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Mixed Strategy May Outperform Pure Strategy: An
Initial Study

Jun He, Wei Hou, Hongbin Dong and Feidun He

Abstract

A pure strategy metaheuristics is one that applies the same search method at each iteration of the algorithm. A mixed strategy
metaheuristics is one that selects a search method probabilistically from a set of strategies at each iteration. For example, a search
strategy may be mutation + selection or crossover + selection. Thus classical genetic algorithms (using mutation, crossover and
selection) belong to mixed strategy heuristics, while simplified (1+1) evolutionary algorithms (using mutation and selection) are
pure strategy metaheuristics. The aim of this paper is to compare the performance between mixed strategy and pure strategy
metaheuristics. The major results of the current paper are summarised as follows. (1) We construct two novel mixed strategy
evolutionary algorithms for solving the 0-1 knapsack problem and show that the mixed strategy algorithms may find better
solutions than pure strategy algorithms in up to 77.8% instances through experiments. (2) We establish a sufficient and necessary
condition when the runtime of mixed strategy metaheuristics is smaller that that of pure strategy mixed strategy metaheuristics.

Index Terms

Hybrid Meta-heuristics, Performance Comparison, Theoretical analysis, Mixed Strategy, Pure Strategy

I. INTRODUCTION

In the last three decades, meta-heuristic algorithms have been widely applied in solving combinatorial optimisation problems.
Meta-heuristics include, but are not restricted to, Ant Colony Optimization (ACO), Genetic Algorithms (GA), Iterated Local
Search (ILS), Simulated Annealing (SA), and Tabu Search (TS) [1]–[3]. Different search strategies have been developed in
these metaheuristics. Each search strategy has its own advantage. Therefore it is a natural idea to combine the advantages of
several search strategies together. This leads to hybrid metaheuristics [4] such as hyper-heuristic [5] and memetic algorithm
[6].

Mixed strategy heuristics [7] belong the family of hybrid metaheuristics. They are inspired from mixed strategies in the game
theory [8]. A pure strategy metaheuristics is one that applies the same search method at each iteration of the algorithm. A mixed
strategy metaheuristics is one that selects a search method probabilistically from a set of strategies at each iteration. For example,
a search strategy may be mutation + selection or crossover + selection. Thus classical genetic algorithms (using mutation with
probability 0.9 and crossover with probability 0.1) belong to mixed strategy heuristics. Simplified (1+1) evolutionary algorithms
(using mutation) are pure strategy metaheuristics. Mixed strategy evolutionary programming, integrating several mutation
operators, has been designed for numerical optimization [9]. Experimental results show that mixed strategy evolutionary
programming outperforms pure strategy evolutionary programming with a single mutation operator [10].

The first goal of this paper is to conduct an empirical comparison of the performance between mixed strategy and pure
strategy evolutionary algorithms (EAs for short) on the 0-1 knapsack problem. Novel mixed strategy EAs are proposed to solve
the problem. In experiments, the performance of an EA is measured by the final fitness value after 500 generations averaged
over 10 runs.

The second but more important goal is to provide a theoretical answer to the question: when do mixed strategy metaheuristics
outperform pure strategy metaheuristics? In theoretical analysis, the performance of an algorithm is measured by the expected
hitting time to find an optimal solution.

Despite the popularity of hybrid metaheuristics, there are few rigorous analyses of hybrid metaheuristics. One result is
based on the asymptotic convergence rate as the performance measure [11]. It demonstrates that any mixed strategy (1+1)
EA (consisting of several mutation operators) performs no worse than the worst pure strategy EA (using a single mutation
operator). If mutation operators are mutually complementary, then it is possible to design a mixed strategy (1+1) EA better than
the best pure strategy (1+1) EA. Another result is based on the runtime analysis of selection hyper-heuristics [12]. It shows
that mixing different neighbourhood or move acceptance operators can be more efficient than using stand-alone individual
operators in some cases. But the discussion is restricted to simple algorithms for the OneMax and GapPath functions.

There are two major differences between this paper and our previous work [11]. In this paper, the performance of an
algorithm is theoretically measured by the expected hitting time. Nonetheless the asymptotic convergence rate is taken as the
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masure in [11]. Roughly speaking, the asymptotic convergence rate is how fast an iteration algorithm converge to the solution
per iteration [13]. The algorithms discussed in the paper are population-based, but only (1+1) EAs are analysed in [11].

The rest of this paper is organized as follows. Section II gives experimental results that show mixed strategy may outperform
pure strategy. Section III provides the sufficient and necessary condition when mixed strategy may outperform pure strategy
in general. Section IV concludes the paper.

