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Abstract5

Flowering time varies between and within species, profoundly influencing reproduc-6

tive fitness in wild plants and productivity in crop plants. The time of flowering, there-7

fore, is an important statistic that is regularly collected as part of breeding programs8

and phenotyping experiments to facilitate comparison of genotypes and treatments.9

Its automatic detection would be highly desirable.10

We present significant progress on an approach to this problem in oats, an under-11

developed cereal crop of increasing importance. Making use of the many thousands of12

images of oat plants we have available, spanning different genotypes and treatments,13

we observe that during flowering, panicles (the flowering structures) betray particular14

intensity patterns that give an identifiable texture that is distinctive and discrimina-15

tory with respect to the main plant body and can be used to determine the time of16

flowering. This texture can be located by a filter, trained as a form of a ‘Local Pat-17

tern’. This training phase identifies the best parameters of such a filter, which usefully18

discovers the scale of the panicle spikelets.19

Results are presented that demonstrate the success of the filter. We proceed to20

suggest and evaluate an approach to using it as a Growth Stage detector. Preliminary21

results show very good correspondence with hand-measured ground truth, and are22

amenable to improvement in a number of ways. Future work will build on this initial23

success and will go on to locate fully mature panicles, which have a different appearance,24

and assess whether this approach can be extended to a broader range of plants.25
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1 Introduction26

Cereal (and other plant) development goes through a number of well defined stages that27

are used globally to perform monitoring and comparison (BBC 2001, Zadoks et al. 1974).28

Thus, for example, the widely used Zadoks scale defines Growth Stage (GS) 0 as dry seed,29

GS 20 appearance of the first tiller, GS 50 appearance of first spikelets of the panicle, and30

so on. Catalogues – or atlases – of these stages are accompanied by representative drawings31

or images. This atlas-based approach to documenting development is familiar in many32

domains, in particular medical imaging where ‘expert’ judgements are recorded to assist33

classification of individual cases. These atlases often prove useful tools when automatic34

imaging techniques are later introduced to the domain (e-A 2014). Just one example, wrist35

radiography, is illustrated in (Gertych et al. 2007, Tanner & Whitehouse 1975).36

Worldwide, there is increasing interest in applying imaging technologies to plant phenotyp-37

ing (Furbank & Tester 2011), and a growing number of installations able to perform large38

scale phenotyping experiments – (APP 2014, JPP 2014, NPP 2014) are just some examples.39

Usually, these are based on automated greenhouses that can administer pre-programmed40

treatments to a number of plants, of which they likewise make regular automated mea-41

surements. These installations permit large scale experiments to be conducted over time42

within complex regimes, with minimal staff input. Much can be gained from the simplest43

of monitoring such as a photograph, but a variety of other image modalities (UV, IR, NIR,44

structured light), and root analysis, are also available. Measurements of benefit to biologists45

can then fall into a number of categories:46

1. Replication/mimicry of ‘simple’ measurements performed manually. These include47

plant height and projected area (which can be used to approximate mass).48

2. Replication/mimicry of less easily accessible measurement, for example, atlas growth49

stages.50

3. Measurements that may be of benefit that have not been made systematically in the51

past.52

The science of computer vision also continues to exhibit significant progress. In particular,53

many algorithms are now in every day use that operate on a ‘train then classify’ approach,54

where some form of automatic detector is built from knowledge of a (perhaps very large)55

number of training cases (Šonka et al. 2014). Such detectors have in recent years become56

increasingly sophisticated. High throughput phenotyping installations represent very fertile57

territory for many such algorithms, and coupled with good quality domain atlases, we might58

hope to build automatic systems that replicate significant parts of the work currently done59

very labour-intensively. More interestingly, we might seek to develop measurements accessi-60

ble to computer extraction that would be difficult or costly if collected manually. Such activ-61

ity has been growing in popularity in recent years, for example (Campillo et al. 2010, Hart-62

mann et al. 2011, Reis et al. 2012, Sirault et al. 2013, Song et al. 2014).63

In this paper we present work in progress on one such example: flowering in oats. This64

is an important property for commercial reasons, since it impacts on adapting varieties for65

particular agronomic purposes. However, the spikelets of the panicle are small and easily66
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obscured by the body of the plant making their reliable detection in images a challenge –67

we are unaware of attempts to solve this problem using computer vision, although studies of68

images of pre-isolated panicles have been conducted (Al-Tam et al. 2013, Huang et al. 2013).69

