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Abstract 

Thermally transferred optically stimulated luminescence (TT-OSL) dating protocols have 

been suggested as a means of extending the age range of luminescence dating. Several studies 

demonstrate that TT-OSL signals increase with large radiation doses (>2000 Gy) and yet, few studies 

report older TT-OSL ages (>400 Gy) in agreement with independent absolute age control. In one such 

study, agreement with independent chronology was only achieved for the old samples by 

implementing a pulsed-irradiation procedure. Pulsed-irradiation is suggested to compensate for dose 

rate dependent competition effects by dividing the laboratory irradiation into discrete irradiation steps 

interspersed with heat treatments. However, every inter-step heat treatment has the potential to anneal 

part of the TT-OSL dating signal. This study compares constant- and pulsed-irradiation TT-OSL 

protocols and investigates the degree of partial thermal annealing. The results suggest that almost all 

of the difference in outcome between constant- and pulsed-irradiation protocols can be explained by 

partial annealing of the TT-OSL signal rather than by competition effects. Partial annealing distorts 

the laboratory dose response curve but has no impact on the natural signal, resulting in unreliable 

equivalent dose estimates. This means that pulsed-irradiation procedures may not be viable for TT-

OSL dating measurements. Future studies implementing pulsed-irradiation procedures should 

carefully consider the extent to which inter-step thermal treatments partially anneal the signal. 
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1. Introduction 

The thermally transferred optically stimulated luminescence signal (TT-OSL) from quartz has 

been observed to grow to larger laboratory radiation doses than the more commonly used optically 

stimulated luminescence (OSL) signal (Wang et al., 2006b), thus giving the TT-OSL signal the 

potential to extend the age range of luminescence dating. The first study to use the TT-OSL signal for 

dating (Wang et al., 2006a) demonstrated agreement between TT-OSL and OSL equivalent doses (De) 

up to ~400 Gy. However, sample IEE424 from near the Brunhes-Matuyama (B/M) palaeomagnetic 

reversal obtained a De value of 1460 ± 62 Gy resulting in an age estimate of only 474 ± 27 ka (Wang 

et al., 2006a), far from the age obtained using Ar-Ar dating  (775.6 ± 1.9 ka; Coe et al., 2004). 

The severe age underestimation of this sample led Wang et al. (2006a) to investigate pulsed-

irradiation protocols. Using a protocol that divides laboratory irradiation into ~150 Gy irradiation 

steps separated by a 240 °C cut heat, Wang et al. (2006a) were able to obtain equivalent doses that 

resulted in ages agreeing with the B/M age for sample IEE424 and for three other samples taken from 

near the B/M boundary. Although this suggested that a pulsed-irradiation protocol was necessary for 

the older samples in that study, subsequent investigations and applications of the TT-OSL signal have 

used only constant-irradiation protocols. In agreement with Wang et al. (2006a), most of these 

subsequent investigations have been unable to successfully date an older sample (>400 Gy) with 

independent age control (Duller and Wintle, 2012; Thiel et al., 2012). However, one recent 

investigation using constant irradiation has reported two older ages (~700 and ~1000 ka) in agreement 

with independent U-Pb ages and palaeomagnetic reversals (Pickering et al., 2013). 

  Pulsed-irradiation was initially proposed by Bailey (2004) as a means of compensating for 

differences between dose rates in nature and in the laboratory. This work was on simulations of 

modelled OSL data, but there has been limited application to real samples. The assumption that 

natural and laboratory radiation result in the same trapped charge distribution is fundamental to 

luminescence dating, but the two radiation sources have known differences. Natural dose rates are 

typically 1-4 Gy/ka and are comprised of a mixed radiation field including alpha, beta, and gamma 

radiation, whereas laboratory dose rates are typically of the order of 10
9
 Gy/ka and are comprised of a 

single radiation type (most commonly beta radiation).  
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Due to the complexity of the charge distribution in quartz grains, the difference in magnitude 

between natural and laboratory dose rates could result in either age underestimation or overestimation 

(Qin and Zhou, 2009). For example, if the quartz grain has an abundance of temporally unstable 

electron traps (such as those associated with the 110 °C thermoluminescence peak), constant- 

laboratory irradiation could potentially underestimate the natural signal. In nature, these shallow traps 

capture electrons slowly due to the low dose rates and these electrons are then released due to the long 

duration of the irradiation and the short lifetime of charge in this trap at room temperature. The result 

is that these traps are effectively empty such that they can compete for each free electron in the 

conduction band. During the short, high dose rate laboratory irradiations these shallow traps collect 

electrons more rapidly than they escape, resulting in a higher equilibrium concentration than in nature 

and therefore reducing the competition for electrons with the deeper traps used for dating. This results 

in signals from laboratory doses that are brighter than signals from equivalent natural doses, and 

therefore results in age underestimation.  