II. EVIDENCE FROM EXPERIMENT: MIXED STRATEGY MAY OUTPERFORM PURE STRATEGY

This section conducts an empirical comparison of the performance between mixed strategy EAs and pure strategies EAs. A
classical NP-hard problem, the 0-1 knapsack problem [14], is used in the empirical study.

A. Evolutionary Algorithms for the 0-1 Knapsack Problem

The 0-1 knapsack problem is described as follows:

maximize
∑n

i=1 vixi,
subject to

∑n
i=1 wixi ≤ C,

where vi > 0 is the value of item i, wi > 0 the weight of item i, and C > 0 the knapsack capacity and

xi =

{
1 if item i is selected in the knapsack,
0 otherwise.

A solution is represented by a vector (a binary string) ~x = (x1, · · · , xn). If a solution ~x violates the constraint, then it is called
infeasible. Otherwise it is called feasible.

There are several ways to handle the constrains in the knapsack problem [15]. The method of repairing infeasible solutions
is used in the paper since it is more efficient than other methods [16]. Its idea is simple: if an infeasible solution is generated,
then it will be repaired to a feasible solution. The repairing procedure is described as follows:

1: input ~x;
2: if

∑n
i=1 xiwi > C then

3: ~x is infeasible;
4: while (~x is infeasible) do
5: i =: select an item from the knapsack;
6: set xi = 0;
7: if

∑n
i=1 xiwi ≤ C then

8: ~x is feasible;
9: end if

10: end while
11: end if
12: output ~x.

There are different select methods in the repairing procedure. Two of them are described as follows.
1) Random repair: select an item from the knapsack at random and remove it from the knapsack.
2) Greedy repairing: sort all items according to the order of the ratio vi/wi, then select the item with the smallest ratio

and remove it from the knapsack.
The fitness function is defined as

f(~x) =

n∑
i=1

xivi, if ~x is feasible,

Thanks to the repairing method, no need to define the fitness for infeasible solutions.
A pure strategy EA for solving the 0-1 knapsack problem is described as follows.
input a fitness function;
generation counter t← 0;
initialize Φ0;
an archive keeps the best solution in Φ0;
while t is less than a threshold do

Φt+1/2 ← children mutated from Φt;
if a child is an infeasible solution then

then repair it into a feasible solution;
end if
Φt+1 ← selected from Φt,Φt+1/2;
update the archive if the best solution in Φt+1 is better than it;
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t← t+ 1;
end while
output the maximum of the fitness function.
A mixed strategy EA for solving the 0-1 knapsack problem is almost the same as the above algorithm, except one

place:
choose a mutation operator probabilistically;
Φt+1/2 ← children mutated from Φt;

A detailed introduction of mutation operators is given in the next subsection. The selection operator is the same in all pure
strategy and mixed strategy EAs. Therefore a pure strategy refers to a mutation operator. A mixed strategy then means a
probability distribution of choosing mutation operators.

B. Pure Strategy and Mixed Strategy Evolutionary Algorithms

Four pure strategy EAs are constructed based on four different mutation operators. One operator is independent on the 0-1
knapsack problem and the others are problem-specific.

The first mutation operator is standard bitwise mutation. The related EA is denoted by PSb.
• Bitwise Mutation: Flip each bit xi to 1− xi with probability 1

n .
The second mutation operator is problem-specific. It is based on heuristic knowledge: an item with a bigger value is more

likely to appear in the knapsack. The related EA is denoted by PSv.
• Mutation based on values: If a bit xi = 0, then flip it to 1 with probability

vi∑n
j=1 vj

. (1)

If a bit xi = 1, then flip it to 0 with probability

1/vi∑n
j=1 1/vj

. (2)

The third mutation operator is based on heuristic knowledge too: an item with a smaller weight is more likely to appear in
the knapsack. The corresponding EA is denoted by PSw.
• Mutation based on weights: If a bit xi = 0, then flip it to 1 with probability

1/wi∑n
j=1 1/wj

. (3)

If a bit xi = 1, then flip it to 0 with probability
wi∑n
j=1 wj

. (4)

The fourth mutation operator is constructed from heuristics knowledge: first calculate the ratio between the value and weight
for each item:

ri =
vi
wi
. (5)

Then an item with a bigger ratio is more likely to appear in the knapsack. The related EA is denoted by PSr.
• Mutation based on the ratio between value and weight : If a bit xi = 0, then flip it to 1 with probability

ri∑n
j=1 rj

. (6)