We find that areas of the image in which spikelets are emergent betray textural properties70

that are amenable to image-based extraction, and we show how this property can be used71

to estimate critical growth stages – we consider this work to be in the second category72

enumerated above. This work can be used as the basis of subsequent filters which will73

identify later growth stages of interest, such as full flowering. It may also be possible to74

generalise the approach to related cereals such as rice and millet.75

(a) An oat plant – the plant is approximately
at GS 60 (Zadoks et al. 1974).

(b) Close up of a panicle.

Figure 1: Images captured at the UK National Plant Phenomics Centre (see Figure 3); image
quality is distinctly sub-optimal as the system was still in commissioning.

2 Background76

2.1 Flowering time in oats77

The oat plant in development goes through a number of well understood and documented78

phases (BBC 2001, Zadoks et al. 1974); one of particular interest is progress in flowering:79

phase GS 50 represents the appearance of the first spikelet (of the primary tiller), GS 6080

would be full heading but not flowering, and GS 70 full flowering. This is straightforwardly81

observable in visual inspection of growing plants, within tolerable error limits. It is possible82

and normal for a plant to occupy more than one stage at any given time as successive tillers83

develop. Figures 1 and 8 gives some illustration.84

Flowering is a major developmental transition in the life history of plants and has a major85

impact on grain yield in cereals such as oats. Control of flowering time is essential to maximise86

reproductive success, enabling completion of seed development in favourable environmental87

conditions. This adaptive effect has been exploited in agriculture to ensure that plants flower88

synchronously and at the optimal time to maximise seed yields (F & G 2012). Optimum89

floral initiation and development ensures the maximum use of resources available throughout90

the growing season, and minimises the exposure of sensitive floral tissue to biotic and abiotic91

stress (Worland 1996). In temperate environments with a long growing season, late flowering92

ensures a long vegetative phase for maximal resource capture leading to high grain yield93
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potential. Early flowering is important for environments where the effective growing season94

is short either due to extremes of temperature or water availability or where multiple cropping95

seasons within a year are possible (Locatelli et al. 2006). Considerable genetic variation exists96

for the control of flowering time and plant breeders continue to select for optimal flowering97

time to maximise yield for specific environments. The ability to quickly and accurately98

measure flowering time is important to characterise the genetic variation that exists for99

this trait and to determine the influence of the environment on the its regulation. This100

information can be combined with genetic analysis (Tinker et al. 2009) to identify regions101

of the genome controlling flowering time (Holland et al. 2002, Locatelli et al. 2006, Locatelli102

et al. 2008, Nava et al. 2012) Knowledge of both flowering time and the genes regulating it103

can then be used to precisely manipulate this trait within a plant breeding programme.104

2.2 Classification from Binary and Ternary patterns105

Texture characterisation is a well established branch of image processing and vision. It is106

very common for texture rather than shape or intensity to be the most accessible feature107

of certain image regions; it may be clear that this is frequently the case with images of108

plants. The range of well-established techniques is very wide (see, for example, (Šonka109

et al. 2014)). Recently, Local Binary Patterns (LBP) have found especial favour in this110

area (Ojala et al. 2002), demonstrating tolerance to a number of commonly encountered111

imaging problems while being appealingly simple. Since we determine (see Section 3) that112

panicles in development exhibit characteristic binary (in fact, red/green) patterns, we choose113

to experiment with these.114

A LBP is derived at every pixel of an image; centred at the pixel, a circle quantised into q115

pixels is drawn at some radius R, and the pixels so defined thresholded by the intensity of116

the central pixel – thus a q-bit pattern is defined at each pixel. Figure 2a illustrates this117

for q = 8, R = 6 – a bit is determined at each red pixel according to whether it exceeds the118

central one or not, and a q-bit number is assembled in the order indicated, and associated119

with the black pixel. This representation very efficiently captures local contrast patterns.120

