of the dataset, a number of
subsets were randomly selected from each dataset for cross-
validation. Specifically, for the MIAS dataset, two groups of
random subsets were selected, consisting of 10 (5 malignant
and 5 benign) and 15 (7 malignant and 8 benign) cases,
respectively. For the Digital dataset, three groups of random
subsets were selected, consisting of 10 (5 malignant and 5
benign), 15 (7 malignant and 8 benign) and 20 (9 malignant
and 11 benign) cases, respectively. For the DDSM dataset,
six groups of random subsets were selected, consisting of
10 (5 malignant and 5 benign), 15 (7 malignant and 8
benign), 20 (9 malignant and 11 benign), 40 (18 malignant
and 22 benign), 80 (36 malignant and 44 benign) and 160 (72
malignant and 88 benign) cases, respectively. Each random
selection was repeated 100 times, which produced 100 random
subsets of each size for each dataset. The means, standard
deviations, maximum and minimum values of CA and A, were
statistically analysed over each group of 100 random subsets,
which are provided in the following section.
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Fig. 5. The A_ values produced by the four classifiers for the DDSM dataset
using leave-one-out (a) and 10-fold cross-validation (b).

TABLE 11
THE BEST CLASSIFICATION RESULTS OVER 65 SCALES. FOR 10-FCV, THE
RESULTS CONTAIN MEANS AND STANDARD DEVIATIONS RESULTING FROM
100 CLASSIFIER MODELS (10 FOLDS X 10 RUNS).

(a) CA (%)
Test Data kNN FNN FRNN VQNN
MIAS (manual) 95 (S = 10) 95 (S = 10) 95 (S = 14) 95 (S = 26)
MIAS (automatic) 95 (S =5) 95 (S =5) 95 (S =18) 95 (S =18)
Digital 96 (S = 10) 96 (S = 10) 88 (S = 24) 88 (S = 15)
DDSM (LOOCV) 86.0 (S = 40) 85.7 (S = 40) 78.0(S = 12) 84.0(S = 44)
DDSM (10-FCV) |85.2+5.7 (S =41) 85.1£6.5 (S =41) 77.8+6.8 (S = 12) 83.8+6.1 (S = 50)

(b) Az

Test Data kNN FNN FRNN VQNN
MIAS (manual) 0.96 (S = 10) 0.96 (S = 10) 0.96 (S = 14) 0.96 (S = 26)
MIAS (automatic) 0.96 (S =5) 0.96 (S = 5) 0.96 (S = 8) 0.96 (S = 8)
Digital 0.96 (S = 10) 0.96 (S = 10) 0.90 (S = 24) 0.92 (S = 15)
DDSM (LOOCV) 0.90 (S = 40) 0.85 (S = 40) 0.84 (S =12) 0.89 (S = 44)
DDSM (10-FCV) [0.91 = 0.05 (S = 41)0.85 4 0.07 (S = 41)0.84 £ 0.07 (S = 12)0.89 == 0.06 (S = 50)

B. Experimental Results

We have used two digitised and one full-field digital datasets
(see Section II for details) for evaluating the performance of
the proposed approach in discriminating between malignant
and benign microcalcification clusters. We have investigated a
range of values for S which determines the dimensionality of
the feature space. As described in Section III-C, the multiscale
topological feature vectors are extracted from a set of micro-
calcification graphs generated at scales s = 0,1,...,5 — 1,
which are composed of eight graph feature sets. Thus, the
dimensionality of the multiscale topological feature space is
equal to 8 x S. The largest scale used in the experiments was
set to 65, and therefore the dimensionality of the feature space
was up to 520. In addition, we have used a range of values
for & which determines the number of the nearest neighbours
used to build the classifier models. Fig. 5 shows the results
for a range of scales (S) defining the feature space for the
DDSM dataset. As can be seen, the results are stable over a
range of different scales. A, results as a function of the k
value show a similar stability over a range of k = [1...10]
for the MIAS and Digital datasets, and k£ = [12...30] for
the DDSM dataset. For brevity, detailed results of this are left
out of the paper. Table II shows the best classification results
achieved by the four classifiers over 65 scales, including CA
(Table II(a)) and A, (Table II(b)). The classification accuracy
is given at the scale maximum scoring A, value.

