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Abstract

The extent of endoreduplication in leaf growth is group- or even species-specific, and its adaptive role is still unclear. 
A survey of Arabidopsis accessions for variation at the level of endopolyploidy, cell number, and cell size in leaves 
revealed extensive genetic variation in endopolyploidy level. High endopolyploidy is associated with increased leaf 
size, both in natural and in genetically unstructured (mapping) populations. The underlying genes were identified as 
quantitative trait loci that control endopolyploidy in nature by modulating the progression of successive endocycles 
during organ development. This complex genetic architecture indicates an adaptive mechanism that allows differ-
ential organ growth over a broad geographic range and under stressful environmental conditions. UV-B radiation 
was identified as a significant positive climatic predictor for high endopolyploidy. Arabidopsis accessions carrying 
the increasing alleles for endopolyploidy also have enhanced tolerance to UV-B radiation. UV-absorbing secondary 
metabolites provide an additional protective strategy in accessions that display low endopolyploidy. Taken together, 
these results demonstrate that high constitutive endopolyploidy is a significant predictor for organ size in natural 
populations and is likely to contribute to sustaining plant growth under high incident UV radiation. Endopolyploidy 
may therefore form part of the range of UV-B tolerance mechanisms that exist in natural populations.

Key words: Abiotic stress, Arabidopsis, endopolyploidy, natural variation, organ development, UV-B.

Introduction

In plants, the dramatic increase in cell size that occurs during 
the post-proliferative phase is often coupled with an increase 
in nuclear DNA content through the process of endoredupli-
cation (Gutierrez, 2009). Endoreduplication is a specialized 
mode of cell cycle that allows extra rounds of DNA replica-
tion to occur without intervening cell divisions and it is often 
closely associated with specific cell types, organs, and devel-
opmental stages (Galbraith et  al., 1991; Sugimoto-Shirasu 

and Roberts, 2003). In animals, endoreduplication has a rec-
ognized role in driving body size (Flemming et al., 2000) or 
in maintaining tissue and organ growth in response to exog-
enous stresses, such as regeneration of damaged liver and car-
diomyocytes (Lee et al., 2009).

Although, endopolyploidy is widespread among plant taxa 
(Nagl, 1976; Galbraith et al., 1991; Barow, 2006), its role in 
development and adaptive significance are still hotly debated 

© The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. 
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(Gutierrez, 2009). Endosperm, formed as a result of dou-
ble fertilization and effectively a genetic cul-de-sac, tends to 
display high levels of endoreduplication. Other large termi-
nally differentiated cells, for example, xylem precursors also 
endoreduplicate in many species but not in others. In devel-
oping leaves of Arabidopsis thaliana, endoreduplication is 
also associated with the onset of cell differentiation (Dewitte 
et  al., 2003) and it is positively correlated with an increase 
in cell size (Melaragno et  al., 1993) and rapid leaf growth 
(Donnelly et  al., 1999). Natural variants with increased 
endopolyploidy have been associated an 8-bp insertion in 
the 3′-UTR of the cyclin D5 gene (Sterken et al., 2012) and 
manipulation of a number of related cyclin genes can be used 
to alter the progression of endoreduplication in various tis-
sues (Dewitte et al., 2007).

Stress tolerance has been suggested as an important func-
tional role for endoreduplication within plant development 
(Barow and Meister, 2003; Adachi et  al., 2011). Moreover, 
endoreduplication may form an important component of 
plant response to ultraviolet radiation, particularly UV-B radi-
ation (290–320 nm). Hase et al. (2006) showed that the UV-B-
insensitive 4 (uvi4) mutant underwent an additional round 
of endoreduplication in hypocotyl cells and that both uvi4 
plants and tetraploid Arabidopsis were relatively insensitive 
to UV-B treatment. Endocycle responses to UV-B radiation 
are regulated by the UV-B photoreceptor UV RESISTANCE 
LOCUS 8 (UVR8) (Wargent et al., 2009) and an endocycle 
regulator, atypical E2F transcription factor DEL1, has been 
linked to establishment of UV-B tolerance via control of 
the type-II cyclobutane pyrimidine dimer-photolyase DNA 
repair gene PHR1 (Radziejwoski et al., 2011). However, the 
possible role of the endocycle in sustaining plant growth in 
response to UV-B radiation in natural populations has been 
poorly characterized.

