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Abstract (250 words) 

 

Mitochondrial data has traditionally been used in reconstructing a variety of species phylogenies. 

The low rates of recombination and thorough characterization of mitochondrial data across 

vertebrate species makes it a particularly attractive phylogenetic marker. The relatively low number 

of fully sequenced mammal genomes and the lack of extensive sampling within Superorders have 

posed a serious problem for reaching agreement on the placement mammal species. The use of 

mitochondrial data sequences from large numbers of mammals could serve to circumvent the taxon-

sampling deficit. Here we assess the suitability of mitochondrial data as a phylogenetic marker in 

mammal phylogenetics. MtDNA datasets of mammal origin have been filtered as follows: (i) we 

have sampled sparsely across the phylogenetic tree, (ii) we have constrained our sampling to genes 

with high taxon coverage, (iii) we have categorized rates across sites in a phylogeny independent 

manner and have removed fast evolving sites, and (iv), we have sampled from very shallow 

divergence times to reduce phylogenetic conflict. However, topologies obtained using these filters 

are not consistent with previous studies and are discordant across different genes. Individual 

mitochondrial genes, such as CO1 and CYTB currently used in the Barcode of life project, and 

indeed all mitochondrial genes analysed as a supermatrix resulted in poor resolution of the species 

phylogeny. Overall, our study highlights the limitations of mitochondrial data, not only for 

resolving deep divergences and but also shallow divergences in the mammal phylogeny.  
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Introduction 

 

There are several differences between the nuclear and mitochondrial genome including but not 

restricted to: size of genome, mode of inheritance, levels and extent of recombination, number of 

introns and DNA repair mechanisms (Ballard and Whitlock 2004). Mitochondrial genes (mtGenes) 

undergo more mutations compared to nuclear genes (nucGenes) and are therefore more susceptible 

to saturation of base changes - a major challenge in phylogeny reconstruction (Brown et al. 1982). 

In contrast, the benefits of using mtGenes in phylogenetic studies are that mtGenes have very low 

rates of recombination (Awadalla et al. 1999; Hoarau et al. 2002; Ladoukakis and Zouros 2001; 

Lunt and Hyman 1997), mtGene order is relatively well conserved across vertebrates (Pereira 2000)  

and - specific to the focus of this paper - mtGene sequence data is available for over 1,000 

mammals (UniProt 2012). The number of fully sequenced mammal nuclear genomes remains 

relatively low with 41 mammal genomes available in the Ensembl database (Flicek et al. 2014)out 

of ~5000 classified mammal species (Myers et al. 2014).  Mammal phylogeneticists are therefore 

faced with severe restrictions on extensive taxon sampling within the Superorders. As 

mitochondrial sequences are readily available for so many taxa, the use of mitochondrial sequences 

could serve to ameliorate the taxon-sampling deficiency in nuclear sequences. Over the past number 

of years, studies have used both mitochondrial and nuclear genes to attempt to resolve the mammal 

phylogeny (Hallstrom and Janke 2008; Morgan et al. 2013; Nikolaev et al. 2007; Nishihara et al. 

2006; Romiguier et al. 2013; Tobe et al. 2010)  as well as morphological data (O'Leary et al. 2013) 

and rare genomic events (Nishihara et al. 2009).  

 

MtGenes have previously been used to resolve deep phylogenetic relationships such as the 

placement of the Superorders in the mammal phylogeny (Gibson et al. 2005; Milinkovitch et al. 