For the MIAS dataset, when using the manual annotations,
the best CA was 95% with one benign case misclassified and
the largest A, was 0.96, produced by all the four classifiers;

when using the automatic detection results, the best CA was
also 95% with the same benign case misclassified, and the
largest A, of 0.96 was also obtained by all the four classifiers.
For the Digital dataset, the best CA of 96% with one malignant
case misclassified and the best A, of 0.96 were achieved by
kNN and FNN. For the DDSM dataset, when using leave-one-
out cross-validation, kNN obtained the best CA of 86% and
the largest A, of 0.90; for 10-fold cross-validation, kNN also
indicated the best performance, the CA and A, were 85.2 +
5.7% and 0.91 4 0.05, respectively (standard deviations were
calculated across 100 classifier models (10 folds x 10 runs)).

As described in Section IV-A, to evaluate the stability of
the proposed approach with respect to the size of the dataset,
a set of subsets consisting of 10, 15, 20, 40, 80, 160 cases
were randomly sampled from the MIAS, DDSM and Digital
datasets. 100 random subsets were generated for each number
of cases. The means, standard deviations, maximum and
minimum values of CA and A, calculated over each group of
100 random subsets are provided in Table III, where the results
were generated using kNN and leave-one-out cross-validation.
As shown in Table III, with regard to each dataset, the random
subsets containing a small number of cases produced slightly
worse results with a larger standard deviation, however, the
standard deviations of CA and A, were reduced as the number
of cases in the subsets was increased. Note that the random
subsets containing the largest number of cases selected from
the three datasets (15, 20 and 160) achieved very similar
results to those based on the whole datasets.

In addition, we investigated redundancy among the defined
topological feature set and explored the graph metrics which
contributed most to malignancy analysis of microcalcification
clusters. We performed feature selection by employing the
CfsSubsetEval attribute evaluator and the GreedyStepwise
search method in Weka. The CfsSubsetEval attribute evaluator
evaluates the importance of a subset of features by estimating
the individual predictive ability of each feature as well as
the extent of redundancy between them, and as such features
that are highly correlated with the class while have low inter-
correlation are more likely to be selected (see [43] for more
information). The GreedyStepwise search method performs a
greedy forward or backward search through the feature space,

TABLE III
STATISTICAL ANALYSIS OF CA AND A, OVER 100 RANDOM SUBSETS OF
DIFFERENT NUMBERS OF CASES SELECTED FROM THE MIAS, DIGITAL
AND DDSM DATASETS.

(a) CA(%)
Digital DDSM
0 15 [ 10 15 20 | 10 15 20 40 80 160

Mean | 93.0 95.1 | 93.1 943 96.1 | 883 90.1 89.1 88.1 872 865
Std. 65 41 |72 46 37 |92 179 70 46 34 20
Max. 100 100 | 100 100 100 | 100 100 100 97.5 95 913
Min. | 80.0 86.7 | 80.0 86.7 90.0 | 700 70.0 75.0 750 788 825
(b) Az
MIAS Digital DDSM

10 15 10 15 20 10 15 20 40 80 160

Mean | 093 095|093 095 096 | 088 092 091 091 090 0.90
Std. 0.07 0.04 | 0.08 0.04 004|011 008 0.07 0.05 0.03 0.02
Max. | 1.00 1.00 | 1.00 1.00 1.00 | .00 1.00 1.00 1.00 0.96 0.95
Min. | 0.74 0.88 | 0.76 0.87 0.90 | 0.62 0.67 0.70 0.73 0.80 0.86
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Fig. 6. The overview of the selection times of the eight graph metrics for the
three datasets. The graph metrics from No. 1 to 8 correspond to (1) number of
subgraphs, (2) average vertex degree, (3) maximum vertex degree, (4) average
vertex eccentricity, (5) diameter, (6) average clustering coefficient, (7) giant
connected component ratio, and (8) percentage of isolated points (see Table I).