The opposite effect can occur if the quartz grain has an abundance of temporally unstable 

electronic hole traps. In this instance, competition for electrons during recombination would be 

greater for laboratory irradiation due to a higher concentration of electronic holes in alternative 

recombination centres, resulting in the natural signal being brighter than an equivalent laboratory 

signal and therefore leading to age overestimation (Bailey, 2004). Pulsed-irradiation divides the 

laboratory irradiation dose into smaller irradiation steps and heats the sample between steps. The 

thermal treatments between steps are designed to deplete the temporally unstable traps and thus make 

laboratory competition effects in the quartz crystal similar to those which occur due to the low 

radiation dose rates received in nature. 

Although pulsed-irradiation has the potential to address charge competition, an additional, 

unwanted effect of the protocol may be to partially anneal the target signal, if the thermal treatments 

are carried out at temperatures which are too high. Every inter-step thermal treatment during the 

protocol has the potential to remove a certain percentage of the signal used for dating. This additional 

effect could result in undesirable changes to the age estimate, unless the partial annealing is negligibly 

small.  
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This study explores the use of pulsed-irradiation for TT-OSL protocols by observing the 

difference in outcome between constant- and pulsed-irradiation protocols, and then investigates the 

relative influence of any partial annealing caused by the heat treatments between irradiation steps. 

 

2. Sample description and instrumentation  

Sample PT2, collected from the top of L3 at the Luochuan section of the Chinese Loess 

Plateau, was used for all of the measurements reported in this paper. This section is the same as that 

analysed by Wang et al. (2006a). The sample was collected as a small block wrapped in black plastic. 

Once in the darkroom conditions of the laboratory, the exterior of the block was removed and the 

remaining material was treated with 10% dilution by volume of concentrated HCl and 20 vols H2O2 

until no continued reaction could be identified. The material was then settled in sodium oxalate using 

Stokes Law to obtain the 4-11 μm fraction, treated with H2SiF6 for 14 days to remove feldspar 

(Roberts, 2007), and subsequently re-settled as a further quartz purification step. All of the 

measurements were undertaken on a single aliquot that was pre-sensitized by numerous cycles of 

irradiation, heating, and optical stimulation, in order to reduce the trap type variability and minimize 

sensitivity changes. 

 Luminescence measurements were performed on a Risø TL-DA-20 reader incorporating blue 

LEDs emitting at 470nm and delivering 50 mW/cm
2
 (Bøtter-Jensen et al., 2003). The luminescence 

signal was recorded using an EMI9635QA photomultiplier tube equipped with 7.5 mm of U-340 

filter, and a convex quartz lens to improve signal collection efficiency (giving ~75% brighter signal). 

A strontium/yttrium beta source with a dose rate of 0.083 Gy/s was used for laboratory irradiation, 

and a preheat of 260 °C for 10 s was applied to all samples before the OSL stimulations to yield the 

natural (Ln), regenerative (Lx) and test (Tx) dose signals. Integration intervals included the first two 

channels (2 s) of measurement minus a background of the last ten channels (10 s) of measurement. 

 

3. Advances in TT-OSL measurement protocols 

The basic steps of TT-OSL measurement involve an optical stimulation to empty electron 

traps associated with the fast component of the OSL signal, and a heat treatment to thermally transfer 
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electrons from other less light-sensitive traps into the fast component traps. A second optical 

stimulation then gives the TT-OSL signal. The original sequence proposed by Wang et al. (2006a) has 

been thoroughly investigated in later studies, and the measurement protocol underwent several 

alterations, including the transition from a multiple aliquot protocol to a single aliquot protocol within 

a year of publication (Wang et al., 2007).  