Now square windows of dimension W are considered, and a histogram of the responses within121

constructed. This histogram has W 2 responses in the range [0, . . . , 2q − 1], and the vector122

it represents can be a very powerful texture descriptor; other areas of the image generating123

similar histograms will have similar texture. Such a histogram can be calculated at each124

pixel position by sliding the window through the image; this could become very costly for125

large images and it is often sufficient to tile the image with W ×W windows, or perhaps126

compromise by sliding the window by W
2

pixels rather than 1.127

LBPs lend themselves to very efficient implementation, and tuning to exploit the occurrence128

of areas of uniform intensity. It is further straightforward to adapt the idea to cope with129

reflective symmetries or to impose rotational invariance.130

A companion approach would be to define a binarisation of the original image (at simplest,131

by thresholding), and derive per-pixel responses in a similar manner. Hereunder we describe132

a reduction of the image to three intensities, and a consequent ternary pattern to characterise133

local texture.134
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defined at distance R.

Figure 2: Texture description by local patterns.

2.3 Imaging environment135

(a) One of the robotic greenhouses. (b) Plants (here, maize) entering the imaging
chambers.

Figure 3: The UK NPPC.

The UK National Phenomics Centre (NPPC) has recently been established at the university136

of Aberystwyth and exists to conduct large scale phenomics experiments. The full facility is137

described elsewhere (NPP 2014); it affords a variety of imaging modalities and opportunities138

for controlled environments and treatments. Here, it is sufficient to appreciate that up to139

850 plants can be imaged daily under specified conditions. Imaging can include rotated and140

birds-eye view pictures of each plant.141

3 Detecting panicle emergence in images of oats142

An experiment was conducted over a ten week period on a mapping population derived143

from the Buffalo and Tardis varieties. 3 individuals of each line and some parental controls144

provided 282 different plants, which generated a total of over 9700 RGB images1: The plants145

1Aspects of the system were being commissioned during this experiment. In normal circumstances many
more images of higher quality and greater consistency, and other image modalities, would have been generated
during this period.

5



develop from a single tiller through flowering to fully senesced, and we are interested in146

panicle development, particularly on the primary tiller.147

Individual spikelets are small features, many of which are often occluded or obscured by148

other plant matter, meaning that attempts to locate or count them explicitly will be very149

challenging. On the other hand, to recognise the onset of flowering it would be sufficient to150

recognise an image area in which spikelets probably lie. Close inspection reveals that the rim151

of a visible spikelet has a narrow yellow band even during very early stages of development,152

implying that the red channel will be dominant in that band in an RGB representation.153

This is almost certainly due to the material of the glume being very different to the lemma154

it encloses. Figure 4 illustrates this effect.

(a) Structure and terminology
of oat spikelets.

(b) Fig. 1b partitioned as
background, red-dominant,
green-dominant.

(c) Later in development,
spikelets become predomi-
nantly yellow.

Figure 4: Panicles and spikelets (Image 4a: Anna Gardner, with permission from Iowa State
University).

155

Segmentation of the plant tissue and suppression of the (blue) support frame is straight-156

forward in the controlled imaging environment and is performed routinely on all images we157

collect. Thereafter we could simply seek dominance in the Red or Green channels; in fact,158

our approach is slightly more sophisticated. A (large) representative subset of plant matter159

pixels over the entire time series of images is considered: The RGB triples are 24 bit, but160

this very large data space is subjected to K-means clustering (Šonka et al. 2014) to facil-161

itate various procedures independent of this application (such as detection of senescence).162

Empirically we have discovered that for all image sequences we have inspected, 25 clusters163

provide an adequate representation (that is, significantly increasing the number of clusters164

reduces information loss in the quantisation only marginally, while using 20 or fewer begins165

to increase this loss appreciably). No qualitative difference in results has been observed by166

changing the K-means initialisation, and this was done randomly.167

We quantise the plant pixels using this approach, and then partition the cluster exemplars as168

either red or green dominant (it is no surprise that none are blue-dominant), which allows us169

to partition the image as black (for background), red and green – this approach encourages170

the small spikelet regions to emerge robustly and to reduce noise effects. The fine scale171

pattern evident in Figure 4b is rarely if ever evident in other areas of the image, where172

green and red regions are usually larger, and rarely in the geometric arrangement seen in173

the spikelets.174

This leads us to suggest a texture detector that would highlight such regions: we experiment
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with a very simple form illustrated in Figure 2b, considering a central pixel and its four
orthogonal (E/N/W/S) neighbours at a distance of R. Arbitrarily labelling black as 0, green
as 1 and red as 2, the per pixel texture is defined as