Using both natural variants and D-cyclin T-DNA mutants, 
this study demonstrates that endopolyploidy is a highly sig-
nificant explanatory cellular factor that correlates with the 
variation of organ size in natural populations, particularly in 
response to UV-B radiation, and may, therefore, be of adap-
tive significance in climates with high solar irradiation.

Materials and methods

Plant material and growth conditions
Arabidopsis accessions and mutants were obtained from the 
Nottingham Arabidopsis Stock Centre. The Kondara-Br0 and Ler-
Kondara recombinant inbred lines were as previously described 
(el-Lithy et al., 2006; O’Neill et al., 2008). Unless otherwise stated, 
plants were grown under long days (16/8 light/dark cycle) on soil. All 
the analyses were performed on the fifth rosette leaf at day 15 post 
initiation. Under these conditions, leaves had reached maturity by 
that stage. Day of leaf initiation (day 0) was defined as when the leaf 
was visible under ×10 magnification.

Flow cytometry of Arabidopsis leaves
The tissue chopped finely with a razor blade in 500  μl extraction 
buffer (Partec, Germany), filtered through a 30-μm mesh (Partec), 
and 1 ml of Cystain UV staining solution was added. Endopolyploidy 
analysis was performed with a PAS II Ploidy analyser (Partec) using 

an arc-lamp. In each run, 20 000 events were counted at an average 
speed of 50 events s–1. All the data was acquired on a logarithmic 
amplification (log3) scale unless otherwise stated. Endoreduplication 
index (EI) was calculated as described before (Barow and Meister, 
2003).

Cytology
Leaves were harvested and fixed immediately in ethanol/glacial acetic 
acid (1:1) for 12 h at 4 °C. After fixation, leaves were dehydrated in an 
ethanol series (50, 70, 80, 100% for 20 min each). Subsequently, the 
leaves were immersed in a clearing solution (chloral hydrate/glycerol/
H2O (8:2:1). Samples were observed with a Nikon MicroPhot-SA 
microscope using DIC optics and images were captured with a Nikon 
CoolPix 990 digital camera. Six images per leaf were taken (i.e. three 
consecutive images per lamina side). Cell density was determined 
by counting all the cells included in a fixed image area (six images 
per leaf; five leaves per genotype). The total number of cells per 
leaf (referred to as cell number) was then calculated from the leaf 
area measurements. Statistical analysis of the results was performed 
using SPSS version 12.0.1 (SPSS, Chicago, Illinois, USA).

Hierarchical clustering and principal component analysis
Raw data processed using hierarchical clusterization explorer (HCE) 
version 3.5 (Seo and Shneiderman, 2002) and SIMCA-P+ version 
10.0 (Umetrics, Sweden) for hierarchical clustering and principal 
component analysis (PCA), respectively. For the extraction of princi-
pal component (PCs), the correlation matrix extraction method was 
used. Only the factors with an eigenvalue ≥1 according to Kaiser’s 
criterion were retained (Jolliffe, 2002). Each principal component 
(PC) was defined by an R2 explanation value and a specific loading 
arrangement defining the relationship between each category subset 
of the analysed data. Closest PCs resulting from different PCA were 
defined using linear correlation.