Wang et al. (2006a) described two parts to the TT-OSL signal, the BT-OSL signal and the 

recuperated OSL (Re-OSL) signal. The Re-OSL signal was the target signal for dating and could be 

obtained by subtracting the BT-OSL signal from the entire TT-OSL signal. Division of the TT-OSL 

signal into two parts was based on the theoretical understanding that Re-OSL originated from a 

double transfer process while BT-OSL originated from a single transfer process. In a double transfer 

process, a proportion of the electrons in the traps associated with the OSL fast component are 

temporarily stored in alternative traps after eviction by the initial blue light stimulation; the 

subsequent thermal transfer preheat then transfers these electrons from the alternative trap back into 

the OSL fast component traps where they can then be measured during the second light stimulation. In 

a single transfer process, the thermal transfer preheat accesses electrons in alternative traps that were 

not originally stored in the OSL fast component traps and transfers them into those traps.  

Wang et al. (2006b) hypothesized that the BT-OSL signal would originate from light-

insensitive traps with long lifetimes that had been accumulating electrons for many sedimentary 

cycles. It was therefore expected to be a constant background signal to all TT-OSL measurements. 

Wang et al. (2006a) proposed that the BT-OSL signal could be measured by repeatedly heating and 

optically stimulating an aliquot after measuring the OSL signal; the TT-OSL signal would decrease 

with each heating/stimulation cycle until reaching a plateau at the level of the BT-OSL signal. 

However, this method of separating the signals was thought to be too time consuming for routine 

dating experiments, so Wang et al. (2006b) performed heating experiments and proposed that only the 

BT-OSL signal would remain after annealing an aliquot at 300 °C for 10s. 

Later studies determined that the theoretical underpinning of the division of the TT-OSL 

signal was flawed. Adamiec et al. (2008) demonstrated that even the Re-OSL signal originates from a 

single transfer process, and Kim et al. (2009) observed that the BT-OSL signal is not constant but 
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rather increases with dose similarly to the TT-OSL signal. Porat et al. (2009) concluded that 

measurement and removal of the BT-OSL signal is not necessary when a small test dose is used. 

These observations and interpretations led several subsequent researchers to use TT-OSL protocols 

omitting measurement of the BT-OSL signal (e.g. Liu et al., 2012; Stevens et al., 2009).  

The original sequence of Wang et al. (2006a) used an OSL test dose signal to normalize and 

correct for sensitivity changes between regenerative doses. This was practical in comparison to use of 

a TT-OSL test dose signal in that it requires less measurement time and has a higher signal to noise 

ratio; furthermore, this approach seemed appropriate given the assumption that the Re-OSL signal 

originated from the same traps before double transfer. The realization that TT-OSL is a single transfer 

process, however, raised the question of whether using a TT-OSL test dose signal would more 

accurately reflect sensitivity changes in the traps being used for dating. Stevens et al. (2009) were the 

first to suggest a TT-OSL protocol implementing a TT-OSL test dose signal, a suggestion 

incorporated into later protocols used by Thiel et al. (2012) and Liu et al. (2012). 

However, when using a TT-OSL test dose signal, it is essential that prior to each given dose, 

the TT-OSL source traps must be adequately emptied so that the test dose signal is not affected by a 

residual regenerative dose signal. This was less of an issue for OSL test dose signals because they are 

significantly brighter than the TT-OSL signals, thereby making any residual signal insignificant. 

Various studies have suggested different means for removal of this signal using heat and light 

stimulations at different temperatures and durations (e.g. OSL 290 °C/400 s, Stevens et al., 2009; OSL 

280 °C/300 s, Liu et al., 2012). Adamiec et al. (2010) also recommended using a TT-OSL signal-

removal step (350 °C/200 s, Adamiec et al., 2010) after measuring each test dose signal in order to 

reduce signal build-up between regenerative doses. In order to minimize unaccounted sensitivity 

change, protocols frequently assign a slightly less rigorous signal-removal treatment before the test 

dose than before the subsequent regenerative dose (Liu et al., 2012; Stevens et al., 2009; Thiel et al., 

2012). 
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4. TT-OSL measurement and signal  

The TT-OSL protocols used in this study (Table 1) build on the discoveries and advances that 

have been made since its original introduction (Wang et al. 2006a). We use single aliquot protocols 

and TT-OSL test dose signals, but maintain the same thermal and optical stimulations of Wang et al. 

