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 21 
Abstract 22 

The growing demand for sustainable animal production is compelling researchers to 23 

explore the potential approaches to reduce emissions of greenhouse gases from 24 

livestock that are mainly produced by enteric fermentation. Some potential solutions for 25 

instance, the use of chemical inhibitors to reduce methanogenesis are not feasible in 26 

routine use due to their toxicity to ruminants, inhibition of efficient rumen function or 27 

other transitory effects. Strategies, such as use of plant secondary metabolites and 28 

dietary manipulations have emerged to reduce the methane emission, but these still 29 

require extensive research before these can be recommended and deployed in the 30 

livestock industry sector. Furthermore, immunization vaccines for methanogens and 31 

phages are also under investigation for mitigation of enteric methanogenesis. The 32 

increasing knowledge of methanogenic diversity in rumen, DNA sequencing 33 

technologies and bioinformatics have paved the way for chemogenomic strategies by 34 

targeting methane producers. Chemogenomics will help in finding target enzymes and 35 

proteins, which will further assist in the screening of natural as well chemical inhibitors. 36 

The construction of a methanogenic gene catalogue through these approaches is an 37 

attainable objective. This will lead to understand the microbiome function, its relation 38 

with the host and feeds, and therefore, will form the basis of practically viable and eco-39 

friendly methane mitigation approaches, while improving the ruminant productivity. 40 

Keywords: Rumen; Methane Mitigation; Enteric Fermentation; Methanogens, 41 

Ruminants 42 

43 
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 44 
Introduction  45 

Greenhouse gas (GHGs) emission from ruminant production systems is of particular 46 

interest because of their consequences in changing the global climate. Methane 47 

comprises up to 16% of global GHGs emissions (Scheehle and Kruger 2006), and is 48 

mainly detrimental, as its warming potential is nearly 25 times greater than that of CO2 49 

(Zhou et al. 2011). Methane emissions from the agriculture sector represents 40% of 50 

total anthropogenic production (Key and Tallard, 2012), while enteric fermentation in 51 

ruminants makes the largest single (25%) contribution (Thorpe 2009). The emission of 52 

methane from ruminants also varies based on the geographical location (FAO 2010), 53 

feed composition and quality, feed intake, processing of feed and animal breed (Hook et 54 

al. 2010).  55 

Apart from environmental issues, the methane emission also accounts for a 2 to 12% 56 

loss of ingested energy from the rumen (Moss et al. 2000). Such considerations have led 57 

to increased efforts in identification of newer and more effective practices to mitigate 58 

methane emissions from ruminants. Advances in understanding the gut microbial 59 

communities through genomics (Leahy et al. 2010, 2013; Attwood et al. 2011) and 60 

metagenomics (Brulc et al. 2009; Hess et al. 2011; Morgavi et al. 2013) have opened 61 

novel insights about the function of rumen ecosystem. This increased knowledge has 62 

also permitted the development of mitigation strategies to target the dominant 63 

methanogenic species directly. There have been reviews of methane abatement in recent 64 

times (Moss et al. 2000; Beauchemin et al. 2008; McAllister and Newbold 2008; Kumar 65 

et al. 2009; Eckard et al. 2010; Hook et al. 2010; Martin et al. 2010; Patra 2012; 66 

Wanapat et al. 2012), so this article will focus on the latest developments (phage 67 



4 
 

therapy, immunization, chemogenomics approaches), possible future directions and 68 

challenges in mitigating enteric methane emissions from ruminants.  69 

Mechanism of enteric methane production 70 

Enteric methane (nearly 87%) is produced in rumen, the remainder being released from 71 

fermentation in the large intestine (Lascano and Cardenas 2010). Although many factors 72 

influence methane emissions from ruminants, the three major determinants are level of 73 

feed intake, type of carbohydrate fed, and manipulation of rumen microflora (Johnson 74 

and Johnson 1995). In rumen, the network of microbes act on feed particles to degrade 75 

plant polysaccharide and produce volatile fatty acids (VFAs; mainly acetate, propionate 76 

and butyrate) and gases (CO2 and H2) as main end products. The activity of hydrogen-77 

utilizing methanogens in rumen reduces the end product inhibition of hydrogen, thereby 78 

allowing more rapid fermentation of feed. Even a small amount of hydrogen in rumen 79 

can limit the oxidation of sugar, VFAs conversion and hydrogenase activity, if 80 

alternative pathways for disposal are absent (McAllister and Newbold 2008). Two 81 

methods utilized for disposal of reducing equivalents are the production of more highly 82 

reduced VFAs and hydrogen by membrane-bound hydrogenases. However, these 83 

hydrogenases have an acute sensitivity to an increased partial pressure of hydrogen 84 

(Russell 2002).  85 

Methane production in rumen is also affected by the passage rate of digesta in the 86 

gastrointestinal tract. The rumen residence time decreases with increased feed intake, 87 

thus reducing the extent of the rumen fermentation and shifting digestion from the 88 

rumen to the small intestine (Aluwong et al. 2011). As a consequence, methane 89 

production per unit of dry matter ingested declines, as feed intake increases 90 
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(Beauchemin and McGinn 2006a), although the total amount of methane produced is 91 

higher. 92 

Strategies to reduce enteric methane emission 93 

The strategies to reduce methane emission from enteric fermentation are classified into 94 

different categories and their respective mechanisms of action, problems associated with 95 

each and future prospects are shown in Table 1. The two main areas of intervention that 96 

will be reviewed here are the changes in the diet and the direct manipulation of the 97 

rumen ecosystem. 98 

Dietary changes  99 

Although there are many approaches to reduce methane formation in the rumen, only 100 

some of those that have been more intensively investigated during the last years will be 101 

treated here, including changes in nutrient composition, plant secondary compounds, 102 

lipid supplementation, organic acids and halogenated compounds. Other options, such 103 

as the use of ionophores, probiotics, acetogens and defaunation are listed in Table 1, but 104 

these are not described here. 105 

Changing nutrient composition 106 

By manipulating the nutrient composition of ruminants’ diet, it is possible to reduce the 107 

enteric methane yield, the forage: concentrate ratio in the diet being one of the most 108 

studied dietary factors. A high proportion of concentrate in diet reduces rumen pH and 109 

consequently affects the protozoa population (Kumar et al. 2013a, b). Furthermore, it 110 

also reduces the acetate: propionate ratio and thus decreases the amount of methane 111 

produced per unit of feed intake (Beauchemin et al. 2008). However, the proportion of 112 

concentrates needed to bring about this effect may well be over 90% of the diet and 113 

such high levels are not desirable due to health concerns (i.e., acidosis, laminitis, liver 114 
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abscesses etc.; Gandra et al. 2012). Moreover, feeding high amounts of concentrates is 115 

not always possible in the developing countries because of the economic constraints. 116 

Therefore, developing newer forages having high soluble carbohydrates can be a better 117 

option for reducing methane than feeding high-concentrate based diets. Niderkorn et al. 118 

(2011) reported that diets rich in certain grass varieties such as AberAvon (Lolium 119 

perenne) lead to significantly reduced methane production from in vitro fermentations 120 

than AberStar and AberMagic under the category of water soluble carbohydrates 121 

forages. Similarly, different grass and shrub species, such as L. perenne (Ludemann et 122 

al. 2013) Gliricidia sepium, Brachiaria ruziziensis (Meale et al. 2012) and Acacia 123 

mangium (Giraldo et al. 2007a), were able to reduce methane emissions. Therefore, 124 

grazing on these species has been proposed as a strategy to reduce methane emissions. 125 

Another approach would be the selection of better quality forages (low fibre and high 126 

soluble carbohydrates content), as increased quality should result in greater productivity 127 

at equivalent levels of intake and methane emissions (Clark et al. 2011).  128 

Plants containing secondary compounds 129 

Tannins, phenolic monomers and other plant secondary metabolites are toxic to ciliate 130 

protozoa, fibrolytic bacteria and methanogenic archaea, and thus may help in reducing 131 

methanogenesis (Goel et al. 2005; Bhatta et al. 2009; Patra and Saxena, 2009a,b; 132 

Jayanegara et al. 2011). It has been observed that condensed tannins (CT) containing 133 

temperate and tropical legumes reduce methanogenesis (Lascano and Cárdenas 2010; 134 

Guglielmelli et al. 2011; Calabrò et al. 2012; Cieslak et al. 2013). Tiemann et al. (2008) 135 

indicated that some tropical feeds with tannins have lower fibre digestibility and 136 

consequently, low hydrogen production and methane emissions. Moreover, binding of 137 

tannins to proteins also reduces degradation of plant protein in the rumen and lowers 138 
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methanogenesis (Tavendale et al. 2005). The effects of tannin content of four different 139 

vegetative stages of Onobrychis viciifolia were evaluated by Guglielmelli et al. (2011), 140 

who found a negative correlation bordering on significance (r = -0.932; P = 0.068) 141 

between CTs content and methane production, indicating that methane production 142 

consistently declined as the CT content increased. The methane suppression effect of 143 

CT containing legumes, such as Lotus pedunculatus or Acacia mearnsii, relative to 144 

forages without tannins has been shown in sheep (Carulla et al. 2005; Ramirez-Restrepo 145 

and Barry 2005), Holstein cows (Woodward et al. 2001) and goats (Hess et al. 2006; 146 

Animut et al. 2008). The mechanism to decrease methanogenesis seems to vary with the 147 

nature of CT, as Bhatta et al. (2013) observed that Ficus bengalensis and Autocarous 148 

integrifolis reduced methane production due to defaunation, but Azadirachta indica 149 

reduced methanogenesis by a direct effect on methanogens. Overall, it seems that the 150 

effects of CT on rumen methanogenesis depend on the structure and concentration of 151 

CT. 152 

Supplementation of lipids 153 

Vegetables and animal lipids are originally used in ruminant rations to increase their 154 

energy density. These are also considered useful in terms of reduced rumen 155 

methanogenesis (Soliva et al. 2004; Beauchemin et al. 2007; Brask et al. 2013). 156 

Methane production has been consistently reduced by adding fat or fatty acids to 157 

ruminant diets, and it is estimated that fat can reduce methane emissions by 4-5% (g/Kg 158 

DMI) for every 1% increase in the fat content of the diet (Grainger and Beauchemin,  159 

2011). However, the inclusion of lipids at levels above 6-7% of dry matter intake can 160 

reduce feed intake and fiber digestibility, resulting in lower milk yield or daily gain 161 