Quantitative analyses
Prior to any quantitative analysis, the symmetry of the distribution 
and the normality of the observed data were tested. QTL mapping 
on both transformed and untransformed data gave similar results 
(data not shown). Pierson and Spearman rho correlations between 
traits were similar. The MapQTL version 5.0 (Van Ooijen, 2004) 
was used for the analysis of the quantitative data. A genome-wide 
threshold LOD value for significant QTL was set at 2.4 and 2.5 
(P < 0.05) for the Kondara-Br0 and Ler-Kondara RIL populations, 
respectively, by performing 10 000 permutations of the original data 
(Churchill and Doerge, 1994; Doerge and Churchill, 1996). The soft-
ware Epistat (Chase, 1997; http://527270.sites.myregisteredsite.com/
epistat.htm) was used to identify and test interactions between pairs 
of QTL. The automated search routine was performed to search 
for all pairwise interactions, having the stringent cut-off  value of 
6 as an initial likelihood ratio threshold for significant interactions 
(~P = 0.0005 according to Chase, 1997). All interactions where the 
markers were separated by <50 cM were removed to control for 
linkage effects (Malmberg and Mauricio, 2005). Statistical signifi-
cance for the detected interactions was established by Monte Carlo 
simulations (1 000 000 trials). The threshold P-value for significant 
interactions was derived by dividing the required P-value (0.01) 
by n(n – 1)/2, where n = number of chromosomes (Malmberg and 
Mauricio, 2005). Therefore, P-value was set at the conservative level 
of 0.001.

Environmental data and UV irradiation
The relationships between plant traits and environmental variables 
were determined using mean temperature data from the VNAT 
database (http://publiclines.versailles.inra.fr) and UV-B data for 
the appropriate 0.5° grid square from the UV climatology based on 

http://527270.sites.myregisteredsite.com/epistat.htm
http://527270.sites.myregisteredsite.com/epistat.htm
http://publiclines.versailles.inra.fr
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ozone measurements made by the GOME instrument carried by 
the ERS-2 satellite (http://www.temis.nl/uvradiation/GOME). The 
relationships presented are for mean annual erythemally weighted 
UV-B radiation (McKinlay and Diffey, 1987), but relationships 
were broadly similar using maximum UV or the alternative DNA-
weighting function (Setlow et al., 1993). Other relationships tested 
included

All analyses were conducted using linear multiple regressions in 
PASW statistics version 17.0 (SPSS).

UV radiation treatments were applied in a similar method to that 
used previously by this study group (Wargent et al., 2009). Selected 
lines were stratified as described earlier, but were then transferred 
into a group of three controlled environment growth cabinets 
(Microclima 1750, Snijders Scientific, Tilburg, Netherlands), which 
contained a series of PAR sources: (20× Sylvania Luxline Plus, 
FH024W/T5 840, 550 mm; 10× Sylvania Luxline Plus, FH054/T5 
840, 1150 mm; 6× Sylvania BriteGro, F58W/T8 2023, 1514 mm; 
all CEC Technology, Glasgow, UK), delivering a PAR flux of 
300 ± 20 μmol m–2 s–1. The conditions for growth were 10/14 light/
dark cycle (both PAR and UV), 21/18 ± 2  °C, and 60% relative 
humidity. Supplementary UV-B exposure commenced prior to 
fifth rosette leaf initiation and was provided by three UV-B tubes 
(Q-Panel 313, Q-Panel Laboratory Products, Bolton, UK) wrapped 
in 0.13 mm cellulose diacetate film (Clarifoil, Courtaulds, Derby, 
UK) in order to exclude all wavelengths below 290 nm. Plants were 
routinely moved between cabinets to avoid any positional/microcli-
matic bias. All UV treatments were quantified using a double mono-
chromator scanning spectroradiometer (model SR991-v7, Macam 
Photometrics, Livingston, UK). UV treatments were determined 
using the generalized plant action spectrum (Caldwell, 1971), pro-
viding a UV-B dose of 10 kJ m–2 day–1. For quantification of UV-B-
absorbing compounds, the method followed that of Gonzalez et al. 
(1996).