(2006a). For TT-OSL signal removal before the test dose and regenerative dose, we return to the 

original work and discussion of the BT-OSL signal (Wang et al. 2006b) by repeating ten TT-OSL 

signal measurement cycles. Although this process does provide a measurement of the BT-OSL signal, 

it is not subtracted from the TT-OSL signal measured from the first optical stimulation after the OSL 

fast component depletion (Fig. 1).   

The protocols used in this study are labelled A-D (Table 1). Protocol A is a constant 

irradiation protocol, while protocols B-D are pulsed irradiation protocols. For the same regenerative 

dose of 1650 Gy, the four protocols differ only in how the initial 1650 Gy dose is given to the aliquot. 

In protocol A, the dose is given in a single irradiation step with no extra thermal treatments. Protocol 

B is similar to Wang et al.’s (2006a) pulsed-irradiation procedure; it divides the 1650 Gy into ten 

steps of 165 Gy separated by 240 °C 0 s cut-heats, and no extra thermal treatment is given after the 

last 165 Gy dose and before the OSL preheat (step 5, Table 1). Protocol C maintained the same 

thermal treatment temperature (240 °C) as protocol B, but reduced the size of each irradiation step by 

a factor of ten to 16.5 Gy. This alteration was made to ensure that the unstable traps affecting charge 

competition in the quartz do not become saturated during the irradiation step and therefore reduce the 

ability of the pulsed-irradiation procedure to mimic competition in nature. Protocol C used the same, 

small irradiation step (16.5 Gy) as protocol B, but used a lower temperature for the inter-pulse thermal 

treatments (160 °C). This variation was made to reduce the potential for partial annealing of higher 

temperature traps while still removing charge from many of the unstable traps (such as those 

associated with the 110 °C thermoluminescence peak). 

A dose response curve was constructed using protocol A (constant-irradiation) as described in 

Table 1. Seven regenerative doses were used, including a zero dose. The curve, shown in figure 2, 

was measured from the lowest regenerative dose to the highest regenerative dose six times on a single 

pre-sensitized aliquot, resulting in a total of 42 measurements being used to define the curve. Each 
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point on the curve (Fig. 2) shows the signal intensity in response to a given laboratory dose. The 

signal intensities are calculated as the integrated TT-OSL regenerative dose signal (Lx) divided by the 

subsequent integrated TT-OSL test dose signal (Tx). A plot of the Lx/Tx values as a function of dose 

was fitted with a single saturating exponential function (Eqn. 1), where 𝑆 is the Lx/Tx value for given 

regenerative dose (𝐷), 𝐷0 is the characteristic dose that describes the shape of the dose response curve 

and 𝐴 is the pre-exponential factor defining the Lx/Tx value at saturation. The values of 𝐷0 and 𝐴 for 

the dose response curve in figure 2 are 1159 ± 54 and 5.73 ± 0.13 respectively. 

𝑆(𝐷) = 𝐴(1 − exp [− 
𝐷

𝐷0
])     Equation 1 

The Lx/Tx value for a natural signal (Ln/Tn) is the same regardless of whether a constant- or 

pulsed-irradiation protocol is used to define the laboratory dose response curve. Therefore, any 

difference in ages calculated using the different protocols is solely dependent on changes to the dose 

response curve. In this study, instead of constructing multiple dose response curves with constant- and 

pulsed-irradiation, we focus on a 1650 Gy dose and investigate how the Lx/Tx value for that single 

regeneration dose varies with constant- and pulsed-irradiation.  

 

5. Determining the impact of heat treatments on the TT-OSL signal  

In addition to comparing the measured values for different constant- and pulsed-irradiation 

protocols, this study investigates the existence and/or degree of partial thermal annealing of the TT-

OSL signal resulting from the heat treatments between irradiation steps. To do this, the percentage 

signal loss was determined for temperatures of 160 and 240 °C using the same aliquot of sample PT2 

that was used to construct figure 2. The aliquot was heated to 500 °C to remove any existing charge, 

irradiated with 1650 Gy in a single irradiation step and then given different numbers of thermal 

treatments before being measured using steps 2-13 of protocol A (Table 1). The number of thermal 

treatments varied from 0 to 10, and each number of thermal treatments was measured at least three 

times. The resulting Lx/Tx values (Fig. 3) demonstrate significant signal loss per thermal treatment at 

240 °C, and a much lower signal loss per thermal treatment at 160 °C. By weighting the data by its 

relative standard errors and fitting it with decaying exponential functions, the signal loss was 
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calculated to be 3.31 ± 0.16 % per treatment for 240 °C heat treatments, and 0.33 ± 0.22 % per 

treatment for 160 °C heat treatments. 