which starts with no or all features and terminates when any
addition or reduction of the currently selected feature subset
results in a decrease in evaluation [44]. We used leave-one-
out cross-validation for MIAS and Digital, while for DDSM
we used 10 runs stratified 10-fold cross-validation. It should
be noted that the feature selection is only performed on the
training data and therefore it cannot overfit since there is no
bias. If we did not use cross-validation then we could run into
the risk of overtraining, but even with leave-one-out cross-
validation the test set remains uncorrelated with the training
data. The number of the resulting feature subsets was 20, 25
and 100 for MIAS, Digital and DDSM, respectively. Fig. 6
illustrates how many times each of the eight graph metrics
were taken after feature selection. As can be seen from Fig. 6,
graph metrics No. 1 and 7, i.e. number of subgraphs and
giant connected component ratio, seemed to be the two most
important graph metrics among the eight, which were most
frequently selected from the multiscale topological feature set.
As indicated in Table I, these two graph metrics are mainly
related to the number/distribution of microcalcifications within
a cluster. Their precise clinical significance for the diagnosis
of malignant and benign microcalcification clusters could be
further investigated.

The classification results for the three datasets after feature
selection are provided in Table IV. Here, the results were
generated by the KNN classifier using the resulting feature
subsets, which were slightly lower when compared to those
results obtained before feature selection (see Table II).

V. DISCUSSION

As described above, good classification results have been
obtained for all the three datasets. The Digital dataset provided

TABLE IV
THE CLASSIFICATION RESULTS FOR THE THREE DATASETS AFTER
FEATURE SELECTION.

Test Data Cross-Validation CA A,
MIAS (manual) leave-one-out 90% 0.91
MIAS (automatic) leave-one-out 90% 0.93
Digital leave-one-out 96% 0.94
DDSM 10-fold 83.9+6.3% 0.90 £+ 0.05

the best results, which might be due to the more accurate
detection of microcalcifications using digital mammography.
As stated in Oliver et al. [16], the detection approach indicates
the best performance when using the Digital dataset, and
therefore more realistic detection results of microcalcifications
can be provided for the classification task. The MIAS dataset
produced the second best classification results, and moreover
using manual annotations and automatic detections achieved
the same performance. This indicates that the proposed method
seems to be robust with respect to variations between manual
and automatic segmentations of microcalcifications. For the
DDSM dataset, very similar results were shown when using
the leave-one-out and 10-fold cross-validation methods, show-
ing a decreased performance in the results when compared
to the other datasets. It might be partially explained by the
fact that the detection approach performs worst for the DDSM
database among the three datasets [16]. Moreover, the DDSM
dataset used in our experiments contains 300 cases, which
is expected to give a larger variability than the small datasets
(especially as the DDSM dataset was generated using different
digitisers). However, the obtained classification results are still
comparable or even better than the related work reviewed by
Cheng et al. [9] or Table V, where most publications used
smaller databases than ours.

We compared the proposed method with related publications
in the literature. Table V shows a summary of the comparison.
Note that the various approaches use different images taken
from different databases, and therefore this is a qualitative
comparison. In Shen et al. [7], the 100% CA was obtained
by classifying 143 individual microcalcifications from 18
biopsy proven cases based on a leave-one-microcalcification-
out approach, which is different from the goal of our clas-
sification of microcalcification clusters. In Ma et al. [10],
the classification of microcalcification clusters was based on
the maximum feature value obtained by a selected single
microcalcification rather than the whole cluster (and therefore
some manual aspects were involved in the extraction process).
In Ren et al. [46], the high classification performance was
obtained by introducing an optimised decision making step
which was performed afterwards through statistical analysis
of the classifier outputs to achieve the minimum cost of error
classification. As shown in Table V, the obtained classification
results are comparable to the various approaches.