If a bit xi = 1, then flip it to 0 with probability

1/ri∑n
j=1 1/rj

. (7)

Two types of mixed strategy are designed in the experiments. One is to set a fixed probability distribution of choosing
mutation operators for all time. The algorithm is called static, denoted by MSs.
• statically mixed strategy: choose each mutation strategy subject to a fixed probability distribution. In the experiments, we

set the probability distribution to be (0.25, 0.25, 0.25, 0.25) for the four pure strategies.
The other is to dynamically adjust the probability distribution of choosing mutation operators. If a better solution is generated

by applying a mutation operator this time, then the operator will be chosen with a higher probability next time. This kind of
mixed strategy EAs is called dynamic, denoted by MSd.
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• dynamically mixed strategy: The mixed strategy used in the experiments is the same as that in [9]. For each individual in
population I(t+ 1), its mixed strategy should be adjusted as follows:

– If individual i comes from the offspring population I ′(t), or comes from the parent population I(t) and its offspring
appears in I(t+ 1), the pure strategy used in the mutation is strategy h, then the new mixed strategy is given by:{

ρ
(t+1)
i (h) = ρ

(t)
i (h) + (1− ρ(t)i (h))γ

ρ
(t+1)
i (l) = ρ

(t)
i (l)− ρ(t)i (l)γ, ∀l 6= h

(8)

where the parameter γ ∈ (0, 1) is used to control the mixed strategy distribution ~ρi. It is chosen to be a positive in
(0, 1) to guarantee the normalization condition:

∑4
k=1 ρi(k) = 1 and ρi(k) ≥ 0. In this paper, γ is set to 1/3.

– If individual i comes from the parent population I(t) but its offspring does not appear in I(t + 1), and the pure
strategy used in the mutation is strategy h, then we weaken the strategy h. The new probability distribution is given
by: {

ρ
(t+1)
i (h) = ρ

(t)
i (h)− ρ(t)i (h)γ

ρ
(t+1)
i (l) = ρ

(t)
i (l) + ρ

(t)
i (l)γ, ∀l 6= h

(9)

C. Experiments

Experiments are conducted on different types of instances of the 0-1 knapsack problem. According to the correlation between
values and weights, the instances of the problem are classified into three types [14], [15]: given two positive parameters A
and B,

1) uncorrelated knapsack: vi and wi uniformly random in [1, A];
2) weakly correlated knapsack: wi uniformly random in [1, A]; and vi uniformly random in [wi −B,wi +B] (if for some

j, vi ≤ 0, then the random generation procedure should be repeated until vi > 0);
3) strongly correlated knapsack: wi uniformly random in [1, A]; and vi = wi +B;
In the experiments, A and r are set to be A = n

20 and B = n
20 .

Based on the capacity, the instances of the knapsack problem are classified into two types [14], [15]:
1) restrictive capacity knapsack: the knapsack capacity is small, where C = 2A.
2) average capacity knapsack: the knapsack capacity is large, where C = 0.5

∑n
i=1 wi.

Hence we will compare two mixed strategy EAs and four pure strategy EAs on six different types of instances below:
1) uncorrelated and restrictive capacity knapsack,
2) weakly correlated and restrictive capacity knapsack,
3) strongly correlated and restrictive capacity knapsack,
4) uncorrelated correlated and average capacity knapsack,
5) weakly correlated and average capacity knapsack,
6) strongly correlated and restrictive average capacity knapsack.
Furthermore the experiments are split into two groups based on repairing methods: (1) greedy repair, (2) random repair.
The experiment setting is described as follows. For each type of the 0-1 knapsack problem, three instances with 100, 250

and 500 items are generated at random. The population size is set to 10. The maximum of generations is 500. The initial
population is chosen at random. Tables I and II give the fitness values of the archive after 500 generations. It is averaged over
10 independent runs.

Following a simple calculation, we see that the dynamically mixed strategy EA, MSd, is the best in 77.8% instances and
equally the best in 2.8% instances. Comparing the statically mixed strategy EA, MSs, with four pure strategies, MSs is better
in 36.1% instances (marked in italic type in the tables).

Experimental results show mixed strategy EAs outperform pure strategy EAs in many instances, but not always. Naturally
it raises the question: under what condition, a mixed strategy EA may outperform a pure strategy EA. This question is seldom
answered rigorously before.