Results

Natural variation in endopolyploidy

Size variation between different plant and animal taxa is 
generally attributed to cell number differences. However, 
other factors, such as cell size and endopolyploidy, can 
contribute to variation in size within taxa or even within 
species (Edgar and Orr-Weaver, 2001). Characteristically, 
cell size and endopolyploidy were shown to drive organ size 
in nematodes (Flemming et al., 2000; Lozano et al., 2006) 
and Drosophila (Edgar and Orr-Weaver, 2001), respectively. 
The present study hypothesized that a variety of  cellu-
lar mechanisms might also account for the natural vari-
ation in leaf  size apparent in Arabidopsis accessions and 
defined the natural variation for three cellular parameters 
related to organ size—cell number, cell size, and somatic 
endopolyploidy—in fully matured leaves (Supplementary 
Table S1, available at JXB online) from Col0, a widely used 
laboratory reference strain believed to originate ultimately 
from Germany, and from a collection of  geographically 
diverse accessions that have been used to create genetically 
unstructured mapping populations (el-Lithy et  al., 2006; 
O’Neill et al., 2008).

The endopolyploidy profile was determined by flow cyto-
metric analysis of  nuclei isolated from the fifth rosette leaf 
at maturity (15 d post initiation; Fig. 1A) taken from plants 
grown on soil. The accessions vary considerably in the extent 
of  endopolyploidy (Fig.  1A, C; see also Supplementary 

Table S1), most notably in the higher ploidy fractions: i.e. 
32C (range 2.15–25.4%) and 64C (0–5.6%). Natural vari-
ation was also evident for the other cellular parameters 
across the accessions studied (Supplementary Table S1). 
with minimum cell density of  122.0 cells mm–2 in the Asian 
accession Kondara (Tajikistan) to a maximum 192.0 cells 
mm–2 in Mz-0 (Germany) (mean 159.0 ± 18.4 cells mm–2). 
The mean cell size across the accessions (Supplementary 
Table S1) was 6514 ± 822 μm2 (min, 5282 μm2 Mz-0; max, 
8395 μm2 Kondara). Hierarchical clustering (Fig. 1B) iden-
tified two main clusters of  accessions (R2 = 0.6, P < 0.05) 
that showed significant differences (t = –6.67, P < 0.01) in 
the level of  ≥32C ploidy (cluster1 mean≥32C, 5.5%; cluster 2 
mean≥32C, 22.1%) and broadly reflected the geographic ori-
gins of  the accessions (Fig. 1D). The clusters also differed 
significantly for the related traits of  cell density (t = 7.12, 
P  <  0.01), cell size (t  =  –7.44, P  <  0.01), and leaf  size 
(t = 5.03, P < 0.01).

To investigate the cellular mechanisms underlying the dif-
ferences in the endopolyploidy profile, this work performed a 
time-course analysis of endoreduplication in two representa-
tive accessions (Fig.  2). Kondara, a high endopolyploidy 
accession, shows more advanced progression through con-
secutive rounds of endoreduplication compared to Col-0. 
As early as 8 d post initiation, Kondara had approximately 
3-fold higher endopolyploidy (≥16C) compared to Col-0 
(Fig.  2), which may be attributed to a faster succession of 
endocycles (i.e. 8C to 16C, 16C to 32C; Supplementary Fig. 
S1). Kondara therefore sustains a much higher ploidy level 
throughout leaf development.

Endopolyploidy variation correlates with leaf size 
variation

Principal component analysis was performed to identify 
the pattern of association, and possible interdependence, 
between the different cellular and morphometric traits. 
PCA does that by identifying orthogonal directions, namely 
PCs, along which the trait variance is maximal (Jolliffe, 
2002). The PCA model shows that 78.7% of the variation in 
Arabidopsis accessions studied was captured by three princi-
pal components that factor both the geographical dispersion 
and differences at the cellular parameters (Fig.  3; see also 
Supplementary Table S2A). Most importantly, variation at 
the higher endopolyploidy levels was identified as a highly 
significant and hitherto unknown explanatory factor for dif-
ferences between the accessions (Fig. 3A, B). In PC1 (37.8% 
variation explained), 32C and 64C are the major explanatory 
factors (R2 = 0.801 and 0.822, respectively) and they are posi-
tively associated with cell size and leaf area (Fig. 3A, B). Cell 
number is also positively associated with leaf area in PC2 and 
PC3 (Fig. 3C–E), which is consistent with the recognized role 
of cell number in sustaining organ growth (Gonzalez et al., 
2010).