1993; Tobe et al. 2010), and also for more shallow relationships such as those amongst the Cetacea 

(Milinkovitch et al. 1993), the Caniforma (Arnason et al. 2007) and the Rodentia (Frye and Hedges 

1995). The mitochondrial gene Cytochrome b (CYTB) was once the primary locus involved in 

phylogenetic studies (Irwin et al. 1991), but the Bar code of Life Consortium has adopted the 

mitochondrial gene Cytochrome c oxidase I (CO1) (Hebert et al. 2003) for the resolution of the 

eukaryote phylogeny.  To date the most taxon rich phylogenetic study of mammals used the CYTB 

and CO1 genes and spanned 204 taxa (Tobe et al. 2010). This study revealed that while CYTB was 

a stronger candidate than CO1 for phylogeny reconstruction, neither gene could resolve the 

branching of the Superorders (Tobe et al. 2010). An analysis of the entire mitochondrial genome of 

78 Eutherian taxa found strong support for the four Superorders of placental mammals (Kjer and 

Honeycutt 2007). However this study conflicted with nuclear DNA based studies as regards the 
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position of the Scandentia (Murphy et al. 2001a; Murphy et al. 2001b; Novacek 1992; Springer et 

al. 2004). Using nuclear DNA it had been resolved that Primate Orders are monophyletic (Murphy 

et al. 2001a; Murphy et al. 2001b), however using the entire mitochondrial genome a paraphyletic 

grouping of primates was retrieved, proposing a grouping of Dermoptera with anthropoid Primates 

to the exclusion of lineages such as tarsiers and prosimians (Kjer and Honeycutt 2007). These 

results are also incongruent with morphological studies for the position of these groups (O'Leary et 

al. 2013). These discrepancies signal that the application of mitochondrial data to the mammal 

phylogeny may be problematic. Here we apply a variety of assessments of data quality and signal to 

determine which (if any) mtGenes can be applied to mammal phylogenetics and at which 

phylogenetic depth. 

 

A study of Plethodon salamanders showed that while incongruence between inferred mtDNA 

phylogenies was higher than inferred nucDNA phylogenies, the combined nuclear and 

mitochondrial data provided enough reliable phylogenetic signal that phylogenetic inconsistencies 

such as homoplasy and LBA present in the mitochondrial data were overcome (Fisher-Reid and 

Wiens 2011). And indeed this combined approach has been performed in the analysis of 66 

Eutherian mammals using combined nuclear and mitochondrial data showed strong support for both 

Superorders and Orders (Murphy et al. 2001a). In summary, mitochondrial data appears to have 

performed well when combined with nuclear data in previous publications (Fisher-Reid and Wiens 

2011; Murphy et al. 2001a). 

  

Springer et al. (2001) carried out an investigation of the phylogenetic informativeness of 

mitochondrial versus nuclear gene sequences for deep-level mammal phylogeny reconstruction. 

They used the available data at the time, i.e. 32 taxa across 12 mitochondrial protein coding genes, 

together with a parsimony and minimum evolution approach (Springer et al. 2001). The conclusions 

were that concatenated nuclear genes were more effective at recovering benchmark clades 

compared with concatenated mtGenes alone (Springer et al. 2001). Since this initial study, there has 

been a surge in sequencing efforts and significant improvements to models and methods for 

phylogeny reconstruction of large datasets (Stamatakis 2006). Currently there are mitochondrial 

sequence data for over 1,000 placental mammals providing us with ample data to test if more 

mtDNA data improves the performance of this data type in reconstructing mammal phylogeny.  

 

We sought to test the phylogenetic informativeness of each gene and ultimately identify the subset 

of mtGenes that provide the greatest phylogenetic information across a total of 455 placental 

mammal taxa. We assessed the phylogenetic congruence between individual mtGene phylogenies 
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and compared these to a phylogeny resolved from a dataset of concatenated mitochondrial genes. 

Phylogenetic conflict can arise from a number of features of the data and the method such as taxon 

sampling (Hedtke et al. 2006), lack of sufficient phylogenetic characters (Rosenberg and Kumar 

2003) and saturation, resulting in homoplasy at deeper phylogenetic nodes (Caterino et al. 2001; 

Reed and Sperling 1999). We have assessed these phylogenetic conflicts within mitochondrial data 

by systematically reducing our dataset by taxa, by assessing the impact of gene coverage versus 

taxon sampling on phylogenetic informativeness, by removing rapidly evolving sites, and finally, 

by sampling sequence data at different depths on the known phylogenetic tree to assess where the 

phylogenetic signal starts to break down. 