III. SUPPORT OF THEORY: MIXED STRATEGY MAY OUTPERFORM PURE STRATEGY

In this section, we conduct a theoretical comparison of the performance between mixed strategy metaheuristics and pure
strategy metaheuristics.
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TABLE I
GREEDY REPAIR: FITNESS VALUES AFTER 500 GENERATIONS AVERAGED OVER 10 RUNS

uncorrelated and restrictive capacity knapsacks
n MSs MSd PSb PSv PSw PSr

100 285 300 279 281 283 277
250 1609 1655 1601 1539 1528 1513
500 5625 5703 5515 5794 5140 5504

weakly correlated and restrictive capacity knapsacks
n MSs MSd PSb PSv PSw PSr

100 342 353 331 289 306 325
250 1651 1695 1583 1514 1668 1650
500 5319 5545 5161 4595 4810 4710

strongly correlated and restrictive capacity knapsacks
n MSs MSd PSb PSv PSw PSr

100 671 683 678 662 655 665
250 4126 4261 4212 4170 5023 3980
500 15273 15537 14959 15226 15367 14179

uncorrelated and average capacity knapsacks
n MSs MSd PSb PSv PSw PSr

100 295 299 293 292 288 295
250 1616 1650 1616 1619 1583 1609
500 5751 5958 5670 5963 5601 5663

weakly correlated and average capacity knapsacks
n MSs MSd PSb PSv PSw PSr

100 387 395 355 344 362 349
250 1976 2014 2009 1924 1997 1956
500 7284 7505 6839 6966 7048 7049

strongly correlated and average capacity knapsacks
n MSs MSd PSb PSv PSw PSr

100 716 730 718 721 714 716
250 4372 4409 4301 4220 4135 4218
500 15525 15868 15746 15819 15552 14828

A. Meta-heuristics and Markov Chains

Without losing generality, consider the problem of maximising a fitness function:

maximize f(x), (10)

where x is a variable and its definition domain is a finite set.
The metaheuristics considered in the paper are formalised as Markov chains. Initially construct a population of solutions

Φ0; from Φ0, then generate a new population of solutions Φ1; from Φ1, then generate a new population of solutions Φ2, and
so on. This procedure is repeated until a stopping condition is satisfied. A sequence of populations is then generated

Φ0 → Φ1 → Φ2 → · · · .

An archive is used for recording the best found solution so far. The archive is not involved in generating a new population. In
this way, the best found solution is preserved for ever (called elitist). The metaheuristics algorithm with an archive is described
below.

1: set counter t to 0;
2: initialize a population Φ0;
3: an archive keeps the best solution in Φ0;
4: while the archive is not an optimal solution do
5: a new population Φt+1 is generated from Φt;
6: update the archive if the best solution in Φt+1 is better than it;
7: counter t is increased by 1;
8: end while
The procedure of generating Φt+1 from Φt can be represented by transition probabilities among populations:

P (X,Y ) := P (Φt+1 = Y | Φt = X), (11)

where populations Φt,Φt+1 are variables and X,Y are their values (also called states). The transition probabilities P (X,Y )
form the transition matrix of a Markov chain, denoted by P.

Definition 1: If a transition matrix P for generating new populations is independent of t, then it is called a pure strategy.
A mixed strategy is a probability distribution of choosing pure strategies over a strategy pool.
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TABLE II
RANDOM REPAIR: FITNESS VALUES AFTER 500 GENERATIONS AVERAGED OVER 10 RUNS

uncorrelated and restrictive capacity knapsacks
n MSs MSd PSb PSv PSw PSr

100 167 170 161 160 155 166
250 850 876 852 842 810 846
500 2550 2675 2440 2513 3 2496 2426

weakly correlated and restrictive capacity knapsacks
n MSs MSd PSb PSv PSw PSr

100 236 242 230 229 226 222
250 1066 1134 1046 1058 1098 1067
500 3947 4071 3719 3741 3713 3815

strongly correlated and restrictive capacity knapsacks
n MSs MSd PSb PSv PSw PSr

100 405 416 403 405 389 408
250 2171 2204 2188 2273 2138 2205
500 7028 7078 6981 6883 6958 6946

uncorrelated and average capacity knapsacks
n MSs MSd PSb PSv PSw PSr

100 225 234 218 231 212 231
250 1236 1266 1197 1208 1070 1263
500 4669 4697 4443 4674 3922 4716

weakly correlated and average capacity knapsacks
n MSs MSd PSb PSv PSw PSr

100 295 311 290 294 292 304
250 1520 1530 1497 1491 1374 1519
500 5641 5769 5300 5525 4999 5710

strongly correlated and average capacity knapsacks
n MSs MSd PSb PSv PSw PSr

100 476 493 479 483 470 493
250 2650 2716 2613 2610 2586 2721
500 10156 10285 10119 10131 10065 10393