Confounding population structure is extensive in 
Arabidopsis natural accessions (Aranzana et  al., 2005) and 
this may cause spurious correlations between traits, espe-
cially if  the traits show clinal variation, as is the case with 

http://www.temis.nl/uvradiation/GOME
http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/ert473/-/DC1
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Zero UV-B control conditions were provided by wrapping one end of each supplementary UV-B tube with a commercial-grade UV-opaque polyethylene film (Lumivar, BPI Visqueen, Ardeer, Scotland) and in addition, a sheet of clear polyester (Lee Filters, Andover, UK) was fitted between chamber treatment regions in order to prevent wavelengths below 320 nm reaching the control area of the chamber bench.
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variation in endopolyploidy. Therefore, this study examined 
two unstructured populations derived by experimental crosses 
between different Arabidopsis accessions. Two recombinant 
inbred line (RIL) populations, Kondara-Br-0 (O’Neill et al., 

2008; 94 RILs) and Ler-Kondara (el-Lithy et al., 2006; 127 
RILs) were analysed for the traits of endopolyploidy and leaf 
size. There were significant differences between the parental 
lines (i.e. Ler and Br-0 compared to Kondara) for the traits 
of leaf size, 32C, and 64C (two-tailed t-test, P < 0.001). In 
both RIL populations, significant positive correlations were 
observed between leaf size and the higher endopolyploidy 
fragments (i.e. 16C, 32C, 64C; Supplementary Table S3A, B), 
whereas the lower endopolyploidy fragments (i.e. 2C, 4C, 8C) 
were inversely correlated with leaf size (Supplementary Table 
S3A, B). This observation is in agreement with the PCA on 
the Arabidopsis accessions where leaf size is positively asso-
ciated with higher endopolyploidy. PCs extracted from both 
RIL populations have analogous organization with the prin-
cipal components of the accessions (Fig.  4A). Noticeably 
PC1 is common to both populations and shows a strong posi-
tive association between high endopolyploidy and leaf size, 
similarly to PC1 in the accessions (Fig. 4B, C).

Genetic basis of variation in endopolyploidy

The phenotypic model linking variation in endopolyploidy 
with variation in leaf size described here suggests that these 
traits are under the control of common genetic components. 
To address this question, this study undertook quantitative 
approaches to identify the genetic architecture of natural 
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Fig. 2. Advanced progression of successive endocycles in Kondara. The 
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16C and above (see also Supplementary Fig. S1). Time points between 
8 and 15 DPI are significantly different in pairwise comparisons between 
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Fig. 1. Somatic endopolyploidy varies in the leaves of Arabidopsis accessions. (A) Endoreduplication profile in the fifth leaf of Col-0 and Kondara. The 
fifth rosette leaf at maturity is featured (adaxial side) at the left of each graph (see also Supplementary Table S1). (B) Hierarchical clustering for the ≥32C 
ploidy and corresponding geographical coordinates (longitude, latitude) at the original sites of collection. Minimum similarity for cluster partition is given as 
R2 values. Different clusters within the cladogram are depicted in different colours: blue, Central Asia/Russia; red, Europe; green, America. Longitudinal/
latitudinal positioning and the endopolyploidy values are depicted by colour-coded gradient scale (refer to Figs. C and D). (C) Distribution of the high 
endopolyploidy fragments (≥32C) of Arabidopsis accessions relative to their geographic origin. Values are mean of three biological replicates expressed 
as percentage of the total nuclei counted. (D) Geographic origins of the Arabidopsis accessions (see also Supplementary Table S1).
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variation in endopolyploidy level and leaf size. Broad-sense 
heritability (the proportion of variation attributed to genetic 
effects) was moderate to high for all traits, ranging in the 
Ler-Kondara population from 0.65 to 0.83 (Supplementary 
Fig. S2A-G) and in the Kondara-Br-0 from 0.58 to 0.86 
(Supplementary Fig. S3A-F). In agreement with the exten-
sive transgressive segregation (the emergence of extreme 
phenotypes in a segregating population, which was appar-
ent for most of the traits studied; Supplementary Figs. S3 
and S4), several quantitative trait loci (QTL) with dispersed 
effects between the parents were identified (Fig.  5; see also 
Supplementary Table S4). The significant associations identi-
fied between high endopolyploidy and leaf area are consist-
ent with the presence of cosegregating QTL with the same 
or opposite allelic effect (Supplementary Table S4). QTL for 
the 32C fraction cosegregate with the leaf area QTL (Fig. 5) 
and have the same allelic effect in both mapping populations 