(Patra 2012).  162 
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The addition of different oils (soya, coconut, canola, rapeseed, etc.) to ruminant diets 163 

have been shown to reduce methane production between 19 and 62% in Rusitec 164 

fermenters (Dohme et al. 2000), sheep (Ding et al. 2012), beef cattle (Machmüller and 165 

Kreuzer, 1999; Jordan et al 2006a b) and dairy cows (Odongo et al. 2007; Brask et al. 166 

2013). The mechanism of methane inhibition by fat is likely to be a combination of bio-167 

hydrogenation of unsaturated fatty acids and direct inhibition of activities of different 168 

microbes including methanogens (Beauchemin et al. 2007; Kong et al. 2010; Hook et al. 169 

2010). Bio-hydrogenation acts as hydrogen sink and therefore decrease rumen 170 

methanogenesis, but is not the only mechanisms as there is no direct link between the 171 

methane reduction and the level of unsaturation (Dohme et al. 2000) or the length of the 172 

fatty acid. Medium-chain fatty acids may also reduce methanogenesis by directly acting 173 

on protozoa and/or methanogens. Thus, coconut oil decreased methane production and 174 

methanogens in both faunated and defaunated Rusitec fermenters, the inhibition of 175 

methanogenesis caused by coconut oil being similar to that produced by defaunation 176 

(Dohme et al. 1999). Comparison of the effects of different fatty acids revealed that 177 

lauric, myristic and linoleic acids were the most potent reducers of methanogenesis 178 

(Dohme et al. 2001; Jordan et al. 2006b; Ding et al. 2012), and the ability of lauric acid 179 

to decrease cell viability of Methanobrevibacter ruminantium has been recently 180 

reported by Zhou et al. (2013).   181 

In summary, increasing the dietary proportion of lipids may provide another feeding 182 

strategy for reducing rumen methanogenesis, but the appropriate lipid and dose for each 183 

dietary condition should be carefully chosen, as it has been shown that different lipid 184 

sources may have similar effects on methane production but variable effects on diet 185 

intake and digestion (Beauchemin et al. 2007). In the last years, the potential of 186 
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essential oils as additives to manipulate rumen fermentation and decrease methane 187 

emissions has been extensively investigated and reviewed (Calsamiglia et al. 2007; 188 

Benchaar and Greathead, 2011; Bodas et al. 2012). A wide range of essential oils 189 

(derived from garlic, thyme, oregano, cinnamon, rhubarb, frangula, etc.) has been 190 

shown to decrease methane production in vitro in a dose dependent manner, but at high 191 

doses the decrease in methanogenesis was accompanied by adverse effects on 192 

fermentation such as reduction in VFA production and feed digestibility (Busquet et al., 193 

2005; Patra and Yu, 2012). When used at low doses (≤300 mg/l), garlic oil and its 194 

organosulfur compounds consistently decreased methane production in vitro without 195 

negatively affecting feed fermentation (Busquet et al. 2005; Kamel et al. 2008; 196 

Kongmun et al. 2010; Mateos et al. 2013), but no effects of garlic oil or its compounds 197 

on methanogenesis have been observed in lactating cows (van Zijderveld et al. 2011), 198 

sheep (Patra et al. 2011) or fattening bulls (Staerfl et al. 2012). The lack of response in 199 

vivo is partly attributed to the adaptation of microbes (Bodas et al. 2012), but also to the 200 

use of lower doses compared to those in the in vitro experiments. The challenge now is 201 

to identify essential oils that selectively inhibit methanogenesis at concentrations that 202 

can be used in the practice, with lasting effects and without depressing feed digestion 203 

and animal productivity (Benchaar and Greathead, 2011). 204 

Addition of organic acids  205 

Inclusion of organic acids (i.e. malic and fumaric) or their sodium salts in diets, results 206 

in shifting rumen fermentation towards propionate and hence, less methane production. 207 

The addition of sodium fumarate consistently decreased methane production in vitro by 208 

2.3 to 41% (Ungerfeld et al. 2007), and increased feed digestibility and VFAs 209 

production (García-Martínez et al. 2005; Giraldo et al. 2007b). Similarly, malate, that is 210 
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converted to fumarate in the rumen, stimulated propionate formation and also inhibited 211 

methanogenesis in some in vitro studies (Carro and Ranilla 2003a; Tejido et al. 2005), 212 

although other studies have failed to find clear reductions of methanogenesis in vitro 213 

(Carro et al. 1999; Gómez et al. 2005; Ungerfeld and Forster 2011). In vivo effects of 214 

adding organic acids to the diet on methane mitigation are quite variable. Wood et al. 215 

(2009) noted 60 to 76% reductions in methane emissions by supplementing fumarate at 216 

100 g/kg to growing lambs, while Foley et al. (2009a) observed the reductions of only 6 217 

and 16%, when the diet of beef heifers was supplemented with malic acid at 37.5 and 75 218 

g/kg, respectively. In contrast, no effects of fumaric or malic acid on methane emissions 219 

were observed in other studies (Beauchemin and McGinn 2006b; Foley et al. 2009b).  220 

The effect of organic acids supplementation on methane reduction appears to be 221 

influenced by the forage to concentrate ratio and the type of cereal grain being fed in 222 

diet (Carro and Ranilla 2003a, b; Gómez et al. 2005; Tejido et al. 2005), although the 223 

number of studies conducted with different diets is too low to draw definitive 224 

conclusions. However, the high cost of purified organic acids makes supplementation of 225 

ruminant diets uneconomical at the doses required to be effective. Nevertheless, diet 226 

supplementation with plant tissues naturally rich in organic acids does have some 227 

potential and it may be possible to select forages with elevated levels of other acids. 228 

Studies on lucerne, Bermuda grass and tall fescue indicated that organic acids 229 

concentrations vary not only among species but also among cultivars of the same 230 

species (Callaway et al. 1997), although it is difficult to conclude whether differences in 231 

organic acid levels among forages and cultivars are sufficient enough to affect rumen 232 

methane emission. Overall, results of fumaric and malic acid supplementation in vitro 233 
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and in vivo are heterogeneous, and the effectiveness of these additives seem to depend 234 

on their dose and nature of diet. 235 

Use of halogenated compounds 236 

Halogenated methane analogues, such as chloral hydrate, amichloral, 237 

bromochloromethane, nitroethane and 2-nitropropanol, are potential inhibitors of 238 

methane in ruminants (Nevel and Demeyer 1995). Bromochloromethane can inhibit 239 

methanogenesis by reacting with coenzyme B, which functions at the last step of the 240 

methanogenic pathway (McCrabb et al. 1997). Recently, Abecia et al. (2012) confirmed 241 

the methane reducing effects of bromochloromethane in lactating dairy goats and 242 

reported a 33% reduction with no effect on rumen bacteria, protozoa and methanogens. 243 

In contrast, Denman et al. (2007) reported that bromochloromethane decreased the 244 

number of methanogenic archaea in the rumen of cattle by 34% and reduced methane 245 

emission by 30%. Bromochloromethane is highly volatile but can be stabilized with 246 

cyclodextrin resulting in more effective reduction of enteric methane emission (May et 247 

al. 1995). When fed to Braham cattle at hourly intervals, it prevented all methane 248 

production (McCrabb et al. 1997) and when fed twice daily to cattle for 8 weeks, it not 249 

only reduced methane by 54% but also reduced feed intake. Some compounds, such a 250 

bromine analogue of coenzyme M were potent methane inhibitors in in vitro (Martin 251 

and Macy 1985), but the inhibition was not persistent in vivo, suggesting adaptation of 252 

methanogenic populations (Nevel and Demeyer 1995). An adaptation of methanogens 253 

to quaternary ammonium compounds has also been demonstrated (Tezel et al. 2006), 254 

but in contrast, no adaptation has been observed for chloroform, which decreased rumen 255 

methanogenesis and methanogens without altering rumen function over a 42 day period 256 

(Knight et al. 2011).  257 
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More recently, the effect of 3-nitrooxypropanol and ethyl-3-nitrooxypropanol on rumen 258 

fermentation and methane emission have been studied using Rusitec fermenters and in 259 

in vivo trials (Haisan et al. 2013; Martinez-Fernandez et al. 2013; Perez et al. 2013). 260 

Both additives showed promising potential as methane inhibitors in the rumen with no 261 

negative effects on rumen fermentation. Differences among methanogens regarding 262 

their resistance to chemical inhibitors should be considered, when designing strategies 263 

for inhibition of rumen methanogenesis, as selection of resistant species may result 264 

(Ungerfeld et al. 2004). 265 

In summary, although dietary manipulation provides many viable options, there are 266 

significant variations in the effectiveness of these and currently there is not yet an 267 

approach that could be practically applied. Hence, there is a need to study the influence 268 

of plant components and essential oils on methane production in detail with 269 

standardized samples. Based on the limited information, it can be said that benefits 270 

associated with bioactive compounds in vitro do not always mimic in vivo, and in vivo 271 

effects are usually transient in nature due to microbial adaptation. Moreover, the 272 

different experimental conditions found in vitro and in vivo should be taken into account 273 

when comparing doses and results from experiments. Rumen dry matter content can 274 

vary with several factors, ranging from 10 to 25%, whereas dry matter content in most 275 

in vitro systems is usually much lower (Carro et al. 2006); therefore, doses are not 276 

directly comparable when expressed per diet dry matter. In addition, as pointed out by 277 

Beauchemin et al. (2008), most studies on reductions in methane production from 278 

ruminants due to diet management are short-term and focussed only on enteric 279 

emissions, but future research should investigate long-term impacts on methane 280 

emissions in the whole farm.  281 
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Microbial interventions 282 

This section deals with the diversity of methanogens in rumen and also discusses the 283 

strategies such as usage of phages and vaccination that directly target methanogens and/ 284 

or their activities.    285 

Methanogenic diversity 286 

In order to target methanogens, knowledge of their population dynamics, physiology 287 

and diversity in the rumen is of utmost importance. Until recently, the rumen 288 

methanogens belonged to a few genera of the orders Methanobacteriales, 289 

Methanomicrobiales and Methanosarcinales, within the phylum Euryarchaeota. 290 

However, based on 16S rRNA gene sequences, a novel group distantly related to the 291 

Thermoplasmatales (named as rumen Cluster C; previously described as rice cluster C 292 

Thermoplasmata) was found to be highly abundant in ruminants (Jannsen and Kirs, 293 