In theory, the stopping criterion is that the algorithm halts once an optimal solution is found. It is taken for the convenience
of analysing the first time of finding an optimal solution. If Φt includes an optimal solution, then assign

Φt = Φt+1 = Φt+2 = · · ·

for ever. As a result, the population sequence {Φt} is formulated by a homogeneous Markov chain [17].
Since a state in the optimal set is always absorbing, so the transition matrix P can be written in the canonical form,

P =

(
I O
R Q

)
, (12)

where I is a unit matrix, O a zero matrix and Q a matrix for transition probabilities among non-optimal populations. R denotes
the transition probabilities from non-optimal populations to optimal populations.

Let m(X) denote the expected number of generations needed to find an optimal solution when Φ0 is at state X for the
first time (thereafter it is abbreviated by the expected hitting time). Clearly for any initial population X in the optimal set,
m(X) is 0. Let (X1, X2, · · · ) represent all populations in the non-optimal set and the vector ~m denote their expected number
of generations respectively

~m = (m(X1),m(X2), · · · )T .

The following theorem [18, Theorem 11.5] shows that the expected hitting time can be calculated from the transition matrix.

Theorem 1 (Fundamental Matrix Theorem): The expected hitting time is given by

~m = (I−Q)−1~1, (13)

where ~1 is a vector all of whose entries are 1, the matrix N = (I−Q)−1 is called the fundamental matrix.
Two special values of the expected hitting time are often used to evaluate the performance of metaheuristics. The first value

is the average of the expected hitting time, given by

m̄ =
1

| S |
∑
X∈S

m(X). (14)

where S denotes the set of all populations. The average corresponds to the case when the initial population is chosen at random.
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The second value is the maximum of the expected hitting time, given by

max{m(X);X ∈ S}, (15)

The maximum corresponds to the case when the initial population is chosen at the worst state.
The population set S is divided into two parts: Snon denotes the set of all populations which don’t include any optimal

solution and Sopt the set of all populations which include at least one optimal solution.
Suppose the number of fitness evaluation is µ and then the runtime of a meta-heuristic equals µm(X), denoted by t(X).

B. Drift Analysis
In theory, the performance of metaheuristics is evaluated by the expected hitting time. Drift analysis is used for bounding

the expected hitting time of metaheuristics [19]. In drift analysis, a distance function d(X) is a non-negative function. Let
(X1, X2, · · · ) represent all populations in the non-optimal set and ~d denote the vector

(d(X1), d(X2), · · · )T .
Definition 2: Let P be the Markov chain associated with a metaheuristic algorithm and d(X) be a distance function. For a

non-optimal population X , the drift at state X is

∆(X) := d(X)−
∑

Y ∈Snon

d(Y )P (X,Y ).

The drift represents the one-step progress rate towards the global optima. Since the Markov chain {Φt; t = 0, 1, · · · } is
homogeneous, the above drift is independent of t.

The following theorem is a variant of the original drift theorem [17, Theorems 3 and 4].
Theorem 2 (Drift Analysis Theorem): (1) If the drift satisfies that ∆d(X) ≥ 1 for any state X , and ∆d(X) > 1 for some

state X , then the expected hitting time satisfies that m(X) ≤ d(X) for any initial population X , and m(X) < d(X) for some
initial population X .

(2) If the drift satisfies that ∆d(X) ≤ 1 for any state X , and ∆d(X) < 1 for some state X , then the expected hitting time
satisfies that m(X) ≥ d(X) for any initial population X , and m(X) > d(X) for some initial population X .

Proof: We only prove the first conclusion. The second conclusion can be proven in a similar way.
The notation � is introduced in the proof as follows: given two vectors ~a = [ai] and ~b = [bi], if for all i, ai ≥ bi and for

some i, ai > bi, then write it by ~a � ~b. Similarly given two matrices A = [aij ] and B = [bij ], if for all i, j, aij ≥ bij and for
some pair i, j, aij > bij , then write it by A � B.

Let ~1 denote the vector whose entries are 1, ~0 the vector whose entries are 0 and O a matrix whose entries are 0. The
condition of the theorem can be rewritten in an equivalent vector form:

~d−Q~d = ~1 + ~e,

where ~e � ~0.
Then we have

~d−Q~d−~1− ~e = ~0,

(I−Q)−1(~d−Q~d−~1− ~e) = ~0,

(I−Q)−1(~d−Q~d−~1) = (I−Q)−1~e.