(Supplementary Fig. S4E-H) with the Kondara allele increas-
ing both the 32C fraction and the leaf area. In contrast, there 
is an opposing allelic effect between the overlapping QTL for 
the 2C fraction and leaf area (Fig. 5; see also Supplementary 
Fig. S4A-D), again consistent with the idea that high endopol-
yploidy is a driver of increased size.

Further pairwise marker analysis in both populations iden-
tified several epistatic interactions (Chase, 1997) for the con-
trol of endopolyploidy and leaf size (Supplementary Table 
S5), indicating that the genetic architecture underlying these 
quantitative traits represents a network of additive QTL (that 
are common between the different mapping populations) and 
interacting QTL, with some of them involved in both additive 
and epistatic interactions. Epistatic interactions are often con-
sidered important components of natural variation both in 
plant (Malmberg et al., 2005; Malmberg and Mauricio, 2005) 
and animal species (Shook and Johnson, 1999), especially 
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for fitness or fitness-related traits. The results presented here 
demonstrate that epistatic effects have a significant role in the 
variation for endopolyploidy differences between the parental 
accessions.

Endopolyploidy sustains growth under high UV 
radiation

Given the recognized role of endoreduplication in main-
taining organ growth in animals, when exogenous stresses 
preclude or restrict cell proliferation (Lee et al., 2009), this 
work hypothesized that an analogous model might also 

exist in plants and thus investigated whether the variation 
in endoreduplication found in Arabidopsis is associated with 
any particular climatic factors. Using climate data associated 
with the original collection sites of Arabidopsis accessions, 
temperature (obtained from the VNAT database) and solar 
UV-B radiation (derived from the GOME instrument carried 
by the ERS-2 satellite) were identified as the main predictors 
for variation in endopolyploidy (regression model; F = 8.704, 
P = 0.003) across the Arabidopsis accessions. These two fac-
tors together explained 55% (P = 0.003) of the variation in 
high endopolyploidy (≥32C). High endopolyploidy increased 
significantly with increasing UV radiation (P  =  0.002) and 
with decreasing mean temperature (P = 0.001). Other climatic 
variable tested (including monthly precipation, cloud cover, 
and solar radiation) did not provide significant explanation.

UV-absorbing secondary metabolites (referred to hereafter 
as pigments) are generally considered to act as a ‘sunscreen’ 
(Jenkins, 2009), but it has recently been suggested that endopol-
yploidy also contributes to UV protection (Wargent et  al., 
2009). To experimentally test this prediction, three accessions 
with contrasting levels of endopolyploidy and pigment induc-
tion were exposed (Fig 6C, D) to high but environmentally 
relevant (10 kJ m–2 d–1) UV-B radiation from before initiation 
of the fifth leaf until maturity. Col-0 was used as the baseline 
(‘normal’ for both endopolyploidy and pigment induction) 
and compared responses with Ct-1 (low endopolyploidy, high 
pigment induction) and Kondara (high endopolyploidy but 
normal pigment induction). As expected (Jansen et al., 2010), 
UV-B reduced plant growth in all three accessions (Fig. 6A, B; 
see also Supplementary Table S6), with Col-0 being the most 
sensitive (Fig. 6B). The relative UV tolerance of Ct-1 can be 
attributed to the high induction of pigments (Fig. 6C), which 
typically acts as a key response to UV radiation in many plant 
species. On the other hand, the enhanced tolerance exhibited 
by Kondara can not be explained by upregulation of pig-
ments, since pigment levels are induced to a similar degree 
both in Kondara and Col-0 by UV-B (Fig. 6C), but may be 
due instead to the high endopolyploidy.