 The values for the percentage signal loss per heat treatment (Fig. 3) were used in conjunction 

with the protocol A constant-irradiation dose response curve (Fig. 2) to calculate the 1650 Gy Lx/Tx 

values predicted for each of the three pulsed-irradiation protocols (B-D) as a result of partial thermal 

annealing of the 1650 Gy Lx signal. These calculations were made using two approaches: First, a 

recursive expression following the actual signal growth and loss that occurred with each irradiation 

step and thermal treatment (Fig. 4; zigzag black curve); and second, a closed-form expression that 

approximates the effective signal growth with a smooth function (Fig.4; red dashed curve).  

 

5.1 Recursive expression 

In a pulsed irradiation protocol the first irradiation step provides the aliquot with its initial 

signal intensity (Lx). This intensity is then decreased by a factor 𝑋 (%) during the subsequent thermal 

treatment. Each subsequent irradiation step increases the Lx signal intensity and each subsequent 

thermal treatment reduces the Lx signal intensity. Note that a thermal treatment reduces the entire Lx 

signal accumulated and not only the part of the signal induced by the preceding irradiation step. The 

recursive expression follows these Lx signal intensity changes by calculating increases in signal using 

the fitted dose response curve and decreases in signal using the percent signal loss per thermal 

treatment shown in figure 3. This calculation method is mathematically based on equation 1 as well as 

its inverse function (Eqn 2), which calculates the absorbed radiation dose (𝐷) corresponding to a 

known signal intensity (𝑆).  

𝐷(𝑆) = −𝐷0 ln (1 −
 𝑆 

𝐴
)     Equation 2 

The recursive formula given in equation 3 calculates the apparent absorbed dose (𝐷𝑒,𝑝) at 

each particular irradiation step (𝑝) by introducing the following new variables: 𝐷𝑠𝑡𝑒𝑝 (Gy) is the dose 

delivered at each irradiation step, 𝑋 (%) is the fractional signal intensity loss due to one thermal 

treatment, and 𝑃 is the total number of irradiation steps.  

𝐷𝑒,0 = 0 ,      𝐷𝑒,𝑝+1 = 𝐷{𝑆(𝐷𝑒,𝑝 + 𝐷𝑠𝑡𝑒𝑝)(1 − 𝑋)}     Equation 3 
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If thermal treatments have a negligible effect on intensity, 𝑋~0 and equation 3 simplifies to 

equation 4, such that the apparent absorbed dose (𝐷𝑒,𝑝) is equal to the sum of irradiation steps 

administered. 

𝐷𝑒,𝑝 = 𝑝𝐷𝑠𝑡𝑒𝑝     Equation 4 

However, when signal loss due to thermal treatment is significant (𝑋 > 0), the apparent dose (𝐷𝑒,𝑝) is 

smaller than the sum of all doses delivered, the exact difference being a function of 𝑋, 𝑝, 𝐷𝑠𝑡𝑒𝑝, and 

𝐷0. 

 

5.2 Closed-form expression 

The closed-form expression approximates the signal intensity after the final irradiation step is 

administered. The form of the analytical expression therefore corresponds to a saturating exponential 

function within the zigzag-shaped actual signal growth curve which ends at the same point (Fig. 4). It 

is calculated by approximating a detrapping rate (𝐾, s
-1

) based on thermal annealing by the thermal 

treatments (Eqn. 5) where 𝑋 (%) is the fractional intensity loss due to one thermal treatment, 𝑃 − 1  is 

the number of thermal treatments (i.e. the number of irradiation steps minus one), �̇� is the laboratory 

beta source dose rate (Gy/s), and 𝐷𝑒 �̇�⁄  is the time (in seconds) required to deliver the total dose (𝐷𝑒) 

to the sample. 

𝐾 =  
𝑋(𝑃−1)

𝐷𝑒 �̇�⁄
   Equation 5 

 The increase in signal intensity over time can then be calculated as the electron trapping rate 

per second (𝐷𝑒 𝐷0⁄ ) times the number of available traps (N-n, where N is the total number of electron 

traps and n is the number of traps currently filled) minus the detrapping rate (𝐾, s
-1

) times the number 

of filled traps (n, Eqn. 6). 