Now let’s bound the right-hand side. Since ~e � ~0, so entry ej > 0 for some j. P is a transition matrix, Q � O and the
spectral radius of Q are less than 1, so N = (I−Q)−1 � O. Since no eigenvalue of N is 0, for the j-column of N, at least
one entry is greater than 0 (otherwise 0 will be an eigenvalue of N). Thus entry nij > 0 for some i. Then nijej > 0 and

(I−Q)−1~e � ~0.
Hence we get

(I−Q)−1(~d−Q~d−~1) � ~0,
~d � (I−Q)−1~1.

From Foundational Matrix Theorem, we know that

(I−Q)−1~1 = ~m.

Then we get ~d � ~m. This inequality implies the conclusion of the theorem.
The following consequence is directly derived from Fundamental Matrix Theorem.
Corollary 1: Let the distance function d(X) = m(X), then the drift satisfies ∆(X) = 1 for any state X in the non-optimal

set.
Proof: From Fundamental Matrix Theorem: (I−Q)~m = ~1. Then we write it in the entry form and it gives ∆(X) = 1

for any state X in the non-optimal set.
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C. One Pure Strategy is Inferior or Equivalent to another Pure Strategy
In the subsection, we investigate the case that it is impossible to design a mixed strategy better than a pure strategy. Consider

two metaheuristics algorithms: one using a pure strategy PS1 (PS1 for short) and another using a pure strategy PS2 (PS2 for
short). Let ~mPS1 be the vector representing the expected hitting time of PS1 and the distance function d(X) = mPS1(X).
For PS1, denote its corresponding drift by ∆PS1:

∆PS1(X) = d(X)−
∑

Y ∈Snon

PPS1(X,Y )d(Y ),

where PPS1(X,Y ) represents the transition probability corresponding to PS1. According to Corollary 1, the drift ∆PS1(X) = 1
for all X in the non-optimal set.

For PS2, denote the corresponding drift by ∆PS1:

∆PS2(X) = d(X)−
∑

Y ∈Snon

PPS2(X,Y )d(Y ).

First we propose the “inferior” condition.
Definition 3: If the drift of PS1 and that of PS2 satisfy ∆PS1(X) ≥ ∆PS2(X) for any state X , and ∆PS1(X) > ∆PS2(X)

for some state X , then we call PS2 is inferior to PS1.
Design a mixed strategy meta-heuristic derived from PS1 and PS2 (MS for short) at the population level: the probability of

choosing a search strategy is the same for all individuals. When population Φt is at state X , one pure strategy is chosen from
PS1 and PS2 based on a probability distribution. Denote the probability of choosing PS1 by cPS2(X) and the probability of
choosing PS1 by cPS2(X). The sum cPS1(X) + cPS2(X) = 1.

Lemma 1: If PS2 is inferior to PS1, then for any mixed strategy metaheuristics derived from PS1 and PS2, the expected
hitting time of MS satisfies that mMS(X) ≥ mPS1(X) for any initial population X , mMS(X) > mPS1(X) for some state
X .

Proof: Let ∆MS(X) denote the drift associated with MS. For any state X , the drift of MS is

∆MS(X) =d(X)−
∑

Y ∈Snon

PMS(X,Y )d(Y )

=cPS1(X)[d(X)−
∑

Y ∈Snon

PPS1(X,Y )d(Y )]

+cPS2(X)[d(X)−
∑

Y ∈Snon

PPS2(X,Y )d(Y )]

=cPS1(X)∆PS1(X) + cPS2(X)∆PS2(X).

Since PS2 is inferior to PS1, we know that ∆PS1(X) ≥ ∆PS2(X) for any state X , and ∆PS1(X) > ∆PS2(X) for some
X . Therefore ∆PS1(X) = 1 ≥ ∆MS(X) for any state X , and ∆PS1(X) = 1 > ∆MS(X) for some state X .

Applying Drift Analysis Theorem, we get the conclusion: the expected hitting time satisfies that mMS(X) ≥ mPS1(X) for
any initial population X , and mMS(X) > mPS1(X) for some initial population X .