To test if  increased endopolyploidy could provide UV 
tolerance, this work examined the response of  mutants 
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with altered endopolyploidy. Loss of  cyclin D3 genes, 
which control the switch between mitosis and endocycle 
during leaf  growth, (Gutierrez, 2009), results in elevated 
endopolyploidy (Dewitte et  al., 2007). The double loss-
of-function mutant, cycd3;1/3;2, despite the low levels 
of  induced pigments (Fig.  6C), is as tolerant to UV as 
Kondara (Fig.  6B,) indicating that artificially induced 
endopolyploidy (Fig.  6D) in an otherwise Col-0 back-
ground is sufficient to sustain growth under high UV-B 
radiation. Interestingly, constitutive pigmentation (i.e. in 
the absence of  UV treatment) was lower in Kondara and 
Ct-1 compared to both Col-0 and cycd3;1/3;2 (UV absorb-
ing compounds g–1 FW–1: cycd3;1/3;2 1.28 > Col-0 1.04 > 
Ct-1 0.80 > Kondara 0.64).

Discussion

Size control in the multicellular organs of both animals and 
plants poses a longstanding biological question that remains 
unsolved, mainly due to the complex regulation at cellular, 
organ, and whole-organism level (Cook and Tyers, 2007). 
Cell number has traditionally been seen as the main determi-
nant for organ size and these two traits are highly associated 
in many plant and animal species (Conlon and Raff, 1999). 
Indeed, in plants, variation in the size of organs, such as 
tomato fruit (Frary et al., 2000) and rice grains (Song et al., 
2007; Shomura et al., 2008), has previously been attributed 
to differences in cell number. As in plants, endopolyploidy 

can also be a driver of organ growth in animals (Flemming 
et al., 2000; Lozano et al., 2006) and it can sustain organ size 
homeostasis in response to external stress (Lee et al., 2009).

Endoreduplication plays a prominent and general role in 
the development of many organs in Arabidopsis and, in leaves, 
it is more or less tightly coupled to cell expansion depending 
on cell type (Cookson et  al., 2006). However, there are few 
reports relating endoreduplication and cell expansion in the 
leaves of many other species, including most grasses and major 
cereals. To dissect the genetic basis of this relationship, this 
work treated each level of endopolyploidy as a separate trait 
and asked which, if  any, regions of the genome contributed 
to the observed variation. This analysis suggests that there 
are there at least three distinct genetic control mechanisms, at 
least two of which (2C and 32C/64C) colocate with loci that 
regulate leaf area. Leaf area and the proportion of nuclei with 
a 2n/4n ploidy level are antagonistic traits in both populations, 
although the position of the QTL pairs differ. In Ler, the QTL 
pair lies on chromosome II, overlapping the Erecta locus. This 
interpretation agrees with previous studies that have shown 
reduction in ERECTA function leads to prolonged cell prolif-
eration, reduced cell expansion, and consequential reduction 
in leaf expansion (Tisne et al., 2011). In the Br0 × Kondara 
population, a significant pair of antagonistic QTL colocate on 
chromosome III, suggesting different mechanisms in different 
accessions. In both cases, an increased portion of 2C nuclei is 
associated with decreased leaf area. Conversely, both popula-
tions reveal strong colocating QTL with similar effect on leaf 
area and high ploidy (32C in Br0 × Kon and both 32C and 
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64C in the other population), strongly supporting the notion 
that increased ploidy is very closely associated with increased 
leaf size. Despite the general similarity between the two popu-
lations, and that they have one parent in common, there are 
numerous differences suggesting background-specific effects. 
Analysing multiple populations is crucial in determining the 
range of genetic architectures controlling these complex traits.