2008; Poulsen et al. 2013).  294 

Methanobrevibacter is the most commonly encountered genus within 295 

Methanobacteriales, whereas Methanobacterium, that shares similar physiology as 296 

Methanobrevibacter, are rarely reported from rumen. Other Methanobrevibacter 297 

members of the order Methanomicrobiales have been also reported to be dominant in 298 

the rumen of buffalo (Tajima et al. 2001; Shin et al. 2004). In genus 299 

Methanomicrobium, M. mobile is mostly reported (Kumar et al. 2012) from ruminants, 300 

while other members of this genus had shown an abundance with culture independent 301 

methods, but are rarely detected/isolated with conventional approaches. The order 302 

Methanosarcinales comprises a group of physiologically distinct aceticlastic 303 

methanogens (Janssen, 2010), but their abundance in the rumen is low. Within this 304 
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group, Methanococcus spp. and Methanosarcina spp. are the most commonly reported 305 

(Wedlock et al. 2013).  306 

Apart from the microbial diversity analysis, functional and sequence based 307 

metagenomics have been evolved to uncover the diversity of enzymes and metabolic 308 

pathways in the rumen. This technique has been used to identify hydrolytic enzymes of 309 

industrial applications, particularly involved in plant polysaccharide degradation. Some 310 

researchers have employed this technique and identified enzymes from the rumen of 311 

cow, buffalo, camel, reindeer and yak (Zhao et al. 2010; Hess et al. 2011, Pope et al. 312 

2012; Dai et al. 2012; Bhatt et al. 2013). This practice is based on the availability of 313 

suitable bioassays for the enzyme of interest and presently cellulose and hemicelluloses 314 

degradation is an area of interest for rumen microbiologists. Beside enzyme bioassays, 315 

heterologous complementation of host strains and mutants as well as induction of 316 

reporter genes are used for functional metagenomic screening (Leahy et al. 2013). Pope 317 

et al. (2010) reported unique bacterial lineages underpinning plant biomass conversion, 318 

and their distinct repertoire of glycoside hydrolases in Australian macropods. They also 319 

reported the abundance of polysaccharide utilization loci in Svalbard reindeer rumen 320 

micrbome, which is much similar to the microbiome of human gut (Pope et al. 2012). 321 

Similarly, Bhatt et al. (2013) highlighted the striking similarities and differences of 322 

dromedary camel (Camelus dromedaries) with other animal rumen ecosystem. Since, 323 

variations of microbial communities in ruminants is of great concern, Ross et al. (2012) 324 

suggested untargeted massive parallel sequencing (sequencing without target 325 

amplification of genes) approach for resolution of variation based rumen metagenome 326 

profiling. 327 
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Many developments in the exploration of gut microbial communities in different animal 328 

species have been made through sequence based metagenomics, and some recent 329 

examples follow. Dai et al. (2012) analyzed the fibrolytic microbiome in the rumen of 330 

yaks, and Brulc et al. (2009) used large sequence based studies to catalogue the genes 331 

involved in fiber degradation in the bovine rumen. Qi et al. (2011) applied 332 

metatranscriptomics to the study of rumen microbes function in muskox, and similar 333 

work has been carried out in sheep (Cammack et al. 2013), goats (Jakhesara et al. 2010) 334 

and Surti buffaloes (Singh et al. 2012a). Singh et al. (2012b) studied the virulence 335 

associated and antibiotic resistance genes of rumen microbes to facilitate the 336 

understanding of resistant gene transfer between and within habitats. However, 337 

researchers in this area have to explore the sequence based metagenomic into taxonomic 338 

perspective, as well as to link genomics and metagenomics to nutrition or other animal 339 

production parameters. For example, Li et al. (2012) characterized rumen microbiota of 340 

pre-ruminant calves and their metabolic potential so that the optimal early weaning 341 

nutritional strategies (like milk replacer) could be formulated, and recently Ross et al. 342 

(2013) analyzed the effect of methane mitigating diets on rumen microbiome.  343 

Phage therapy 344 

The lytic potential of phages and their genes make them an important tool for methane 345 

mitigation strategies. In contrast to nearly 300 phage genomes (Ackermann and 346 

Kropinski 2007), only six archaeal phages are sequenced and described, and just three 347 

of them are from methanogens: Methanobacterium phage psi M1, M2 and M100 348 

(Pfister et al. 1998) and Methanothermobacter phage psi M100 (Luo et al. 2001). Little 349 

information is currently available on the genetic blueprint and gene functionality of 350 

archaeal, particularly methanogenic, phages but more are being discovered using 351 
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electron microscopy (Ackermann 2007) and in vitro techniques (Stanton 2007). 352 

McAllister and Newbold (2008) reported siphophages that can infect methanogens 353 

(Methanobacter, Methanobrevibacter and Methanococcus spp.), although these phages 354 

have not been isolated from the rumen. A recent metagenomic study on phage-bacterial 355 

relationships showed ≤ 0.1% relative abundance of prophage in phylum Euryarchaeota 356 

(Berg Miller et al. 2012). 357 

Metagenomic surveys are expected to reveal the presence of embedded prophages and 358 

phage-like elements that would have otherwise remain unnoticed. An unanticipated 359 

outcome from sequencing the M. ruminantium genome was the discovery of prophage 360 

φ-mru having 69 phage-related proteins (Leahy et al. 2010). A gene encoding a putative 361 

lytic enzyme was identified, expressed and shown to lyse M. ruminantium. Such lytic 362 

enzyme is potentially very useful biocontrol agents for manipulating of rumen 363 

methanogenic populations (Leahy et al. 2010). The genome sequence of 364 

Methanobrevibacter AbM4 and Methanobrevibacter boviskoreani strain JH1 revealed 365 

the presence of prophage/ phage like elements in strain JH1 while AbM4 is lacking in 366 

gene encoding prophage (Lee at al. 2013a and Leahy et al. 2013). Phages are host and 367 

even strain specific, so phage-based methane mitigation strategies could be developed 368 

without affecting other phylogenetically distinct microbes in the rumen. However, hosts 369 

and phages are also known to be involved in a rapid evolutionary race as the host 370 

changes to avoid infection and the phage changes to maintain infectivity.  371 

In combination with the application of other phage enzymes and structural components, 372 

a rotation system can be envisioned that may overcome the rapid adaptation 373 

mechanisms of microbes to phage challenges. More methanogenic phages need to be 374 

identified, sequenced and characterized to identify and employ such phage-based 375 
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strategies. However, high specificity of phages may also be a limiting factor in their 376 

effectiveness in reducing methane emissions, since there appears to be a high diversity 377 

of methanogens in rumen (Janssen and Kirs 2008). Finally, either mixture of phages or 378 

structural components of phages may prove useful against the greater diversity of 379 

methanogens in rumen. 380 

Immunization 381 

Host immunization commonly offers a diverse and ecofriendly solution to the problems 382 

especially associated with animal health. Therefore, developing vaccines against 383 

methanogens appears to be an alternative and attractive approach, which can avoid 384 

many of the issues mentioned above related to methane mitigation from ruminants. 385 

Wright et al. (2004) developed two vaccines, VF3 (based on three methanogenic strains 386 

1Y, AK-87 and ZA-10) and VF7 (based on seven methanogens), that produced a 7.7% 387 

methane reduction in sheep (g per kg of dry matter intake); despite targeting only a 388 

minority (20%) of methanogens present within these host animals. They also created a 389 

vaccine based on five methanogens (Methanobrevibacter spp. strains 1Y, AK-87, M. 390 

millerae ZA-10, Methanomicrobium mobile BP and Methanosphaera stadtmanae 391 

MCB-3) that was administered in three vaccinations to sheep (Williams et al. 2009). 392 

Surprisingly, immunization with this second vaccine caused methane output to increase 393 

by 18%, despite the fact that a larger proportion of the methanogenic population (52%) 394 

was targeted. Thus, further work is needed to optimize the individual components of 395 

these vaccines such that the most potent methanogens are specifically targeted. 396 

Researchers believe that anti-methanogenic vaccines will only yield the short term 397 

reductions in methanogens and/ or methanogenesis, due to the possible proteolytic 398 

degradation and low persistence of host antibodies in rumen (Li et al. 2007; Cook et al. 399 
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2008; Lascano and Cárdenas 2010). Vaccination of sheep with entodinial or mixed 400 

protozoa antigens reduced protozoa and the released IgG antibodies against rumen 401 

protozoa remained active and continued to bind the target cells up to 8 hours (Williams 402 

et al. 2008). Vaccines targeting single surface antigens may not be effective, as 403 

methanogenic archaea differs largely based on their host, diet as well as geographical 404 

regions (Zhou et al. 2009). A new vaccine has been developed using sub-cellular 405 

fractions (cytoplasmic and cell wall derived protein) of Methanobrevibacter 406 

ruminantium M1 (Wedlock et al. 2010). Twenty sheep were vaccinated, then booster 407 

doses were given after three weeks, and the antisera were found to agglutinate and 408 

decrease the growth of archaeal methanogens and methane production in vitro.  409 

In vivo efficacy of the vaccine on methanogens is yet to be evaluated. Based on liquid 410 

chromatography mass spectrometer, it was reported that most of the proteins were 411 

intracellular enzymes, particularly methyl-coenzyme M reductase, and these 412 

intracellular proteins would not be suitable as vaccine antigens owing to their 413 

inaccessibility for antibody binding. Since, there is the growing database for the genome 414 

sequences of rumen methanogens, the possibility of finding new target antigens/ 415 

proteins using comparative and pangenomics analysis have increased. The genome 416 

based reverse vaccine approach may also help in mining the new vaccine targets that 417 

might prove successful for efficacious vaccination against methanogens. Furthermore, 418 

extensive research is needed to identify adjuvants that stimulate high titer of antibody 419 

and are suitable for formulating with protein antigens to produce a low-cost and 420 

effective vaccine.  421 

Overall, the genome sequencing will be leading to the better understandings toward 422 

methanogenic interactions with other microbes in the rumen suggesting some methane 423 
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mitigation possibilities. The genomic techniques have provided positive clues for 424 

probable vaccine targets of methanogens in the rumen. Such approaches in future will 425 

optimistically lead to methane reducing practices for farm animals. However, the 426 

vaccine based inhibition method will have to pass the regulatory systems to guaranty 427 

animal health.  428 

Chemogenomics: An upcoming strategy 429 

Genome sequencing of microbes is actually a useful technique that can provide 430 

information directly applicable to methane mitigation strategies from ruminants, based 431 

either on vaccines development or small molecule inhibitor practices. Further, it can 432 

help to identify methane inhibitors by predicting and/or determining specific enzyme 433 

structures. This can define the geometry of the enzyme’s active site and help to design 434 

the molecules that fit exactly into the active site and hence, can inhibit/ block the 435 

enzyme’s catalytic function. This approach identifies inhibitory molecules that can be 436 

tested for their effectiveness in animal trials.  437 

For reaching to a realistic solution to the problem of methane emissions, the 438 

technologies for reducing enteric methane must effectively target all the rumen 439 

methanogens (major and minor groups), otherwise less abundant methanogens may 440 

occupy the vacated niches and lead to normal methanogenesis. Besides, they should not 441 

affect other microbes present in the rumen, so that rumen function would not be altered. 442 