From the above lemma, we infer two corollaries.
Corollary 2: If PS2 is inferior to PS1, then for any mixed strategy MS derived from PS1 and PS2, its average of the expected

hitting time is greater than that of PS1.
Proof: According to the above lemma, the expected hitting time satisfies that mMS(X) ≥ mPS1(X) for any initial

population X , and mMS(X) > mPS1(X) for some initial population X . From the definition of average,

m̄ =
1

| S |
∑
X∈S

m(X),

then we get m̄MS > m̄PS1.
Corollary 3: If PS2 is inferior to PS1, then for any mixed strategy MS derived from PS1 and PS2, its maximum of the

expected hitting time is not less than that of PS1.
Proof: According to the above lemma, the expected hitting time satisfies that mMS(X) ≥ mPS1(X) for any initial

population X . Then we get
max{mMS(X);X ∈ S} ≥ max{mPS1(X);X ∈ S}

and prove the conclusion.
Next we propose the “equivalent” condition.
Definition 4: If the drift of PS1 and that of PS2 satisfy ∆PS1(X) = ∆PS2(X) for any state X , then we call PS1 is

equivalent to PS2.
The following lemma is direct corollary of Drift Analysis Theorem.
Lemma 2: If PS2 is equivalent to PS1, then for any mixed strategy MS derived from PS1 and PS2, its the expected hitting

time satisfies that mMS(X) = mPS1(X) for any initial population X .
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D. One Pure Strategy is Complementary to Another Pure Strategy

In the subsection, we investigate the case that it is possible to design a mixed strategy better than a pure strategy. We propose
the “complementary” condition. Like the previous subsection, the distance function d(X) = mPS1(X).

Definition 5: If the drift of PS1 and that of PS2 satisfy ∆PS1(X) < ∆PS2(X) for some state X , then we call PS2 is
complementary to PS1.

Lemma 3: If PS2 is complementary to PS1, then there exists a mixed strategy MS derived from PS1 and PS2, and its the
expected hitting time satisfies that mMS(X) ≤ mPS1(X) for any initial population X , and mMS(X) < mPS1(X) for some
initial population X .

Proof: First we construct a mixed strategy derived from PS1 and PS2. The construction follows a well-known principle:
at one state, if a pure strategy has a better performance than the other at a state, then the strategy should be applied with a
higher probability at that state.

1) When Φt is at state X , if the drift ∆PS1(X) is greater than the drift ∆PS2(X), then the probability of choosing PS1
is set to 1, that is, cPS1(X) = 1.

2) When Φt is at state X , if the drift ∆PS1(X) equals to the drift ∆PS2(X), then the probability of choosing PS1 is set
to any value between [0, 1], that is, 0 ≤ cPS1(X) ≤ 1.

3) Since PS2 is complementary to PS1, so there exists one state X such that the drift ∆PS2(X) is larger than the drift
∆PS1(X). When Φt is at such a state X , then the probability of choosing PS2 is set to any value greater than 0, that
is, 0 < cPS2(X) ≤ 1.

In this way a mixed strategy MS is constructed from PS1 and PS2.
Next we bound the drift of the mixed strategy. For any state X , the drift of the mixed strategy is

∆MS(X) =d(X)−
∑

Y ∈Snon

PMS(X,Y )d(Y )

=cPS1(X)[d(X)−
∑

Y ∈Snon

PPS1(X,Y )d(Y )]

+cPS2(X)[d(X)−
∑

Y ∈Snon

PPS2(X,Y )d(Y )]

=cPS1(X)∆PS1(X) + cPS2(X)∆PS2(X).

Based on the construction of the mixed strategy, the analysis of the drift is classified into three cases.
1) ∆PS1(X) > ∆PS2(X): in this case, the probability of choosing PS1 is 1, that is, cPS1(X) = 1. Thus the drift satisfies:

∆MS(X) = ∆PS1(X).
2) ∆PS1(X) = ∆PS2(X): in this case, the drift satisfies: ∆MS(X) = ∆PS1(X).
3) ∆PS1(X) < ∆PS2(X): in this case, the probability of choosing PS2 is greater than 0, that is, cPS2(X) > 0. Thus the

drift satisfies: ∆MS(X) < ∆PS1(X).

Summarising all three cases, we see that the drift of the mixed strategy satisfies: ∆MS(X) ≥ ∆PS1(X) = 1 for any state
X , and ∆MS(X) > ∆PS1(X) = 1 for some state X .

Finally applying Drift Analysis Theorem, we come to the conclusion: the expected hitting time satisfies: mMS(X) ≤
mPS1(X) for any initial population X , and mMS(X) < mPS1(X) for some initial population X .