C + 3E + 9N + 27W + 81S

giving a value in the range [0, 243]. Then a histogram computed over some window would175

deliver a 243-dimensional feature. We can ameliorate this size by176

• Neglecting responses of constant (all background, red or green) response, since the177

panicle is characterised mainly by the proximity of variable response. This reduces178

dimensionality to 240.179

• Perhaps imposing a vertical symmetry constraint. The spikelets hang to left or right180

but we do not mind which; in each case they have a green apex and a red lower rim. If181

we consider the EW pixels of Figure 2b, and let them be unordered (so, for example,182

Black/Red and Red/Black are taken as the same), the detector will become slightly less183

specific, but the dimensionality reduces to 159. (Since there are many pattern instances184

in which E and W pixels are the same this does not halve the dimensionality).185

Accordingly, we have experimented with 240 and 159 dimensional detectors.186

The approach is to define a square window of size W and radius R, and determines the
frequency histogram in panicle areas of ground-truthed images. Unclassified images are
then presented, marked as (background, red, green) and a histogram computed at each
pixel, which is then compared with the learned model. Histograms are compared using
the Hellinger distance (Hellinger 1909): Choice of this metric was somewhat arbitrary, but
it seems improbable that any alternative would significantly affect results. If h1 and h2 are
two normalised histograms, this distance is

H(h1,h2) =
√

1−BC(h1,h2)

where BC is the Bhattacharyya coefficient

BC(h1,h2) =
∑
i

√
h1
i · h2

i

where i counts through the components of the vectors h
{1,2}
i . This distance is then in the187

interval [0, 1], and lower numbers will be indicative of spikelet presence.188

In summary, we develop a panicle indicator by performing:189

Algorithm: Determine panicle-like response in an image190

1. Choose R and W .191

2. For a small number of images, outline areas that contain panicles, or parts thereof.192

(This does not need to be done with great precision, making it a quick operation).193

3. Convert the images to be 3-level, black, red, green. Select pixels randomly from the194

panicle areas and compute a 159-wide histogram with the given R,W .195
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4. Total the histograms and normalise, providing a 159-wide probability distribution p196

that describes panicle areas.197

5. For an unexamined image, compute a histogram at each pixel and normalise it. Record198

the Bhattacharyya distance between the observation and p as the measure of panicle199

evidence at that pixel.200

The choice of R and W at step 1 should be guided by the performance of the resulting filter201

– a systematic optimisation of this choice is discussed in section 4.1.202

Step 5 here could be time-consuming and could be performed in a subset of pixels defined203

by a tesselated tiling, or some overlapping tiling of the image. In our experiments we have204

used a W ×W window slid by quanta of W
2

. In Section 4.2 we describe how this response205

filter may be used in a series of images to estimate day of onset of flowering.206

4 Results207

4.1 Choice of filter parameters208

Five images with panicles at GS 50-60 were marked by hand, giving masks indicating posi-209

tive/negative regions. Training was performed on pixels selected randomly from these posi-210

tive masks, and the resulting histogram frequencies were then tested on marked image areas211

not used in training. For the sake of efficiency in testing, histograms were not computed212

at every pixel, but rather in square windows of size half that over which the histogram was213

computed.214

Performance was measured by computing a Precision-Recall (PR) curve over the test-set, and
for a given R,W pair recording the area under the curve. PR is often used in preference to
ROC curves when there is a significant (order of magnitude) difference between the number
of positives and negatives in a dataset, as here. In the normal manner, we define for a given
threshold of the filter output

TP = True Positives , FP = False Positives

and TN, FN similarly for negatives, then

P =
TP

TP + FP
, R =

TP

TP + FN

P and R are then plotted against one another - for a perfect classifier, the area under this215

curve is 1, while a random classifier will give area 0.5.216

In all such experiments, the 159-dimensional feature performed very slightly but consistently217

better than the 240-dimensional one, and we settle on using it accordingly. There was no218

foreknowledge of ‘good’ values for R and W , and ranges of R = 1, . . . 12,W = 5, 10, 15 . . . 120219

were selected arbitrarily.220

Figure 5 illustrates performance: increasing brightness corresponds to better performance.221

As R increases beyond 2 overall performance deteriorates, with a best response at R =222
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Figure 5: Areas under PR curves for various values of R and window sizes W , where light
is high and dark is low (scaled for display). The best (brightest) response is seen at R =
2,W = 45.