In addition, in order to enable a direct comparison, we
extracted the features used in previously published works
that showed the most promising performance [7], [10], [46],
[47] and performed malignancy analysis of microcalcification
clusters on our datasets. Table VI shows a summary of the
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TABLE V
A QUALITATIVE COMPARISON OF OUR RESULTS WITH THOSE ACHIEVED BY RELATED WORK.
Method Database Cases Feature Classifier Result
Shen et al. [7] unknown 18 shape kNN CA = 100%
Ma et al. [10] DDSM 183 shape thresholding A, =0.96
Chan et al. (1998) [21] unknown 145 morphology LDC A, =0.79
Dhawan et al. [8] unknown 191 texture&cluster ANN A, =0.86
Papadopoulos et al. [15] MIAS 25 cluster SVM A, =0.81
Chan et al. (1997) [27] unknown 54 texture ANN A, =088
Soltanian-Zadeh et al. [11] Nijmegen 103 multiwavelet kNN A, =0.89
Betal et al [20] Liverpool 38 shape/cluster kNN A, =0.79,A, =0.84
Rana et al. [23] University of Chicago Hospitals 49 morphology ANN A. =0.80
Wei et al. [45] University of Chicago 104 cluster&morphology Ada-/Cas-SVM A, =081,A,=0.82
Shao et al. [25] Sun Yat-sen University 109 pattern factor quantising A, =0.74
Ren et al. (2011) [46] DDSM 150 varied features ANN A, =098
Ren (2012) [47] DDSM 150 varied features ANN/SVM A, =093,4, =094
Strange et al. [24] DDSM 150 cluster barcodes . =0.82
Strange et al. [24] MIAS 20 cluster barcodes A, =0.80
Ours MIAS I (manual annotation) 20 topology KNN/FNN/FRNN/VQNN CA =95%, A, =0.96
Ours MIAS I (automatic detection) 20 topology KNN/FNN/FRNN/VQNN CA =95%, A, = 0.96
Ours Digital 25 topology kNN/FNN CA =96%, A, =0.96
Ours DDSM (leave-one-out CV) 300 topology kNN CA = 86.0%, A, = 0.90
Ours DDSM (10-fold CV) 300 topology kNN CA =85.2+5.7%, A, =0.91+0.05
TABLE VI

A DIRECT COMPARISON OF THE RESULTING CA AND A, VALUES OF OUR APPROACH AND SHEN ET AL. [7], MA ET AL. [10], AND REN ET AL. [46], [47].

Test Data Ours Shen et al. [7] Ma et al. [10] Ren et al. [46], [47]

MIAS (manual annotation) CA = 95%, A, = 0.96 CA =70%, A, = 0.68 CA =80%, A, =0.76 CA =85%, A, = 0.91
Digital CA =96%, A, =0.96 CA =84%, A, =0.71 CA =72%, A, =0.68 CA =85%, A, =091
DDSM CA =86%, A, =0.90 CA =73%, A, = 0.69 CA =62%, A, =0.56 CA =82%, A, =0.86

best CA and A, values achieved using our proposed topology
based feature set and the other three feature sets [7], [10], [46],
[47], where the results were all produced using kNN and leave-
one-out cross-validation. As shown in Table VI, our proposed
approach performed best among the four approaches and
achieved the best CA and A, results for all the three datasets.
In addition, our proposed approach provided a significant
improvement over the existing methods and when the results
from Table VI were compared using an unpaired t-test a p
value of p < 0.01 was obtained in all cases.

One inherent limitation of the developed method is that
it cannot provide a reliable classification for the case where
the cluster is structureless or few microcalcifications are seg-
mented within the cluster. An extreme is when only a single
microcalcification is detected from the cluster by the automatic
detection approach, it will fail to discriminate malignant
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Fig. 7. Graph showing the classification accuracy as a function of the number
of microclacifications. The results are reported for the DDSM dataset using
leave-one-out cross-validation (a) and 10-fold cross-validation (b) with the
kNN classifier and S = 40 for leave-one-out cross-validation and S = 41
for 10-fold cross-validation.

from benign based on the topology. Another concern of the
proposed method is that its performance might depend on
the performance of the microcalcification detection approach.
False negatives or false positives may affect the global topol-
ogy/connectivity of microcalcification clusters. However, the
experimental results demonstrate the robustness and effective-
ness of the developed method when combined with automatic
microcalcification detection.

In the experiments, the clusters with fewer microcalcifica-
tions being segmented by the automatic detection approach
tend to be classified as benign since their graph metrics
are more in line with those of a benign cluster. Thus, the
under-detected malignant cases where the microcalcifications
indicate a sparse distribution could be misclassified into be-
nign. On the other hand, the benign cases with relatively
a larger number of microcalcifications (including the false
positives) being segmented from the clusters could indicate a
malignant-like distribution and as such could be misclassified
into malignant. Fig. 7 shows the classification accuracy as a
function of the number of microcalcifications for the DDSM
dataset using leave-one-out and 10-fold cross-validation. The
results were obtained using the kNN classifier with .S = 40
for leave-one-out cross-validation and S = 41 for 10-fold
cross-validation since they correspond to the best performing
scale for this classifier as displayed in Table II. For display
purposes the results shown in Fig. 7 were averaged such that
each bar represents the mean classification accuracy over 5
sizes of microcalcification clusters. The results show that there
is a slight dip in classification accuracy when the number of
microcalcifications falls in the 11 — 15 range. This experiment
was not replicated with the MIAS and Digital dataset due
to their small sample size and good classification accuracy.
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Due to the fact that only a few samples are misclassified,
the sample size would not be big enough to show any
relationship between the number of microcalcifications and
the classification accuracy.