For this, an understanding of the diversity and physiology of rumen methanogens is 443 

essentially required, that not only identifies the dominant methanogens in a particular 444 

geographical area, but also the conserved sequences that can be targeted. In this regard, 445 

more genome sequences of methanogens are required to validate that the targets are 446 

common and effective among all the methanogens in the rumen (Attwood et al. 2011). 447 



20 
 

The completed M. ruminantium genome and draft sequences from other rumen 448 

methanogenic species are paving the way for identification of the underlying cellular 449 

mechanisms that define these microbes, leading to a better understanding of their micro-450 

ecology within the rumen. Aside from this, the genome sequence of M. ruminantium, 451 

draft genome sequence of M. boviskoreani strain JH1 from Korean native cattle 452 

(HanWoo) and AbM4 from abomasum’s of sheep have been published (Lee et al. 453 

2013a; Leahy et al. 2013). The strain AbM4 do not code for many adhesion-like 454 

proteins, which indicates that it invest less on the external interactions with its 455 

environment compared to strain JH1. Moreover, AbM4 has a broader repertoire of 456 

cofactors and coenzymes, which shows its lesser dependence on the other rumen 457 

microbes and CoM in the medium. On the contrary, strain JH1 showed very good 458 

growth in presence of both CoM and VFA in the medium, and had genes and enzymes 459 

for CO2 plus hydrogen, as well as for formate utilization, so that these enzymes possibly 460 

can be targeted for inhibition of methanogenesis.  461 

Another gene, which can be further targeted, is the membrane associated transpeptidase. 462 

The Mtr enzyme complex can also be used for the development of vaccines. The 463 

phylogenetic analysis using Maximum-Likelihood inference method (MEGA 5.1) with 464 

1000 boot strapping, and genomic sequence shows that strain JH1 and AbM4 likely 465 

belong to the same species and is related to M. wolinii. At present, this research is 466 

mainly at exploratory stage but several promising leads for chemogenomic targets are 467 

being investigated as possible intervention points for the inhibition of rumen 468 

methanogens. The cellular studies indicate that many of the conserved enzyme targets 469 

are involved in energy generation via methanogenesis, while majority of the conserved 470 

surface protein targets are of unknown function.  471 
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Bioinformatic approaches used for the inhibitor prediction against F420 dependent 472 

NADP oxidoreductase enzyme that catalyzes an important electron transfer step in the 473 

methanogenesis from Methanobrevibacter smithii reveal that lovastatin and compactin 474 

had high affinity to the enzyme and can act as potential inhibitors (Sharma et al. 2011). 475 

Both in silico approaches and in vitro enzyme assays may be useful for screening 476 

chemical inhibitors of methanogenesis.  477 

The analysis of more genome sequences of rumen methanogens would help to identify 478 

potential methane inhibitors. According to the recent report of Lee et al. (2013a, b), only 479 

very few rumen methanogens are cultured as pure isolates and 13 genome projects are 480 

completed as yet (Leahy et al. 2013; Morgavi et al. 2013). Most of these genome 481 

sequences are from genus Methanobrevibacter, which is considered to be dominating 482 

rumen methanogen, as per the global data set of rumen microbes (Jansen and Kirs, 483 

2008; Jeyanathan et al. 2011; Cheng et al. 2009; Williams et al. 2009, Zhou et al. 2009). 484 

In near future, with the development of “Hungate1000”, a catalogue of 1000 reference 485 

microbial genomes from the rumen (http://www.hungate1000.org.nz/), genomic dataset 486 

of rumen microbiome will be numerically high, thereby more targets for anti-487 

methanogenic strategies can be identified and used for improving the animal health, 488 

productivity and beyond. Furthermore, single-cell isolation technique from the complex 489 

rumen community would provide more advantage, over isolation approach, and their 490 

whole genome sequencing can be accomplished later.  491 

Researchers are currently investigating, whether animal variation in methane emission 492 

is controlled by a heritable characteristic. Although clear and persistent individual 493 

differences in methane emissions have been found among animals fed the same diet 494 

(Pinares-Patiño et al. 2003, 2011; Martínez et al. 2010), it has not been yet clearly 495 
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established whether the low emission trait is associated with any unwanted side effects. 496 

Currently, it is not possible to say whether in future it will be possible to breed animals 497 

that produce lesser methane per unit of intake or not (Clark 2013). Overall, the 498 

chemogenomics allowed us to identify the key features of rumen methanogens that can 499 

be targeted to inhibit them and to mitigate enteric methane production, eventually 500 

reducing the release of anthropogenic GHGs in the environment. 501 

Final remarks 502 

Looking at the facts in a comprehensive manner, profiling of rumen methanogens seem 503 

to be an important tool for ensuring sustainability of ruminant based agriculture 504 

production systems. However, for successful methane mitigation strategies to be 505 

developed and adopted, a thorough understanding of the microbial ecology of rumen 506 

methanogens is essentially required. DNA-based microbial profiling to explore 507 

ruminant methane mitigation will support how the rumen microbes can be manipulated 508 

without hampering the animal’s production potential. These approaches would identify 509 

the involved microbial species based on genome sequences. By comparing microbial 510 

profiles of animals, one can identify the microbial shifts in response to the methane 511 

mitigation strategies. Some of the dietary strategies used in different studies have 512 

produced changes in rumen microbial communities as revealed by profiling assays. The 513 

comparison of rumen microflora both in high and low methane producers will help in 514 

determining if the changes in the microbiota can be directly or indirectly linked to the 515 

reduced methane emissions (Ross et al. 2013). In addition, genetic improvement and 516 

management practices for increasing ruminant productivity and abating methane 517 

emissions, in conjunction with other strategies, can also play an important role in 518 

lowering enteric methane emissions globally. Finally, it must be taken into account that 519 
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there should be some economic return to the producers, if strategies to reduce methane 520 

emissions are expected to be implemented at farm level, and that any adopted strategy 521 

should also ensure animal health, food security and environmental safety. 522 
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 21 
Abstract 22 

The growing demand for sustainable animal production is compelling researchers to 23 

explore the potential approaches to reduce emissions of greenhouse gases from 24 

livestock that are mainly produced by enteric fermentation. Some potential solutions for 25 

instance, the use of chemical inhibitors to reduce methanogenesis are not feasible in 26 

routine use due to their toxicity to ruminants, inhibition of efficient rumen function or 27 

other transitory effects. Strategies, such as use of plant secondary metabolites and 28 

dietary manipulations have emerged to reduce the methane emission, but these still 29 

require extensive research before these can be recommended and deployed in the 30 

livestock industry sector. Furthermore, immunization vaccines for methanogens and 31 

phages are also under investigation for mitigation of enteric methanogenesis. The 32 

increasing knowledge of methanogenic diversity in rumen, DNA sequencing 33 

technologies and bioinformatics have paved the way for chemogenomic strategies by 34 

targeting methane producers. Chemogenomics will help in finding target enzymes and 35 

proteins, which will further assist in the screening of natural as well chemical inhibitors. 36 

The construction of a methanogenic gene catalogue through these approaches is an 37 

attainable objective. This will lead to understand the microbiome function, its relation 38 

with the host and feeds, and therefore, will form the basis of practically viable and eco-39 

friendly methane mitigation approaches, while improving the ruminant productivity. 40 

Keywords: Rumen; Methane Mitigation; Enteric Fermentation; Methanogens, 41 

Ruminants 42 

43 
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 44 
Introduction  45 

Greenhouse gas (GHGs) emission from ruminant production systems is of particular 46 

interest because of their consequences in changing the global climate. Methane 47 

comprises up to 16% of global GHGs emissions (Scheehle and Kruger 2006), and is 48 

mainly detrimental, as its warming potential is nearly 25 times greater than that of CO2 49 

(Zhou et al. 2011). Methane emissions from the agriculture sector represents 40% of 50 

total anthropogenic production (Key and Tallard, 2012), while enteric fermentation in 51 

ruminants makes the largest single (25%) contribution (Thorpe 2009). The emission of 52 

methane from ruminants also varies based on the geographical location (FAO 2010), 53 

feed composition and quality, feed intake, processing of feed and animal breed (Hook et 54 

al. 2010).  55 

Apart from environmental issues, the methane emission also accounts for a 2 to 12% 56 

loss of ingested energy from the rumen (Moss et al. 2000). Such considerations have led 57 

to increased efforts in identification of newer and more effective practices to mitigate 58 

methane emissions from ruminants. Advances in understanding the gut microbial 59 

communities through genomics (Leahy et al. 2010, 2013; Attwood et al. 2011) and 60 

metagenomics (Brulc et al. 2009; Hess et al. 2011; Morgavi et al. 2013) have opened 61 

novel insights about the function of rumen ecosystem. This increased knowledge has 62 

also permitted the development of mitigation strategies to target the dominant 63 

methanogenic species directly. There have been reviews of methane abatement in recent 64 

times (Moss et al. 2000; Beauchemin et al. 2008; McAllister and Newbold 2008; Kumar 65 

et al. 2009; Eckard et al. 2010; Hook et al. 2010; Martin et al. 2010; Patra 2012; 66 