𝑑𝑛

𝑑𝑡
=  

�̇�

𝐷0
(𝑁 − 𝑛) − 𝐾𝑛     Equation 6 

As outlined by Guralnik et al. (2013) the apparent age (𝑡𝑎𝑝𝑝) in such a system can be calculated by the 

following expression: 

𝑡𝑎𝑝𝑝 =
𝐷𝑒

�̇�
=

−1

�̇� 𝐷0⁄  + 𝐾
ln [1 − (

𝑛

𝑁
) (

�̇� 𝐷0⁄ +𝐾

�̇� 𝐷0⁄
)]     Equation 7 
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The saturation level ( 𝑛 𝑁⁄ ) for a system that has been given a known dose 𝐷𝑒 under known trapping 

(�̇� 𝐷0⁄ ) and detrapping (𝐾) rates (s
-1

) can then be determined by rearranging equation 7 to equation 8 

and the Lx/Tx intensity (𝑆) can be calculated by multiplying the saturation level ( 𝑛 𝑁⁄ ) by the pre-

exponential factor (𝐴) of the dose response curve. 

𝑛

𝑁
=

�̇� 𝐷0⁄

�̇� 𝐷0+𝐾⁄
{1 − exp [−𝐷𝑒 (

1

𝐷0
+  

𝐾

�̇�
)]}    Equation 8 

𝑆 = 𝐴 (
𝑛

𝑁
)    Equation 9 

5.3 Expression intercomparison 

Solutions from the recursive and closed-form expressions provide the same Lx/Tx value 

predictions (reported in section 6) further validating the results obtained by each expression 

separately. Although the recursive expression follows the pulsed irradiation protocol step by step, the 

closed-form function of equation 8 offers a conceptual expression for understanding the 

interchangeable effects of signal depletion due to a single thermal treatment (𝑋) and the number of 

pulsed-irradiation steps (𝑃). This expression could be used to predict the impact of any pulsed 

irradiation procedure so long as the parameters (𝐾, �̇�, 𝐷0, 𝐴) are known. 

 

6. Results  

 The results of this pulsed irradiation investigation include the observed difference in outcome 

between Lx/Tx values for constant- and pulsed-irradiation protocols, and an assessment of the 

proportion of the difference in outcome that can be explained by partial thermal annealing. Results of 

the different pulsed-irradiation protocols (B-D) are compared to results of the constant-irradiation 

protocol A in figure 5. The dark-coloured (red) bars representing the constant-irradiation results 

(Protocol A, Fig. 5a) are repeated in each subfigure (Fig. 5b-5d) behind the light grey bars of the 

pulsed-irradiation protocols results for easy comparison. The Lx/Tx value for 1650 Gy was measured 

with protocol A nine times, and the weighted mean was calculated to be 4.34 ± 0.11 (Fig. 5a). Each of 

the three pulsed-irradiation protocols was measured six times. Protocol B, which mimics the 

procedure used by Wang et al. (2006a) (240 °C thermal treatments and 165 Gy irradiation steps), had 

a weighted mean Lx/Tx value of 3.64 ± 0.11 (Fig. 5b), while protocol C (using 240 °C thermal 
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treatments and 16.5 Gy irradiation steps) had a weighted mean Lx/Tx value of 2.37 ± 0.11 (Fig. 5c). 

Protocol D used a less stringent 160 °C thermal treatment and a 16.5 Gy pulse dose; this gave a 

weighted mean Lx/Tx value of 4.14 ± 0.13 (Fig. 5d).  

Evidence of the dependence of pulsed-irradiation protocol outcome on partial thermal 

annealing during inter-step thermal treatments is given by the extent to which differences in outcome 

between protocols A-D can be explained by partial annealing. In this study, this assessment is made 

through comparison of the observed protocol results and the results predicted due to partial thermal 

annealing (section 5). Note that these predicted values only account for protocol outcome differences 

due to signal loss during the inter-step thermal treatments and do not account for differences due to 

charge competition and other pulsed irradiation effects.  