 

Materials and Methods 

Gene and Taxon Sampling 

Mitochondrion-encoded protein coding genes were downloaded for 1,556 taxa that spanned the four 

mammal Superorders (Euarchontoglires, Laurasiatheria, Xenarthra and Afrotheria) as well as non- 

mammal outgroup species (Monodelphis domestica and Ornithorhynchus anatinus) and Aves 

(Gallus gallus) from the UniProtKB database (UniProt 2012). Only taxa that were represented in at 

least two out of 13 mitochondrial genes (mtGenes) were used in this analysis, reducing the dataset 

to 455 taxa. For summary of data used in this analysis see Table 1 (full detail on individual taxon 

coverage is given in Supplementary Table 1).  

Multiple Sequence Alignment  

The 13 mtGene datasets were aligned using Muscle v3.7 (Edgar 2004) and quality was assessed 

using the norMD score (Thompson et al. 2001). All alignments (including the supermatrix (SM) 

dataset) had a norMD score > 0.6, indicating that the sequences in the MSA were well aligned and 

suitable for phylogenetic testing (Supplementary Table 2). 

 

Model Choice and Phylogeny reconstruction 

Model testing was performed using ModelGenerator v85 (Keane et al. 2006). RAxML (Stamatakis 

2006) was employed for phylogeny reconstruction using the rapid bootstrapping algorithm 

(Stamatakis et al. 2007) where 1,000 bootstrap replicates were performed on each dataset using the 

best-fit model. A list of all models, log-likelihood (lnL) scores and phylogenetic trees are available 

in Supplementary Table 3. 
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Likelihood mapping tests 

Likelihood mapping (LM) was performed on all datasets using TreePuzzle v5.2 (Schmidt et al. 

2002). The mtMAM+4Γ  model was not available in TreePuzzle v5.2 (Schmidt et al. 2002) so the 

next available model of best-fit defined through BIC analysis was chosen (usually mtREV+4Γ). LM 

analysis in TreePuzzle can only be performed on MSAs between four and 257 taxa. This is to avoid 

overflow of internal integer variables. Therefore, for datasets that exceeded this limit we randomly 

sampled 200 taxa 100 times from these datasets and have presented the mean scores from the LM 

analysis of these individual datasets. A full list of LM scores is given in Supplementary Table 4. 

Removal of Saturated Sites 

The rates of change of characters were categorized using TIGER (Cummins and McInerney 2011), 

a phylogeny independent method for classification of rates across sites. Twenty site categories were 

generated; where site category 1 represents characters associated with slowly evolving sites and site 

category 20 represents characters that are rapidly evolving. The sites that were associated with 

categories 20, 19 or 18 were removed in turn to generate “site-stripped” alignment. The site-

stripped alignments generated from TIGER (Cummins and McInerney 2011) were assessed for 

phylogenetic signal using LM (Schmidt et al. 2002) and phylogenies were reconstructed using 

RAxML (Stamatakis 2006). 

Calculate distance between topologies 

To assess the levels of congruence between topologies, a majority rule (MR) consensus tree was 

generated using RAxML (Stamatakis 2006) and the Robinson-Foulds (RF) distance was calculated 

between two phylogenetic trees using the “rfdists” command in Clann (Creevey and McInerney 

2005). The RF distance metric estimates the number of shared splits between the shared taxon set of 

two unrooted trees (Creevey and McInerney 2005). The numbers are reported as the ratio of the 

number of shared splits across the two trees, therefore a value of zero indicates that both trees share 

all splits while a number of one is given when the pair of trees shares no splits in common. 

Individual RF scores for all comparisons are detailed in Supplementary Table 5. 
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Results  

Thirteen mitochondrial protein-coding genes were downloaded from the UniProtKB database 

(UniProt 2012).  A total of 455 taxa had at least two sequences out of 13 mtGenes in the dataset. 