Wanapat et al. 2012), so this article will focus on the latest developments (phage 67 
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therapy, immunization, chemogenomics approaches), possible future directions and 68 

challenges in mitigating enteric methane emissions from ruminants.  69 

Mechanism of enteric methane production 70 

Enteric methane (nearly 87%) is produced in rumen, the remainder being released from 71 

fermentation in the large intestine (Lascano and Cardenas 2010). Although many factors 72 

influence methane emissions from ruminants, the three major determinants are level of 73 

feed intake, type of carbohydrate fed, and manipulation of rumen microflora (Johnson 74 

and Johnson 1995). In rumen, the network of microbes act on feed particles to degrade 75 

plant polysaccharide and produce volatile fatty acids (VFAs; mainly acetate, propionate 76 

and butyrate) and gases (CO2 and H2) as main end products. The activity of hydrogen-77 

utilizing methanogens in rumen reduces the end product inhibition of hydrogen, thereby 78 

allowing more rapid fermentation of feed. Even a small amount of hydrogen in rumen 79 

can limit the oxidation of sugar, VFAs conversion and hydrogenase activity, if 80 

alternative pathways for disposal are absent (McAllister and Newbold 2008). Two 81 

methods utilized for disposal of reducing equivalents are the production of more highly 82 

reduced VFAs and hydrogen by membrane-bound hydrogenases. However, these 83 

hydrogenases have an acute sensitivity to an increased partial pressure of hydrogen 84 

(Russell 2002).  85 

Methane production in rumen is also affected by the passage rate of digesta in the 86 

gastrointestinal tract. The rumen residence time decreases with increased feed intake, 87 

thus reducing the extent of the rumen fermentation and shifting digestion from the 88 

rumen to the small intestine (Aluwong et al. 2011). As a consequence, methane 89 

production per unit of dry matter ingested declines, as feed intake increases 90 
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(Beauchemin and McGinn 2006a), although the total amount of methane produced is 91 

higher. 92 

Strategies to reduce enteric methane emission 93 

The strategies to reduce methane emission from enteric fermentation are classified into 94 

different categories and their respective mechanisms of action, problems associated with 95 

each and future prospects are shown in Table 1. The two main areas of intervention that 96 

will be reviewed here are the changes in the diet and the direct manipulation of the 97 

rumen ecosystem. 98 

Dietary changes  99 

Although there are many approaches to reduce methane formation in the rumen, only 100 

some of those that have been more intensively investigated during the last years will be 101 

treated here, including changes in nutrient composition, plant secondary compounds, 102 

lipid supplementation, organic acids and halogenated compounds. Other options, such 103 

as the use of ionophores, probiotics, acetogens and defaunation are listed in Table 1, but 104 

these are not described here. 105 

Changing nutrient composition 106 

By manipulating the nutrient composition of ruminants’ diet, it is possible to reduce the 107 

enteric methane yield, the forage: concentrate ratio in the diet being one of the most 108 

studied dietary factors. A high proportion of concentrate in diet reduces rumen pH and 109 

consequently affects the protozoa population (Kumar et al. 2013a, b). Furthermore, it 110 

also reduces the acetate: propionate ratio and thus decreases the amount of methane 111 

produced per unit of feed intake (Beauchemin et al. 2008). However, the proportion of 112 

concentrates needed to bring about this effect may well be over 90% of the diet and 113 

such high levels are not desirable due to health concerns (i.e., acidosis, laminitis, liver 114 
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abscesses etc.; Gandra et al. 2012). Moreover, feeding high amounts of concentrates is 115 

not always possible in the developing countries because of the economic constraints. 116 

Therefore, developing newer forages having high soluble carbohydrates can be a better 117 

option for reducing methane than feeding high-concentrate based diets. Niderkorn et al. 118 

(2011) reported that diets rich in certain grass varieties such as AberAvon (Lolium 119 

perenne) lead to significantly reduced methane production from in vitro fermentations 120 

than AberStar and AberMagic under the category of water soluble carbohydrates 121 

forages. Similarly, different grass and shrub species, such as L. perenne (Ludemann et 122 

al. 2013) Gliricidia sepium, Brachiaria ruziziensis (Meale et al. 2012) and Acacia 123 

mangium (Giraldo et al. 2007a), were able to reduce methane emissions. Therefore, 124 

grazing on these species has been proposed as a strategy to reduce methane emissions. 125 

Another approach would be the selection of better quality forages (low fibre and high 126 

soluble carbohydrates content), as increased quality should result in greater productivity 127 

at equivalent levels of intake and methane emissions (Clark et al. 2011).  128 

Plants containing secondary compounds 129 

Tannins, phenolic monomers and other plant secondary metabolites are toxic to ciliate 130 

protozoa, fibrolytic bacteria and methanogenic archaea, and thus may help in reducing 131 

methanogenesis (Goel et al. 2005; Bhatta et al. 2009; Patra and Saxena, 2009a,b; 132 

Jayanegara et al. 2011). It has been observed that condensed tannins (CT) containing 133 

temperate and tropical legumes reduce methanogenesis (Lascano and Cárdenas 2010; 134 

Guglielmelli et al. 2011; Calabrò et al. 2012; Cieslak et al. 2013). Tiemann et al. (2008) 135 

indicated that some tropical feeds with tannins have lower fibre digestibility and 136 

consequently, low hydrogen production and methane emissions. Moreover, binding of 137 

tannins to proteins also reduces degradation of plant protein in the rumen and lowers 138 
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methanogenesis (Tavendale et al. 2005). The effects of tannin content of four different 139 

vegetative stages of Onobrychis viciifolia were evaluated by Guglielmelli et al. (2011), 140 

who found a negative correlation bordering on significance (r = -0.932; P = 0.068) 141 

between CTs content and methane production, indicating that methane production 142 

consistently declined as the CT content increased. The methane suppression effect of 143 

CT containing legumes, such as Lotus pedunculatus or Acacia mearnsii, relative to 144 

forages without tannins has been shown in sheep (Carulla et al. 2005; Ramirez-Restrepo 145 

and Barry 2005), Holstein cows (Woodward et al. 2001) and goats (Hess et al. 2006; 146 

Animut et al. 2008). The mechanism to decrease methanogenesis seems to vary with the 147 

nature of CT, as Bhatta et al. (2013) observed that Ficus bengalensis and Autocarous 148 

integrifolis reduced methane production due to defaunation, but Azadirachta indica 149 

reduced methanogenesis by a direct effect on methanogens. Overall, it seems that the 150 

effects of CT on rumen methanogenesis depend on the structure and concentration of 151 

CT. 152 

Supplementation of lipids 153 

Vegetables and animal lipids are originally used in ruminant rations to increase their 154 

energy density. These are also considered useful in terms of reduced rumen 155 

methanogenesis (Soliva et al. 2004; Beauchemin et al. 2007; Brask et al. 2013). 156 

Methane production has been consistently reduced by adding fat or fatty acids to 157 

ruminant diets, and it is estimated that fat can reduce methane emissions by 4-5% (g/Kg 158 

DMI) for every 1% increase in the fat content of the diet (Grainger and Beauchemin,  159 

2011). However, the inclusion of lipids at levels above 6-7% of dry matter intake can 160 

reduce feed intake and fiber digestibility, resulting in lower milk yield or daily gain 161 

(Patra 2012).  162 
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The addition of different oils (soya, coconut, canola, rapeseed, etc.) to ruminant diets 163 

have been shown to reduce methane production between 19 and 62% in Rusitec 164 

fermenters (Dohme et al. 2000), sheep (Ding et al. 2012), beef cattle (Machmüller and 165 

Kreuzer, 1999; Jordan et al 2006a b) and dairy cows (Odongo et al. 2007; Brask et al. 166 

2013). The mechanism of methane inhibition by fat is likely to be a combination of bio-167 

hydrogenation of unsaturated fatty acids and direct inhibition of activities of different 168 

microbes including methanogens (Beauchemin et al. 2007; Kong et al. 2010; Hook et al. 169 

2010). Bio-hydrogenation acts as hydrogen sink and therefore decrease rumen 170 

methanogenesis, but is not the only mechanisms as there is no direct link between the 171 

methane reduction and the level of unsaturation (Dohme et al. 2000) or the length of the 172 

fatty acid. Medium-chain fatty acids may also reduce methanogenesis by directly acting 173 

on protozoa and/or methanogens. Thus, coconut oil decreased methane production and 174 

methanogens in both faunated and defaunated Rusitec fermenters, the inhibition of 175 

methanogenesis caused by coconut oil being similar to that produced by defaunation 176 

(Dohme et al. 1999). Comparison of the effects of different fatty acids revealed that 177 

lauric, myristic and linoleic acids were the most potent reducers of methanogenesis 178 

(Dohme et al. 2001; Jordan et al. 2006b; Ding et al. 2012), and the ability of lauric acid 179 

to decrease cell viability of Methanobrevibacter ruminantium has been recently 180 

reported by Zhou et al. (2013).   181 

In summary, increasing the dietary proportion of lipids may provide another feeding 182 

strategy for reducing rumen methanogenesis, but the appropriate lipid and dose for each 183 

dietary condition should be carefully chosen, as it has been shown that different lipid 184 

sources may have similar effects on methane production but variable effects on diet 185 

intake and digestion (Beauchemin et al. 2007). In the last years, the potential of 186 
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essential oils as additives to manipulate rumen fermentation and decrease methane 187 

emissions has been extensively investigated and reviewed (Calsamiglia et al. 2007; 188 

Benchaar and Greathead, 2011; Bodas et al. 2012). A wide range of essential oils 189 

(derived from garlic, thyme, oregano, cinnamon, rhubarb, frangula, etc.) has been 190 

shown to decrease methane production in vitro in a dose dependent manner, but at high 191 

doses the decrease in methanogenesis was accompanied by adverse effects on 192 

fermentation such as reduction in VFA production and feed digestibility (Busquet et al., 193 

2005; Patra and Yu, 2012). When used at low doses (≤300 mg/l), garlic oil and its 194 

organosulfur compounds consistently decreased methane production in vitro without 195 

negatively affecting feed fermentation (Busquet et al. 2005; Kamel et al. 2008; 196 

Kongmun et al. 2010; Mateos et al. 2013), but no effects of garlic oil or its compounds 197 

on methanogenesis have been observed in lactating cows (van Zijderveld et al. 2011), 198 

sheep (Patra et al. 2011) or fattening bulls (Staerfl et al. 2012). The lack of response in 199 

vivo is partly attributed to the adaptation of microbes (Bodas et al. 2012), but also to the 200 

use of lower doses compared to those in the in vitro experiments. The challenge now is 201 

to identify essential oils that selectively inhibit methanogenesis at concentrations that 202 

can be used in the practice, with lasting effects and without depressing feed digestion 203 

and animal productivity (Benchaar and Greathead, 2011). 204 

Addition of organic acids  205 

Inclusion of organic acids (i.e. malic and fumaric) or their sodium salts in diets, results 206 

in shifting rumen fermentation towards propionate and hence, less methane production. 207 