The predicted Lx/Tx values due to partial thermal annealing as calculated with both recursive 

and analytical expressions are 4.36 ± 0.31, 3.90 ± 0.37, 1.73 ± 0.25, and 3.88 ± 0.83 for protocols A, 

B, C, and D respectively, and are shown in figure 5 as black points with error bars facilitating 

comparison to the measured values in the white points and light grey histogram bars. In each case (Fig 

5b-d), the expected Lx/Tx results are within error of the observed results with no obvious systematic 

difference that could be attributed to other influences of pulsed-irradiation such as charge distribution 

competition effects. The results of this study therefore suggest that the majority of the difference in 

outcome between constant-and pulsed-irradiation TT-OSL protocols is due to partial thermal 

annealing effects.  

 

7. Discussion 

Comparison of the observed and predicted Lx/Tx values for constant- and pulsed-irradiation 

TT-OSL protocols makes it apparent that partial annealing of the TT-OSL signal accounts for the 

majority of the difference in outcome observed between the protocols. The percentage TT-OSL signal 

loss per thermal treatment is significant, especially for the higher temperature preheat of 240 °C.  

Ninety-nine inter-step heat treatments of 160 °C result in similar Lx/Tx values to nine 240 °C 

treatments, an observation that is predicted by the expected Lx/Tx value, but would not have been 

expected if competition effects were responsible for most of the difference in outcome between 
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constant- and pulsed-irradiation protocols. It is still possible that charge competition is affected by 

pulsed irradiation protocols, but since any competition effects in this sample are either negligible or 

self-cancelling, it cannot be determined whether such effects would have more influence on unstable 

recombination centres or on unstable electron traps.  

The observation that pulsed-irradiation protocols partially anneal the TT-OSL signal is 

consistent with investigations of the thermal stability of the signal. Laboratory studies have 

demonstrated that the TT-OSL signal is significantly less stable than the fast component OSL signal 

(Adamiec et al., 2010). These findings are supported by a study of coastal deposits comparing TT-

OSL ages with 290 °C post IR-IRSL feldspar ages, where TT-OSL equivalent dose underestimations 

were observed for older samples (Thiel et al., 2012). The relatively low thermal stability of the TT-

OSL signal compared to the fast component OSL and post IR-IRSL signals results in signal loss 

during burial for older samples due to the shorter signal lifetime at natural burial temperatures (Duller 

and Wintle, 2012). As pulsed-irradiation was first introduced for use with the more thermally stable 

fast component OSL signal, the influence of pulsed-irradiation protocols for the fast component OSL 

signal cannot be surmised from this study.  

Because pulsed-irradiation partially anneals the TT-OSL signal, a range of age estimates can 

be obtained for any given sample by varying the number and temperature of thermal treatments in a 

pulsed irradiation protocol. Partial thermal annealing during these various thermal treatments will 

distort the laboratory dose response curve while leaving the natural dose unaffected resulting in a 

range of equivalent dose estimates. The range of age estimates obtainable from various pulsed 

irradiation protocols will likely include the true burial age of a sample, but the pulsed-irradiation 

procedure necessary to obtain the true burial age cannot typically be determined for a sample of 

unknown age. Hence the observation of TT-OSL ages in agreement with Ar-Ar ages for the samples 

taken near the B/M boundary by Wang et al. (2006a) may have been a fortuitous coincidence in which 

the pulsed-irradiation protocol annealed a comparable amount of signal to that which was removed 

temporally during burial. 

 

8. Conclusions 
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Differences in equivalent dose values obtained using constant- and pulsed-irradiation TT-

OSL protocols in this study are primarily the result of pulsed-irradiation inter-step heat treatments 

partially annealing the TT-OSL signal. Any net impact of pulsed-irradiation on TT-OSL charge 

competition was of too low a magnitude to have been observed. Partial thermal annealing during 

inter-step thermal treatments distorts the laboratory dose response curve while leaving the natural 

signal unaffected. This suggests that a pulsed-irradiation TT-OSL protocol could be able to provide an 

accurate age estimate for an older sample by thermally annealing the same amount of signal that 

decayed temporally in nature due to the short lifetime of the TT-OSL signal. As the amount of signal 

loss in nature is dependent on the age of a sample, which is usually unknown, the correct pulsed-

irradiation protocol required to compensate for such signal loss cannot typically be determined. 