Increased endopolyploidy per se is not sufficient to drive 
leaf growth as evidenced by perturbation of cyclin D expres-
sion. CYCD3 regulate the timing of the transition to endo-
cycles but knockouts do not display increased leaf area 
(Dewitte et al., 2007; this study). Neither an endopolyploidy 
QTL located close to cyclin D5 nor modulation of cyclin 
D5 gene expression was reported to affect leaf area (Sterken 
et al., 2012). Although the QTL on chromosome 4 identified 
in this study may not be identical to the cyclin D5 proximal 
QTL, they also do not affect leaf area. Taken together, these 
data support the suggestion that increased leaf growth might 
actually drive endoreduplication (Massonnet et  al., 2011) 
and the identification of the QTL on chromosome 5, there-
fore, should provide interesting insights into the interaction 
between leaf growth and endoreduplication.

This paper proposes that endopolyploidy represents an 
alternative life strategy for controlling the plasticity of organ 
size in Arabidopsis exposed to UV-B stress. The gradient of 
solar UV-B intensity is strongly predictive for variation in 
the level endopolyploidy but population structure is also par-
ticularly marked along a similar trajectory and this presents 
a serious confounding factor. The genetically unstructured 
populations (as represented by the two RIL populations) 
allowed this work to critically evaluate the contribution 
of population structure to the observed linkage between 
endopolyploidy and leaf area, leading the conclusion that 
while some QTL contribute significantly to both traits, others 
do not. An alternative explanation for the adaptive signifi-
cance of endopolyploidy variation is that it allows for main-
tenance of organ growth when growth based on increased 
cell number is either less advantageous or becomes impaired 
under stressful conditions.

Previous work by the present study group reported the 
involvement of the UV-B photoreceptor, UVR8, in the regu-
lation of the classic UV-B leaf expansion inhibition response 
(Wargent et al., 2009), which demonstrated a compensatory 
increase in epidermal cell size in a UVR8-dependent man-
ner was a strategy employed by leaves to compensate for a 
non UVR8-dependent reduction in cell number in response 
to UV-B in Arabidopsis; in addition, UVR8 was required for 
normal endocycle function in response to UV-B, i.e. the uvr8 
mutant displayed reduced ability to accumulate higher ploidy 
level cell counts under UV-B. The current work’s new obser-
vation of the high UV-B tolerance displayed by the double 
loss-of-function cyclin D mutant cycd3;1/3;2 demonstrates 
the protective effects of high endopolyploidy against routine 
environmental stresses such as UV radiation, a finding com-
plemented by the correlation between high endopolyploidy 
and ambient UV-B levels. At the same time, additional strat-
egies clearly exist for plant adaptation to UV-B (e.g. pig-
ment production). Accumulation of secondary metabolites 

to screen out potentially harmful wavelengths from reach-
ing the inner leaf is a much-studied component of the UV 
response (Rozema et al., 2002; Stracke et al., 2010) and, in 
natural populations, a complex interaction of constitutive 
(i.e. noninducible) and inducible pigmentation form lines of 
defence against excess radiation. Little is known regarding 
the regulation of trade offs in plants regarding constitutive 
versus induced protection to UV radiation, but the findings 
suggest that inducible changes in the endocycle (i.e. during 
UV-B exposure) do make important contributions to UV tol-
erance compared to constitutive protection. It is possible that 
the endocycle may play a regulatory role within sunscreen-
ing metabolism (Vlieghe et al., 2007), but other authors have 
already clearly shown that there is no significant difference 
in UV pigmentation following UV exposure of wild-type 
and lines with increased endopolyploidy, despite observed 
increased tolerance to UV-B (Hase et al., 2006).

Endoreduplication in Arabidopsis leaves is also coupled 
with cellular differentiation. It is possible that the enhanced 
UV tolerance observed is due to aspects of cellular differenti-
ation that have not been investigated. Other responses to UV 
exposure, such as generation of reactive oxygen species (ROS) 
(Hideg et al., 2013) or enhanced DNA repair (Radziejwoski 
et al., 2011), may also contribute to tolerance. However, taken 
together, the current findings support an emerging model for 
leaf size variation that exploits different tolerance mecha-
nisms whose relative importance depends on evolutionary 
history as well as environmental conditions. Elucidating 
the genetic and environmental basis of leaf size variation in 
Arabidopsis will provide a useful platform to understand the 
relationship between growth and stress responses at multiple 
levels.
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