The addition of sodium fumarate consistently decreased methane production in vitro by 208 

2.3 to 41% (Ungerfeld et al. 2007), and increased feed digestibility and VFAs 209 

production (García-Martínez et al. 2005; Giraldo et al. 2007b). Similarly, malate, that is 210 
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converted to fumarate in the rumen, stimulated propionate formation and also inhibited 211 

methanogenesis in some in vitro studies (Carro and Ranilla 2003a; Tejido et al. 2005), 212 

although other studies have failed to find clear reductions of methanogenesis in vitro 213 

(Carro et al. 1999; Gómez et al. 2005; Ungerfeld and Forster 2011). In vivo effects of 214 

adding organic acids to the diet on methane mitigation are quite variable. Wood et al. 215 

(2009) noted 60 to 76% reductions in methane emissions by supplementing fumarate at 216 

100 g/kg to growing lambs, while Foley et al. (2009a) observed the reductions of only 6 217 

and 16%, when the diet of beef heifers was supplemented with malic acid at 37.5 and 75 218 

g/kg, respectively. In contrast, no effects of fumaric or malic acid on methane emissions 219 

were observed in other studies (Beauchemin and McGinn 2006b; Foley et al. 2009b).  220 

The effect of organic acids supplementation on methane reduction appears to be 221 

influenced by the forage to concentrate ratio and the type of cereal grain being fed in 222 

diet (Carro and Ranilla 2003a, b; Gómez et al. 2005; Tejido et al. 2005), although the 223 

number of studies conducted with different diets is too low to draw definitive 224 

conclusions. However, the high cost of purified organic acids makes supplementation of 225 

ruminant diets uneconomical at the doses required to be effective. Nevertheless, diet 226 

supplementation with plant tissues naturally rich in organic acids does have some 227 

potential and it may be possible to select forages with elevated levels of other acids. 228 

Studies on lucerne, Bermuda grass and tall fescue indicated that organic acids 229 

concentrations vary not only among species but also among cultivars of the same 230 

species (Callaway et al. 1997), although it is difficult to conclude whether differences in 231 

organic acid levels among forages and cultivars are sufficient enough to affect rumen 232 

methane emission. Overall, results of fumaric and malic acid supplementation in vitro 233 
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and in vivo are heterogeneous, and the effectiveness of these additives seem to depend 234 

on their dose and nature of diet. 235 

Use of halogenated compounds 236 

Halogenated methane analogues, such as chloral hydrate, amichloral, 237 

bromochloromethane, nitroethane and 2-nitropropanol, are potential inhibitors of 238 

methane in ruminants (Nevel and Demeyer 1995). Bromochloromethane can inhibit 239 

methanogenesis by reacting with coenzyme B, which functions at the last step of the 240 

methanogenic pathway (McCrabb et al. 1997). Recently, Abecia et al. (2012) confirmed 241 

the methane reducing effects of bromochloromethane in lactating dairy goats and 242 

reported a 33% reduction with no effect on rumen bacteria, protozoa and methanogens. 243 

In contrast, Denman et al. (2007) reported that bromochloromethane decreased the 244 

number of methanogenic archaea in the rumen of cattle by 34% and reduced methane 245 

emission by 30%. Bromochloromethane is highly volatile but can be stabilized with 246 

cyclodextrin resulting in more effective reduction of enteric methane emission (May et 247 

al. 1995). When fed to Braham cattle at hourly intervals, it prevented all methane 248 

production (McCrabb et al. 1997) and when fed twice daily to cattle for 8 weeks, it not 249 

only reduced methane by 54% but also reduced feed intake. Some compounds, such a 250 

bromine analogue of coenzyme M were potent methane inhibitors in in vitro (Martin 251 

and Macy 1985), but the inhibition was not persistent in vivo, suggesting adaptation of 252 

methanogenic populations (Nevel and Demeyer 1995). An adaptation of methanogens 253 

to quaternary ammonium compounds has also been demonstrated (Tezel et al. 2006), 254 

but in contrast, no adaptation has been observed for chloroform, which decreased rumen 255 

methanogenesis and methanogens without altering rumen function over a 42 day period 256 

(Knight et al. 2011).  257 
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More recently, the effect of 3-nitrooxypropanol and ethyl-3-nitrooxypropanol on rumen 258 

fermentation and methane emission have been studied using Rusitec fermenters and in 259 

in vivo trials (Haisan et al. 2013; Martinez-Fernandez et al. 2013; Perez et al. 2013). 260 

Both additives showed promising potential as methane inhibitors in the rumen with no 261 

negative effects on rumen fermentation. Differences among methanogens regarding 262 

their resistance to chemical inhibitors should be considered, when designing strategies 263 

for inhibition of rumen methanogenesis, as selection of resistant species may result 264 

(Ungerfeld et al. 2004). 265 

In summary, although dietary manipulation provides many viable options, there are 266 

significant variations in the effectiveness of these and currently there is not yet an 267 

approach that could be practically applied. Hence, there is a need to study the influence 268 

of plant components and essential oils on methane production in detail with 269 

standardized samples. Based on the limited information, it can be said that benefits 270 

associated with bioactive compounds in vitro do not always mimic in vivo, and in vivo 271 

effects are usually transient in nature due to microbial adaptation. Moreover, the 272 

different experimental conditions found in vitro and in vivo should be taken into account 273 

when comparing doses and results from experiments. Rumen dry matter content can 274 

vary with several factors, ranging from 10 to 25%, whereas dry matter content in most 275 

in vitro systems is usually much lower (Carro et al. 2006); therefore, doses are not 276 

directly comparable when expressed per diet dry matter. In addition, as pointed out by 277 

Beauchemin et al. (2008), most studies on reductions in methane production from 278 

ruminants due to diet management are short-term and focussed only on enteric 279 

emissions, but future research should investigate long-term impacts on methane 280 

emissions in the whole farm.  281 
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Microbial interventions 282 

This section deals with the diversity of methanogens in rumen and also discusses the 283 

strategies such as usage of phages and vaccination that directly target methanogens and/ 284 

or their activities.    285 

Methanogenic diversity 286 

In order to target methanogens, knowledge of their population dynamics, physiology 287 

and diversity in the rumen is of utmost importance. Until recently, the rumen 288 

methanogens belonged to a few genera of the orders Methanobacteriales, 289 

Methanomicrobiales and Methanosarcinales, within the phylum Euryarchaeota. 290 

However, based on 16S rRNA gene sequences, a novel group distantly related to the 291 

Thermoplasmatales (named as rumen Cluster C; previously described as rice cluster C 292 

Thermoplasmata) was found to be highly abundant in ruminants (Jannsen and Kirs, 293 

2008; Poulsen et al. 2013).  294 

Methanobrevibacter is the most commonly encountered genus within 295 

Methanobacteriales, whereas Methanobacterium, that shares similar physiology as 296 

Methanobrevibacter, are rarely reported from rumen. Other Methanobrevibacter 297 

members of the order Methanomicrobiales have been also reported to be dominant in 298 

the rumen of buffalo (Tajima et al. 2001; Shin et al. 2004). In genus 299 

Methanomicrobium, M. mobile is mostly reported (Kumar et al. 2012) from ruminants, 300 

while other members of this genus had shown an abundance with culture independent 301 

methods, but are rarely detected/isolated with conventional approaches. The order 302 

Methanosarcinales comprises a group of physiologically distinct aceticlastic 303 

methanogens (Janssen, 2010), but their abundance in the rumen is low. Within this 304 
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group, Methanococcus spp. and Methanosarcina spp. are the most commonly reported 305 

(Wedlock et al. 2013).  306 

Apart from the microbial diversity analysis, functional and sequence based 307 

metagenomics have been evolved to uncover the diversity of enzymes and metabolic 308 

pathways in the rumen. This technique has been used to identify hydrolytic enzymes of 309 

industrial applications, particularly involved in plant polysaccharide degradation. Some 310 

researchers have employed this technique and identified enzymes from the rumen of 311 

cow, buffalo, camel, reindeer and yak (Zhao et al. 2010; Hess et al. 2011, Pope et al. 312 

2012; Dai et al. 2012; Bhatt et al. 2013). This practice is based on the availability of 313 

suitable bioassays for the enzyme of interest and presently cellulose and hemicelluloses 314 

degradation is an area of interest for rumen microbiologists. Beside enzyme bioassays, 315 

heterologous complementation of host strains and mutants as well as induction of 316 

reporter genes are used for functional metagenomic screening (Leahy et al. 2013). Pope 317 

et al. (2010) reported unique bacterial lineages underpinning plant biomass conversion, 318 

and their distinct repertoire of glycoside hydrolases in Australian macropods. They also 319 

reported the abundance of polysaccharide utilization loci in Svalbard reindeer rumen 320 

micrbome, which is much similar to the microbiome of human gut (Pope et al. 2012). 321 

Similarly, Bhatt et al. (2013) highlighted the striking similarities and differences of 322 

dromedary camel (Camelus dromedaries) with other animal rumen ecosystem. Since, 323 

variations of microbial communities in ruminants is of great concern, Ross et al. (2012) 324 

suggested untargeted massive parallel sequencing (sequencing without target 325 

amplification of genes) approach for resolution of variation based rumen metagenome 326 

profiling. 327 
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Many developments in the exploration of gut microbial communities in different animal 328 

species have been made through sequence based metagenomics, and some recent 329 

examples follow. Dai et al. (2012) analyzed the fibrolytic microbiome in the rumen of 330 

yaks, and Brulc et al. (2009) used large sequence based studies to catalogue the genes 331 

involved in fiber degradation in the bovine rumen. Qi et al. (2011) applied 332 

metatranscriptomics to the study of rumen microbes function in muskox, and similar 333 

work has been carried out in sheep (Cammack et al. 2013), goats (Jakhesara et al. 2010) 334 

and Surti buffaloes (Singh et al. 2012a). Singh et al. (2012b) studied the virulence 335 

associated and antibiotic resistance genes of rumen microbes to facilitate the 336 

understanding of resistant gene transfer between and within habitats. However, 337 

researchers in this area have to explore the sequence based metagenomic into taxonomic 338 

perspective, as well as to link genomics and metagenomics to nutrition or other animal 339 

production parameters. For example, Li et al. (2012) characterized rumen microbiota of 340 

pre-ruminant calves and their metabolic potential so that the optimal early weaning 341 

nutritional strategies (like milk replacer) could be formulated, and recently Ross et al. 342 