Therefore, pulsed-irradiation TT-OSL protocols will result in age estimates that are older than those 

derived using constant-irradiation protocols, but that are unreliable. Future studies implementing 

pulsed-irradiation procedures may investigate and compensate for charge competition effect 

differences, but such studies will need to assess and account for the degree of partial annealing by the 

inter-step thermal treatments. 
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Figure Captions 

 

1. Signal intensities of the OSL and TT-OSL signals in response to a dose of 165 Gy. The first 

decay is the 300 s OSL signal and the second (highlighted) is the 100 s TT-OSL signal used 

for dating. Signals are separated by heating to 260 °C for 10 s. 

2. TT-OSL dose response curve using protocol A (constant-irradiation). The points are fitted 

with a single saturating exponential of the form: Lx/Tx = 5.7 * (1-exp(-D/1160)). Dashed lines 

depict 95% confidence intervals. Relative standard deviations of the Lx/Tx values range from 

10% at lower doses to 5% at higher doses, with the lower doses having more scatter due to 

lower signal intensity.  

3. Plot of Lx/Tx values against the number of thermal treatments given before measurement. 

Each point is a weighted mean and standard error of at least three measurements. Solid curves 

are error-weighted fits of decaying exponential functions. Dashed lines depict 95% 

confidence intervals. 

4. Conceptual diagram of the analytical and recursive expressions for calculating the Lx/Tx 

values expected for a pulsed irradiation protocol. Example curves are based on 1650 Gy dose 

given in 10 irradiation steps with 10% signal loss during each thermal treatment. 

5. Histograms for the each of the four TT-OSL protocols used in this study.  Dark (red) 

histograms represent constant-irradiation while light grey histograms represent pulsed-

irradiation. The black points and error bars show the estimated signal due solely to partial 

annealing. Subfigures 5b and 5c show histograms for protocols with 240 °C thermal 

treatments, and subfigures 5c and 5d show histograms for protocols with 16.5 Gy pulse doses. 

 

 

 

Table Captions 

 

1. TT-OSL measurement protocols used in this study 
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Figure 1: 

 
 

Figure 2: 
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Figure 3: 

 
 

Figure 4: 
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Figure 5: 
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Table 1: 

 
 A. B. C. D. 

     1 1650 Gy Dose 165 Gy Dose 16.5 Gy Dose 16.5 Gy Dose 

2 Preheat 260 °C/ 10 s 240 °C cut heat 240 °C cut heat 160 °C cut heat 

3 OSL 125 °C/ 300 s Repeat 1-2 eight times Repeat 1-2 ninety-eight times Repeat 1-2 ninety-eight times  

4 Preheat 260 °C/ 10 s 165 Gy Dose 16.5 Gy Dose 16.5 Gy Dose 

5 OSL 125 °C/ 100 s (Lx) Preheat 260 °C/ 10 s Preheat 260 °C/ 10 s Preheat 260 °C/ 10 s 

6 Repeat 4-5 nine times OSL 125 °C/ 300 s OSL 125 °C/ 300 s OSL 125 °C/ 300 s 

7 165 Gy Dose Preheat 260 °C/ 10 s Preheat 260 °C/ 10 s Preheat 260 °C/ 10 s 

8 Preheat 260 °C/ 10 s OSL 125 °C/ 100 s (Lx) OSL 125 °C/ 100 s (Lx) OSL 125 °C/ 100 s (Lx) 

9 OSL 125 °C/ 300 s Repeat 7-8 nine times Repeat 7-8 nine times Repeat 7-8 nine times 

10 Preheat 260 °C/ 10 s 165 Gy Dose 165 Gy Dose 165 Gy Dose 

11 OSL 125 °C/ 100 s (Tx) Preheat 260 °C/ 10 s Preheat 260 °C/ 10 s Preheat 260 °C/ 10 s 

12 Repeat 10-11 nine  times OSL 125 °C/ 300 s OSL 125 °C/ 300 s OSL 125 °C/ 300 s 

13 Preheat 500 °C/ 0 s Preheat 260 °C/ 10 s Preheat 260 °C/ 10 s Preheat 260 °C/ 10 s 

14  OSL 125 °C/ 100 s (Tx) OSL 125 °C/ 100 s (Tx) OSL 125 °C/ 100 s (Tx) 

15  Repeat 10-11 nine times Repeat 10-11 nine times Repeat 10-11 nine times 

16  Preheat 500 °C/ 0 s Preheat 500 °C/ 0 s Preheat 500 °C/ 0 s 

 
 