As discussed above, some highlights of this work should
be noted. For the MIAS dataset, the same methodology was
applied based on both manually annotated and automatically
detected microcalcifications, and the same classification per-
formance was obtained. This indicates the robustness of the
proposed method to detection errors. For the DDSM dataset,
we used a larger set of cases than related publications and
achieved good results. In addition to these two well-known
digitised databases, we evaluated our method using a full-field
digital database and obtained improved classification results.
This demonstrates the capability of our method in dealing with
two categories of mammograms, which allows it to be applied
in both film and digital mammography. We also investigated
the stability of the proposed method against the size of the
evaluation dataset. For each dataset, no significant difference
in the classification performance was shown among the subsets
of varied numbers of cases. Furthermore, we investigated the
most significant microcalcification graph metrics for malig-
nancy analysis by performing feature selection. The most fre-
quently selected graph metrics are worth further investigation
from a clinical point of view. In addition to a qualitative
comparison with related publications, we implemented a direct
comparison between the proposed approach and three state-
of-the-art approaches, and our method demonstrated the best
performance for all the three datasets used in this work. In
addition, we used the CAD detection results directly instead
of manual segmentation results for all the three datasets. High
classification accuracies and good ROC analysis results were
obtained when compared to the state-of-the-art approaches.
This indicates its potential application in conjunction with
automatic detection approaches in CAD systems.

As future work, other features such as shape and texture of
individual microcalcifications and the whole cluster could be
incorporated to build a complete framework for malignancy
analysis of microcalcification clusters. A similarity measure
between microcalcfication graphs can be investigated in order
to discriminate between malignant and benign clusters using
the graph based representation directly without generating
graph feature vectors. On the other hand, alternative classifiers
(e.g. random forests, ANN, and SVM) could also be investi-
gated. In addition, we will extend the evaluation using a larger
collection of digital mammograms.

VI. CONCLUSIONS

We have presented a method for classifying microcalci-
fication clusters in mammograms based on morphological
topology analysis. This is a novel approach to analyse mi-
crocalcifications in terms of the connectivity and topology
for discriminating malignant from benign clusters. Unlike
most features (e.g. shape/morphological features) in previous
publications extracted at a single scale, a representation of
microcalcification clusters covering the multiscale characteris-
tics was developed in this paper. The topology/connectivity of

microcalcification clusters was analysed using multiscale mor-
phology. A set of microcalcification graphs were constructed to
describe the topological structure of microcalcification clusters
at multiple scales. When analysing the topology of micro-
calcification clusters, we extracted eight graph metrics from
microcalcification graphs generated at multiple scales, which
are number of subgraphs, average vertex degree, maximum
vertex degree, average vertex eccentricity, diameter, average
clustering coefficient, giant connected component ratio, and
percentage of isolated points. The resulting eight graph feature
sets were aggregated and constituted the multiscale topological
feature vector, which has been used to classify microcalcifica-
tion clusters into malignant and benign.

The proposed method has been evaluated using three
datasets: MIAS, DDSM and Digital. Four k-Nearest Neigh-
bours based algorithms (KNN, FNN, FRNN and VQNN) have
been used for the classification task. Good classification results
have been obtained for all the datasets. By investigating a set of
S values for the number of scales and using a range of k values
for the classifier, the obtained best classification accuracy was
95% for MIAS with manual annotations, 95% for MIAS with
automatic detections, 96% for Digital, 86% for DDSM using
leave-one-out cross validation, and 85.2 £+ 5.7% for DDSM
based on 10-fold cross-validation; and the largest area under
the ROC curve was 0.96, 0.96, 0.96, 0.90 and 0.91 £ 0.05,
respectively.
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