(2013) analyzed the effect of methane mitigating diets on rumen microbiome.  343 

Phage therapy 344 

The lytic potential of phages and their genes make them an important tool for methane 345 

mitigation strategies. In contrast to nearly 300 phage genomes (Ackermann and 346 

Kropinski 2007), only six archaeal phages are sequenced and described, and just three 347 

of them are from methanogens: Methanobacterium phage psi M1, M2 and M100 348 

(Pfister et al. 1998) and Methanothermobacter phage psi M100 (Luo et al. 2001). Little 349 

information is currently available on the genetic blueprint and gene functionality of 350 

archaeal, particularly methanogenic, phages but more are being discovered using 351 
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electron microscopy (Ackermann 2007) and in vitro techniques (Stanton 2007). 352 

McAllister and Newbold (2008) reported siphophages that can infect methanogens 353 

(Methanobacter, Methanobrevibacter and Methanococcus spp.), although these phages 354 

have not been isolated from the rumen. A recent metagenomic study on phage-bacterial 355 

relationships showed ≤ 0.1% relative abundance of prophage in phylum Euryarchaeota 356 

(Berg Miller et al. 2012). 357 

Metagenomic surveys are expected to reveal the presence of embedded prophages and 358 

phage-like elements that would have otherwise remain unnoticed. An unanticipated 359 

outcome from sequencing the M. ruminantium genome was the discovery of prophage 360 

φ-mru having 69 phage-related proteins (Leahy et al. 2010). A gene encoding a putative 361 

lytic enzyme was identified, expressed and shown to lyse M. ruminantium. Such lytic 362 

enzyme is potentially very useful biocontrol agents for manipulating of rumen 363 

methanogenic populations (Leahy et al. 2010). The genome sequence of 364 

Methanobrevibacter AbM4 and Methanobrevibacter boviskoreani strain JH1 revealed 365 

the presence of prophage/ phage like elements in strain JH1 while AbM4 is lacking in 366 

gene encoding prophage (Lee at al. 2013a and Leahy et al. 2013). Phages are host and 367 

even strain specific, so phage-based methane mitigation strategies could be developed 368 

without affecting other phylogenetically distinct microbes in the rumen. However, hosts 369 

and phages are also known to be involved in a rapid evolutionary race as the host 370 

changes to avoid infection and the phage changes to maintain infectivity.  371 

In combination with the application of other phage enzymes and structural components, 372 

a rotation system can be envisioned that may overcome the rapid adaptation 373 

mechanisms of microbes to phage challenges. More methanogenic phages need to be 374 

identified, sequenced and characterized to identify and employ such phage-based 375 
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strategies. However, high specificity of phages may also be a limiting factor in their 376 

effectiveness in reducing methane emissions, since there appears to be a high diversity 377 

of methanogens in rumen (Janssen and Kirs 2008). Finally, either mixture of phages or 378 

structural components of phages may prove useful against the greater diversity of 379 

methanogens in rumen. 380 

Immunization 381 

Host immunization commonly offers a diverse and ecofriendly solution to the problems 382 

especially associated with animal health. Therefore, developing vaccines against 383 

methanogens appears to be an alternative and attractive approach, which can avoid 384 

many of the issues mentioned above related to methane mitigation from ruminants. 385 

Wright et al. (2004) developed two vaccines, VF3 (based on three methanogenic strains 386 

1Y, AK-87 and ZA-10) and VF7 (based on seven methanogens), that produced a 7.7% 387 

methane reduction in sheep (g per kg of dry matter intake); despite targeting only a 388 

minority (20%) of methanogens present within these host animals. They also created a 389 

vaccine based on five methanogens (Methanobrevibacter spp. strains 1Y, AK-87, M. 390 

millerae ZA-10, Methanomicrobium mobile BP and Methanosphaera stadtmanae 391 

MCB-3) that was administered in three vaccinations to sheep (Williams et al. 2009). 392 

Surprisingly, immunization with this second vaccine caused methane output to increase 393 

by 18%, despite the fact that a larger proportion of the methanogenic population (52%) 394 

was targeted. Thus, further work is needed to optimize the individual components of 395 

these vaccines such that the most potent methanogens are specifically targeted. 396 

Researchers believe that anti-methanogenic vaccines will only yield the short term 397 

reductions in methanogens and/ or methanogenesis, due to the possible proteolytic 398 

degradation and low persistence of host antibodies in rumen (Li et al. 2007; Cook et al. 399 
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2008; Lascano and Cárdenas 2010). Vaccination of sheep with entodinial or mixed 400 

protozoa antigens reduced protozoa and the released IgG antibodies against rumen 401 

protozoa remained active and continued to bind the target cells up to 8 hours (Williams 402 

et al. 2008). Vaccines targeting single surface antigens may not be effective, as 403 

methanogenic archaea differs largely based on their host, diet as well as geographical 404 

regions (Zhou et al. 2009). A new vaccine has been developed using sub-cellular 405 

fractions (cytoplasmic and cell wall derived protein) of Methanobrevibacter 406 

ruminantium M1 (Wedlock et al. 2010). Twenty sheep were vaccinated, then booster 407 

doses were given after three weeks, and the antisera were found to agglutinate and 408 

decrease the growth of archaeal methanogens and methane production in vitro.  409 

In vivo efficacy of the vaccine on methanogens is yet to be evaluated. Based on liquid 410 

chromatography mass spectrometer, it was reported that most of the proteins were 411 

intracellular enzymes, particularly methyl-coenzyme M reductase, and these 412 

intracellular proteins would not be suitable as vaccine antigens owing to their 413 

inaccessibility for antibody binding. Since, there is the growing database for the genome 414 

sequences of rumen methanogens, the possibility of finding new target antigens/ 415 

proteins using comparative and pangenomics analysis have increased. The genome 416 

based reverse vaccine approach may also help in mining the new vaccine targets that 417 

might prove successful for efficacious vaccination against methanogens. Furthermore, 418 

extensive research is needed to identify adjuvants that stimulate high titer of antibody 419 

and are suitable for formulating with protein antigens to produce a low-cost and 420 

effective vaccine.  421 

Overall, the genome sequencing will be leading to the better understandings toward 422 

methanogenic interactions with other microbes in the rumen suggesting some methane 423 
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mitigation possibilities. The genomic techniques have provided positive clues for 424 

probable vaccine targets of methanogens in the rumen. Such approaches in future will 425 

optimistically lead to methane reducing practices for farm animals. However, the 426 

vaccine based inhibition method will have to pass the regulatory systems to guaranty 427 

animal health.  428 

Chemogenomics: An upcoming strategy 429 

Genome sequencing of microbes is actually a useful technique that can provide 430 

information directly applicable to methane mitigation strategies from ruminants, based 431 

either on vaccines development or small molecule inhibitor practices. Further, it can 432 

help to identify methane inhibitors by predicting and/or determining specific enzyme 433 

structures. This can define the geometry of the enzyme’s active site and help to design 434 

the molecules that fit exactly into the active site and hence, can inhibit/ block the 435 

enzyme’s catalytic function. This approach identifies inhibitory molecules that can be 436 

tested for their effectiveness in animal trials.  437 

For reaching to a realistic solution to the problem of methane emissions, the 438 

technologies for reducing enteric methane must effectively target all the rumen 439 

methanogens (major and minor groups), otherwise less abundant methanogens may 440 

occupy the vacated niches and lead to normal methanogenesis. Besides, they should not 441 

affect other microbes present in the rumen, so that rumen function would not be altered. 442 

For this, an understanding of the diversity and physiology of rumen methanogens is 443 

essentially required, that not only identifies the dominant methanogens in a particular 444 

geographical area, but also the conserved sequences that can be targeted. In this regard, 445 

more genome sequences of methanogens are required to validate that the targets are 446 

common and effective among all the methanogens in the rumen (Attwood et al. 2011). 447 
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The completed M. ruminantium genome and draft sequences from other rumen 448 

methanogenic species are paving the way for identification of the underlying cellular 449 

mechanisms that define these microbes, leading to a better understanding of their micro-450 

ecology within the rumen. Aside from this, the genome sequence of M. ruminantium, 451 

draft genome sequence of M. boviskoreani strain JH1 from Korean native cattle 452 

(HanWoo) and AbM4 from abomasum’s of sheep have been published (Lee et al. 453 

2013a; Leahy et al. 2013). The strain AbM4 do not code for many adhesion-like 454 

proteins, which indicates that it invest less on the external interactions with its 455 

environment compared to strain JH1. Moreover, AbM4 has a broader repertoire of 456 

cofactors and coenzymes, which shows its lesser dependence on the other rumen 457 

microbes and CoM in the medium. On the contrary, strain JH1 showed very good 458 

growth in presence of both CoM and VFA in the medium, and had genes and enzymes 459 

for CO2 plus hydrogen, as well as for formate utilization, so that these enzymes possibly 460 

can be targeted for inhibition of methanogenesis.  461 

Another gene, which can be further targeted, is the membrane associated transpeptidase. 462 

The Mtr enzyme complex can also be used for the development of vaccines. The 463 

phylogenetic analysis using Maximum-Likelihood inference method (MEGA 5.1) with 464 

1000 boot strapping, and genomic sequence shows that strain JH1 and AbM4 likely 465 

belong to the same species and is related to M. wolinii. At present, this research is 466 

mainly at exploratory stage but several promising leads for chemogenomic targets are 467 

being investigated as possible intervention points for the inhibition of rumen 468 

methanogens. The cellular studies indicate that many of the conserved enzyme targets 469 

are involved in energy generation via methanogenesis, while majority of the conserved 470 

surface protein targets are of unknown function.  471 



21 
 

Bioinformatic approaches used for the inhibitor prediction against F420 dependent 472 

NADP oxidoreductase enzyme that catalyzes an important electron transfer step in the 473 

methanogenesis from Methanobrevibacter smithii reveal that lovastatin and compactin 474 

had high affinity to the enzyme and can act as potential inhibitors (Sharma et al. 2011). 475 

Both in silico approaches and in vitro enzyme assays may be useful for screening 476 

chemical inhibitors of methanogenesis.  477 

The analysis of more genome sequences of rumen methanogens would help to identify 478 

potential methane inhibitors. According to the recent report of Lee et al. (2013a, b), only 479 

very few rumen methanogens are cultured as pure isolates and 13 genome projects are 480 

completed as yet (Leahy et al. 2013; Morgavi et al. 2013). Most of these genome 481 

sequences are from genus Methanobrevibacter, which is considered to be dominating 482 

rumen methanogen, as per the global data set of rumen microbes (Jansen and Kirs, 483 