2,W = 45 where the area is 0.74 (the worst response is at R = 9,W = 5). These figures are223

reasonable at the scale of image we have collected: Figure 6 shows two 45× 45 windows of224

spikelets – it is clear that the best-performing detector has discovered the approximate scale225

of the feature of interest. At the right of the figure, a 10×10 window of a detail from one of226

the spikelets illustrates that R = 2, implying a 5 × 5 window around the central pixel, will227

capture the local red/green/black variation that characterises a panicle.

Figure 6: Close-ups of parts of a panicle: left and middle, 45× 45 windows, right, a 10× 10
window.

228

As further confirmation that the detector is functioning as it should, Table 1 shows the229

ternary patterns that dominate the trained histogram. Ten of the 159 dimensions provide230

over 50% of the response, and the patterns capture the co-occurrence of background, red231

and green as expected. In particular, the fifth, seventh, eight and ninth patterns illustrate232

that boundaries at the ‘top’ of regions are predominantly green, and at the ‘bottom’ red.233

4.2 Derivation of GS estimator234

We have used the output of the imaging system to exercise this (R = 2,W = 45) ternary235

filter on image sequences of 82 developing plants. The filter provides strength of belief in236

the existence of a panicle – Figure 7 illustrates thresholding selection of this measure, colour237

coding the True/False Positives and Negatives. It is clear that the central image provides238
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0.105 0.039

0.082 0.038

0.069 0.034

0.059 0.034

0.041 0.029

Table 1: The ternary patterns that the filter predominantly seeks, with their histogram
frequencies — these 10 (of 159) contribute over 50% of the observation in ‘good’ areas.
(Black is background, green and red denote dominance of plant pixels in the green and red
channels Note that the EW pixels are considered to be unordered.)

the best indicator. This image also highlights the opportunity to restrict inspection to the239

top of the plant, having an immediate beneficial effect on the False Positive rate.

(a) Threshold 0.25 (b) Threshold 0.3 (c) Threshold 0.5

Figure 7: Thresholding the panicle filter: White pixels are True Negatives, black are True
Positives, green are False Negatives and red are False Positives.

240

Figure 8 shows the development of a single plant over a 90 day period2. This confirms that we241

can probably neglect any response that is, say, below half plant height. More interestingly, it242

is possible to verify that all panicles produce a response of some kind, but the very strongest243

(red) responses are evidenced well into development.244

It remains to indicate how this detector may automate the estimated measurement of GS.245

Figure 9a shows for the plant of Figure 8 the number of pixels within certain Hellinger246

thresholds (the colours corresponding to that Figure).247

The precise patterns of these response curves are not easy to model – as the first tiller248

begins to senesce and the second and subsequent panicles begin to develop, we will expect249

a very noisy superposition of peaks and troughs. Nevertheless, the early phases of each250

response curve may be expected to be approximately zero, prior to the panicle emergence,251

followed by a sharp climb corresponding to the primary tiller’s panicle which, while probably252

2The day of sowing precedes day 1 of observation by some time – plants are not introduced to the imaging
system before they are visible, at GS 20 or later
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Figure 8: Development of a particular plant seen through the panicle detection filter. This
plant was imaged over 90 days, day 1 being April 20th 2013, which was 31 days after sowing:
these images were recorded on days 36, 51, 56, 67, 85. Best estimate GS for the primary
tiller are 39, 59, 65, 73, 85. Filter response (weight of evidence) is coded as black (low), light
blue (H < 0.4), dark blue (H < 0.35), green (H < 0.3), red (high) (H < 0.25).