From the above lemma, we easily draw two results about the average and maximum of the expected hitting time.
Corollary 4: If PS2 is complementary to PS1, then there exists a mixed strategy MS derived from PS1 and PS2 and its

average of the expected hitting time is less than that PS1.
Proof: According to the above lemma, the expected hitting time satisfies: mMS(X) ≤ mPS1(X) for any initial population

X , and mMS(X) < mPS1(X) for some initial population X . From the definition

m̄ =
1

| S |
∑
X∈S

m(X),

then we get m̄MS < m̄PS1.
Corollary 5: If PS2 is complementary to PS1, then there exists a mixed strategy MS derived from PS1 and PS2 and its

maximum of the expected hitting time is no more than that PS1.
Proof: According to the above lemma, the expected hitting time satisfies: mMS(X) ≤ mPS1(X) for any initial population

X . Then we get
max{mMS(X);X ∈ S} ≤ max{mPS1(X);X ∈ S}

and prove the conclusion.
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E. Complementary Strategy Theorem

Combining Lemmas 1, 2 and 3 together, we get the main result about mixed strategy metaheuristics. It gives an answer to
the question: under what condition, mixed strategy metaheuristics may outperform pure strategy metaheuristics.

Theorem 3 (Complementary Strategy Theorem): Consider two metaheuristics algorithms: one using pure strategy PS1 and
another using pure strategy PS2. The condition of PS2 being complementary to PS1 is sufficient and necessary if there exists
a mixed strategy MS derived from PS1 and PS2 and its the expected hitting time satisfies: mMS(X) ≤ mPS1(X) for any
initial population X , and mMS(X) < mPS1(X) for some initial population X .

Proof: Given PS1 and PS2, their relation is classified into exact three types: PS2 is inferior, or equivalent, or complementary
to PS1. Thus combining Lemmas 1, 2 and 3 together, we get the conclusion.

The theorem can be explained intuitively as follows.
1) If one pure strategy is inferior to another pure strategy, then it is impossible to design a mixed strategy with a better

performance. So mixed strategy metaheuristics doesn’t always outperform pure strategy metaheuristics.
2) If one pure strategy is complementary to another one, then it possible to design a mixed strategy better than the pure

strategy. But it does not mean all mixed strategies will outperform the pure strategy.
3) The construction of a better mixed strategy metaheuristics should follow a general principle: if using a pure strategy has

a better progress rate (in terms of the drift) than that using the other at a state, then the strategy should be applied with a
higher probability at that state. This principle is general, but the design of a better mixed strategy is strongly dependent
on the problem.

For the average of the expected hitting time, we may obtain a similar consequence after combining Corollaries 2, 4 and
Lemma 2 together.

Corollary 6: The condition of PS2 being complementary to PS1 is sufficient and necessary if there exists a mixed strategy
MS derived from PS1 and PS2 and its average of the expected hitting time is less than than that of PS1.

But the sufficient and necessary condition for the maximum of the expected hitting time is more complex.

F. An Example

Consider an instance of the 0-1 knapsack problem: the value of items v1 = n and vi = 1 for i = 2, · · · , n, the weight of
items w1 = n and wi = 1 for i = 2, · · · , n. The capacity C = n. The fitness function is

f(x) =

 n, if s1 = 1, s2 = · · · sn = 0,∑n
i=1 si, if s1 = 0,

infeasible , otherwise.
(16)

For the four pure EAs given in the previous section, it is easy to verify that
1) PSr is equivalent to PSb,
2) PSw is inferior to PSb,
3) PSv is complementary to PSb.

IV. CONCLUSIONS

The main contribution of the paper is Complementary Strategy Theorem. From the theoretical viewpoint, the theorem provides
an answer to the question: under what condition, mixed strategy metaheuristics may outperform pure strategy metaheuristics.
The theorem asserts that given two meta-heuristic algorithms where one uses a pure strategy PS1 and the other uses a pure
strategy PS2, the condition of PS2 being complementary to PS1 is sufficient and necessary if there exists a mixed strategy
algorithm derived from PS1 and PS2 and its the expected hitting time satisfies: mMS(X) ≤ mPS1(X) for any initial population
X , and mMS(X) < mPS1(X) for some initial population X . To the best of our knowledge, no similar sufficient and necessary
condition was rigorously established before. The theorem itself is very intuitive, but this is the first time to rigorously prove
it with the help of drift analysis.

Besides the above theoretical analysis, experiments are also implemented. Experimental results demonstrate that mixed
strategy EAs may outperform pure strategy EAs on the 0-1 knapsack problem in up to 77.8% instances. In the experiments,
the performance of an EA is measured by the fitness function value of the archive after 500 generations.

There exists a great gap between empirical and theoretical studies. (1) In experiments, the optimal solution is usually unknown
in most instances, then the expected hitting time is unavailable; (2) in theory, it is difficult to analyse the average fitness value
of the archive after 500 generations or other fixed generations.
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