2008; Jeyanathan et al. 2011; Cheng et al. 2009; Williams et al. 2009, Zhou et al. 2009). 484 

In near future, with the development of “Hungate1000”, a catalogue of 1000 reference 485 

microbial genomes from the rumen (http://www.hungate1000.org.nz/), genomic dataset 486 

of rumen microbiome will be numerically high, thereby more targets for anti-487 

methanogenic strategies can be identified and used for improving the animal health, 488 

productivity and beyond. Furthermore, single-cell isolation technique from the complex 489 

rumen community would provide more advantage, over isolation approach, and their 490 

whole genome sequencing can be accomplished later.  491 

Researchers are currently investigating, whether animal variation in methane emission 492 

is controlled by a heritable characteristic. Although clear and persistent individual 493 

differences in methane emissions have been found among animals fed the same diet 494 

(Pinares-Patiño et al. 2003, 2011; Martínez et al. 2010), it has not been yet clearly 495 
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established whether the low emission trait is associated with any unwanted side effects. 496 

Currently, it is not possible to say whether in future it will be possible to breed animals 497 

that produce lesser methane per unit of intake or not (Clark 2013). Overall, the 498 

chemogenomics allowed us to identify the key features of rumen methanogens that can 499 

be targeted to inhibit them and to mitigate enteric methane production, eventually 500 

reducing the release of anthropogenic GHGs in the environment. 501 

Final remarks 502 

Looking at the facts in a comprehensive manner, profiling of rumen methanogens seem 503 

to be an important tool for ensuring sustainability of ruminant based agriculture 504 

production systems. However, for successful methane mitigation strategies to be 505 

developed and adopted, a thorough understanding of the microbial ecology of rumen 506 

methanogens is essentially required. DNA-based microbial profiling to explore 507 

ruminant methane mitigation will support how the rumen microbes can be manipulated 508 

without hampering the animal’s production potential. These approaches would identify 509 

the involved microbial species based on genome sequences. By comparing microbial 510 

profiles of animals, one can identify the microbial shifts in response to the methane 511 

mitigation strategies. Some of the dietary strategies used in different studies have 512 

produced changes in rumen microbial communities as revealed by profiling assays. The 513 

comparison of rumen microflora both in high and low methane producers will help in 514 

determining if the changes in the microbiota can be directly or indirectly linked to the 515 

reduced methane emissions (Ross et al. 2013). In addition, genetic improvement and 516 

management practices for increasing ruminant productivity and abating methane 517 

emissions, in conjunction with other strategies, can also play an important role in 518 

lowering enteric methane emissions globally. Finally, it must be taken into account that 519 
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there should be some economic return to the producers, if strategies to reduce methane 520 

emissions are expected to be implemented at farm level, and that any adopted strategy 521 

should also ensure animal health, food security and environmental safety. 522 
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Table 1: Methane mitigation categories, mechanism of mitigation, problems associated and future directions 

Mitigation 
categories  

Subgroups Example(s) Mitigation 
mechanism (s) 

Difficulties associated Benefits and 
prospects 

Reference(s) 

i) Animal 
dietary  
manipulation 

Manipulating 
animal diet 
composition  

Shifting towards 
concentrate diets, 
use of newer 
forages 

Improved passage 
rate of feed; 
increased propionate: 
acetate ratio; reduced 
rumen pH and 
protozoa counts 

Shifting of 
methanogenesis towards 
hindgut; threat of rumen 
acidosis; economic 
losses in developing 
world  

In vivo trails 
along with other 
strategies are 
essential 

Niderkorn et al. (2011); Meale et al. 
(2012)  

Feed additives 
having 
secondary 
compounds 

Condensed 
tannins, phenolic 
monomers, 
saponins, etc. 

Inhibition of protozoa 
activity, fibre 
degraders and 
methanogenic 
archaea; decreased 
hydrogen 
availability 

A few tannins lowers 
fibre digestibility; reduce 
palatability/ intake, 
performance, and change 
milk composition 

Natural 
products; In vivo 
trials are needed 
for 
optimizing dose 

Woodward et al. (2001); Carulla et al. 
(2005); Ramirez-Restrepo and Barry 
(2005); Tavendale et al. (2005);     
Hess et al. (2006); Animut et al. (2008); 
Tiemann et al. (2008);  Lascano and 
Cárdenas (2010); Kamra et al. (2012) 

Feeding oils Chain length (C8-
C16) fatty acids 

Having antimicrobial 
activities against 
methanogens and 
protozoa;  
biohydrogenation as a 
hydrogen sink; 
increased propionate: 
acetate ratio 
 

Low palatability/ intake, 
animal performance, and 
changed 
milk composition; dose 
varies with diet and type 
of ruminant species 

Continuing 
studies are must 
before making 
any conclusion 

Machmuller and Kreuzer (1999); 
Dohme et al. (2000); 
Dohme et al. (2001); Soliva et al. 
(2004); Jordan et al. (2006a); Jordan et 
al. (2006b); Calsamiglia et al., (2007); 
Hook et al. (2010); Ding et al. (2012); 
Lunsin et al. (2012); Patra and Yu 
(2012) 

Addition of 
organic acids 

Mainly fumaric 
and malic acids  

Act as hydrogen 
sinks; shifting of 
rumen fermentation 
towards propionate 
formation 

Contradictory reports; 
addition is affected by 
the type of diet; may 
increase rumen acidity; 
high cost  

Screening of 
forages with 
higher organic 
acids content is 
desirable  

Martin and Streeter (1995); Callaway et 
al. (1997); Carro et al. (1999); Carro 
and Ranilla (2003a,b) ; Ungerfeld et al. 
(2007); Wood et al. (2009); Foley et al. 
(2009a,b) 
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Use of 
halogenated 
compounds 

Chemicals like 
bromo alkyl 
sulphonates, 
lumazine, ethyl-2-
butynoate, 
amichloral, 
cyclodextrin, 
lovatstain 
anthraquinone, 
etc. may be used 

Inhibit protozoa, 
Gram-positive 
bacteria and 
methanogens; 
decrease substrate (s) 
for methanogenesis 

Mostly in vitro reports; 
toxicity proven; transient 
effect due to adaptation 
of microflora and 
changes in diets 

 

Combined 
administration is 
needed for 
constant results  

Nevel and Demeyer (1995); May et al. 
(1995); Van Nevel and Demeyer 
(1996); McCrabb et al. (1997); Abecia 
et al. (2012) 

Role of 
ionophores 

Mainly monensin, 
lasalocid, 
salinomycin, 
avoparcin, etc.  
 

Eradicate 
methanogens; 
decrease substrate (s) 
for methanogenesis; 
inhibits protozoa and 
Gram-positive 
bacteria 

No lasting effect; 
problem of absorption in 
rumen and reaching both 
in milk and meat; 
reduces intake 

Further research 
required for a 
concrete 
solution 

O’Kelly and Spiers (1992); Van Nevel 
and Demeyer (1996); Odongo et al. 
(2007); Hook et al. (2009)  

ii) Rumen 
controls 

By using 
bacteriocins 

Bovicin HC5, 
Nisin 

Aims at biological 
mitigation and 
hydrogen producers  

Bacteriocins degradation; 
adaptation of rumen 
microbes; not target 
specific 

More extensive 
research is 
required 

Callaway et al. (1997); Teather and 
Forster (1998);  

Application of 
phage therapy 
 

Appropriate 
phages for 
different groups 
of microbes 

Should targets 
methanogens 
specifically 

Host changes to avoid 
infections; specific 
phages 

Regular change 
of phages and 
combination of 
phages can be 
tested 

Pfister et al. (1998); Luo et al. (2001); 
Ackermann (2007); Ackermann and 
Kropinski (2007); Stanton, (2007); 
Attwood and McSweeney (2008); 
McAllister and Newbold (2008); 
Janssen and Kirs (2008) 

Through 
immunization 

Development of 
relevant vaccines 

Activates immune 
response of hosts 
against methanogens  

Inadequate targets of 
vaccine due to 
differences in dietary 
regimen 

Require 
genomic data 
for identifying 
universal 
immunization 
targets; in vivo 
efficacy tests yet 
not done 

Wright et al (2004);  Li et al. (2007);  
Cook et al. (2008); Williams et al. 
(2009); Zhou et al. (2009); Lascano and 
Cárdenas (2010); Wedlock et al. (2010)  
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Via defaunation Using chemical 
inhibitors; plant 
extracts, vaccines 
for protozoa 

Reduces hydrogen Transient effects; 
toxicity; reduced feed 
digestibility 

Needs a 
validation 
before field 
application 

Moss et al. (2000); 
Holtshausen et al. (2008); Morgavi et 
al. (2008);Williams et al. (2008); Patra 
and Saxena (2009); Bird et al. (2010); 
Hegarty et al. (2010) 

Using 
acetogens 

Acetogenic 
microflora 

Provide an alternative 
hydrogen sink 

Needs high levels of 
hydrogen to grow at the 
rate of methanogens; 
unsure sustenance in 
rumen 

Increases 
acetate, feeding 
experiments are 
must 

Joblin (1999); Joblin (2005); Fonty et 
al. (2007) 

Feeding 
probiotics or 
direct-fed 
microbials 

Yeasts 
(Saccharomyces 
cerevisiae); fungi 
(Aspergillus 
oryzae, 
Trichosporonseric
eum, etc.) 

Increases butyrate or 
propionate and 
decreases    
protozoa; Enhances 
acetogenesis 

Lowers rumen 
efficiency; in vitro 
reports for strain 
selection are erratic; 
Scanty in vivo 
experiments 

Better hydrogen 
utilizing 
bacteria 
followed by in 
vivo study is 
desirable 
 

Martin and Nisbet (1990); Carro et al. 
(1992); Mathieu et al. (1996); Newbold 
et al. (1998); Lynch and Martin (2002)   

iii) Other 
systematic 
changes 

Animal breed 
selection and 
intensiveness of 
production 

Low producers of 
methane 

Genetic and retention 
time based 
differences of 
animals 

Affects digestibility; 
environmental impacts 

Increased 
animal 
production 

Pinares-Patiño et al. (2003); Pinares-
patiño et al. (2011); Waghorn et al. 
(2006); Kumar et al. (2009); Lascano 
and Cárdenas (2010); Attwood et al. 
(2011)  