quasi-sigmoidal, may be approximated as linear. Piecewise linear approximation to noisy253

observations of sigmoidal responses has seen good success in other domains (Kubassova254

et al. 2007), and accordingly we seek a good fit to the early part of these curves by functions255

of the form256

f(x) =

{
0, x ≤ x0

m(x− x0), x0 < x ≤ x1
(1)

where the parameters x0, x1 give the start and end of the ‘linear’ upward segment, and257

m > 0 is the gradient. It is straightforward to minimise, in the least squares sense, over258

these parameters for a given signal. Supposing an observed signal is y = (y1, y2, . . . , yT ), and259

f is defined by equation 1, then we perform:260

Algorithm: Determine best fit piecewise linear approximation261

1. Set x0 = 1.262

2. For x1 in the range [x0 + 1, T ], determine

mx0 = max
x1

yx1
x1 − x0

the linear approximation following x0 of maximal slope. For x1 giving this maximal263

m = mx0 , set E(x0) as the MSE between y and f so defined in the interval [1, x1].264

3. While x0 < T − 1, set x0 = x0 + 1 and go to 2.265

4. Determine
x̂0 = arg max

x0
E(x0)

as the best performing offset. Use this value, and the associated x1 determined in step266

2.267
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(a) Number of pixels giving certain strengths of response over time measured in exper-
iment days – colours correspond to those of Figure 8. Black lines give LSQ best linear
approximation to initial increase.

(b) For the primary tiller of a particular
plant, GS plotted against day. For the 3 week
period between days 40 and 60, more than 1
GS per day is being achieved.

(c) Observed GS 55 plotted against the pro-
posed indicator – the correlation coefficient
is 0.89 and the best line gradient 0.87.

Figure 9: Graphs of experiment and observation
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We perform this algorithm on the signals extracted from the thresholded Hellinger distance268

images which are median filtered to reduce the (considerable) noise that they inevitably269

display.270

There are clearly many ways this algorithm could be amended and improved, and the results271

which follow may accordingly be seen as a low water mark for success. Figure 9a depicts272

these line segments for four representative signals derived from one plant. In this example,273

the values of x0 are 45, 48, 51 and 54 days.274

We have experimented using the value x0 for various distance thresholds as an indicator of275

GS. Our experiment was ground-truthed for GS 55 for some 270 plants and we have correlated276

these observations with this predictor for the arbitrarily chosen distances 0.4,0.35,0.3,0.25277

(illustrated in Figure 8 and 9a). Of these, the distance 0.3 provided a correlation coefficient278

of 0.89 with ground truth – this is illustrated in Figure 9c. We are not predicting GS 55 in279

any absolute sense although the slope of the linear regression is 0.87 which is encouraging280

close to 1. The mean offset (underestimate) of 8.9 days would be added to the predictor to281

acquire GS55.282

Collecting ground truth is labour-intensive, and so observations are only made every 2-4283

days (this is clear in Figure 9c). Simultaneously, judgement of GS with precision by one284

individual, howsoever experienced, is very difficult to implement consistently over time and285

across seasons. Thus we can argue that the imperfect correlation we see (notably at ground286

truth 80) might well be considerably better as errors in GS 55 observations could very easily287

be up to 4 days. For one plant, we have ground-truthed estimates of GS, plotted in Figure288

9b; we believe the patterns in these observations to be characteristic. GS increases by more289

than 1 per day over a 20 day period, then slows, then accelerates again as senescence sets290

in. During periods of high gradient we might expect estimates from image data to be less291

reliable, and stage 55 falls within this sensitive interval, further jeopardising accuracy. It292

is plausible to expect that mean observations of replicates of experimental conditions, for293

example over different genotypes, would further reduce inaccuracies in the predictor.294

5 Conclusions and further work295

We have demonstrated an approach to identification of oat panicle spikelets in the bulk col-296

lection of images of developing plants. The algorithms deployed adopt the usual classification297

approach of training on known data, and use a variant of the widely used and robust Local298

Pattern texture detector. All codes were written in standard, portable Matlab3 or C4. The299

time required to process a single image is negligible – a small fraction of a second – and the300

time to process a series of images for a plant and deliver a prediction correspondingly tiny.301

Manual ground-truthing, of course, is very costly in resource.302

Significant success in identification of image regions with young spikelets can be evidenced.303

This success can be reinforced by deploying obvious and justifiable domain knowledge such as304

confidence that panicles will appear in the upper part of the plant, and will almost certainly305

be enhanced by further experiments on a fully commissioned system delivering higher quality,306

3MATLAB is a registered trademark of The MathWorks, Inc.
4The authors are happy to share codes on request.
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consistent images. We also demonstrate the ability to detect second and subsequent flowering307

tillers, permitting automated determination of the range of commencement of flowering on308

a plant and its duration.309

The detector has been exploited to predict a day on which growth onset commences; this310

measure shows good correlation with ground-truthed GS 55 for a large sample. It is highly311

probable that this correlation can be improved by refinements to the detector and better312

measurement.313

We have reported here work in progress, which we can be developed in several directions:314

• The detector we have built was – albeit successful – the first and simplest experiment.315

Extending this to more sophisticated variants is an obvious avenue of research: a316

finer quantisation of the ‘circle’ surrounding the target pixel, and/or a finer colour317

model, may improve performance and open the possibility of estimating the precise318

numbers of spikelets present. It is moot whether the implied significant growth in319

dimensionality would be worthwhile. It is also possible that entirely different texture320

analysis techniques, or exploration of colour spaces other than RGB, would assist.321

• The indicator we derive from the detector is open to significant improvement. At322

least, the fitting to Equation 1 may be made much more robust in a number of ways323

(RANSAC (Fischler & Bolles 1981) is just one). More constructively, optimal extrac-324

tion of day from thresholded signal, and optimal choice of threshold given this, may325

both be explored with every likelihood of improving results.326

• The imaging system usually captures more than one view of the plant at each visit327

to the cabinets. Routinely, this is a side view at 0, another at π
2
, and a third, top-328

down, view. We have performed no experiments on the top-down views but it is highly329

plausible that the two side views, coupled with the knowledge that spikelets represent330

a cluster in 3-space, would allow a 3-D reconstruction of the volume(s) occupied by331

the clusters.332

• More generally, in all the image sequences we collect, the temporal evolution of the333

plant is of interest. Clearly, if a panicle is evident on a given day, it may be ex-334

pected to be present in a similar location the next day, thereby easing and encouraging335

identification. More interestingly, in pinpointing GS, we might possibly deduce likely336

evidence the preceding day as well (this forward-backward reasoning has seen success in337

plant imaging elsewhere (Li et al. 2013)). As mentioned above, the trivial foreknowl-338

edge that panicles form above the (vertical) mid-point of the plant would immediately339

assist measurements.340

There remains interest in tracking the development of the panicle after GS 50-60. As341

is evident from Figure 8, the detector we present here, by design, highlights the earlier342

stages. Approaching Stage 70 the spikelets are almost exclusively yellow (see Figure 4),343

and the detector fails to ‘see’ the panicle. We have experimented with a detector trained344

on these which showed only modest success since the much simpler local patterns do345

not provide the discrimination of the red/green patterns. We are confident that this346

problem is amenable to efficient solution by using geometric foreknowledge (Stages 60+347

must succeed Stages 50-59), and more complex colour or filter design models348
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• The emergence of anthers is another point of interest during panicle development –349

GS 65 represents 50% of the primary tiller’s anthers being mature. In some plants350

this is visually observable, but in oats anthers are very slender and difficult to observe351

with any reliability in the images we acquire. Nevertheless, we are optimistic about352

pinpointing stages in excess of 70 as the spikelets yellow, which would then allow some353

interpolation of GS 65 given the work outlined above.354

While this work is of direct benefit in existing experiments and high throughput installations,355

we see it further as an exemplar of the practicality of applying established computer vision356

techniques in plant breeding and biology. As is customary in cross-disciplinary work, it is357

critical for the computer scientist to engage properly with what the domain experimenter is358

trying to find out: thereafter it is possible that information automatically extractable may be359

of great benefit, but may not correspond directly with traditional approaches. Specifically,360

we suspect that Growth Stages habitually measured by hand may not be the simplest to361

extract automatically, but a reproducible and reliable identification of other criteria would362

prove to be of equal or more value.363
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