Taxa were sampled across 19 Placental Orders, Figure 1(A) (Meredith et al. 2011; Morgan et al. 

2013). The 13 genes ranged in length from 71 amino acids (aa) to 626 aa and in taxon coverage 

from 94 to 281 taxa.  

 

The phylogenetic conflict in these datasets was assessed using Likelihood Mapping (LM), which 

gives a prior indication of tree-likeness based on the distribution of likelihood vectors (Strimmer 

and von Haeseler 1997). The majority of signal is expected to fall within regions 1-3 – if there is 

strong phylogenetic signal and low levels of conflict, while signal falling within regions 4-6 is 

indicative of net-like relationships and signal in region 7 represents conflict, see Supplementary 

Table 3. Strimmer and Haeseler (1997) simulated datasets of different lengths and showed that a 

cumulative percentage of 8.5% from regions 4 through 7 produced a bifurcating tree for an 

alignment of 200 base pairs (bp).  We therefore defined a cut off of <10% phylogenetic conflict for 

all our datasets as these alignments should produce reasonably well supported bifurcating trees. 

Datasets with a high proportion of phylogenetic conflict (> 10%) were expected to produce less 

well-resolved nodes due to the remaining data contributing to tree-likeness (Table 1) (Strimmer and 

von Haeseler 1997). In total, 11/13 mtGenes had a cumulative score across regions 4 through 7 in 

the LM analysis of > 10% indicating a level of phylogenetic conflict above our acceptance level. 

The two genes that satisfied our criteria of < 10% conflict were ND4 (9.7% conflict) and ND5 

(8.1% conflict). In addition to analysing each mtGene individually, the mtGenes were concatenated 

to form a Supermatrix (SM) consisting of 3,906 aa and 455 taxa. Phylogeny reconstruction was 

carried out in a ML framework using RAxML (Stamatakis 2006).  

 

The resultant phylogenies from both the individual gene analyses and SM dataset contained large 

numbers of weak and un-supported nodes. Congruence between majority rule consensus topologies 

was assessed using Robinson-Foulds (RF) distance as implemented in the Clann software (Creevey 

and McInerney 2005) (Supplementary Table 5). The results showed that the topology obtained from 

the ND5 gene was the closest to the topology obtained using the SM dataset, with a RF distance of 

0.1301. The two genes used in the Barcode of Life project (Borisenko et al. 2008; Hebert et al. 

2003), CYTB and CO1, manifested RF distances of 0.2140 and 0.2609 respectively when compared 

to the topology obtained from the SM dataset and the CYTB and CO1 gene trees had an RF 

distance of 0.2021 to one another. While it is widely accepted that the placental mammals are 



 8 

grouped into four Superorders (Meredith et al. 2011; Morgan et al. 2013), Figure 1A, here we 

observed that none of the datasets generated from mtGenes, i.e. neither individual gene datasets nor 

the SM dataset, were able to resolve these four Superorders (Figure 1B). MtDNA accumulates 

mutations more rapidly than nuclear data, and therefore is more likely to have both saturation and 

homoplasy (Brown et al. 1982; Rubinoff and Holland 2005), both of which contribute to 

phylogenetic conflict. This has resulted in inconsistencies between phylogenies generated from 

nuclear and mitochondrial data (Caterino et al. 2001; Reed and Sperling 1999; Rokas and Carroll 

2008).  In an effort to reduce phylogenetic conflict, increase node support and improve upon 

congruence between mtGene topologies a number of issues were addressed. First, the phylogenetic 

conflict was assessed to see if it decreased with a reduction in taxon number. Then we assessed 

whether phylogenetic signal is stronger when gene coverage across taxa is higher.  The impact of 

the removal of saturated sites was assessed, as was the impact of node depth on phylogenetic signal. 

To answer each of these questions the data were subjected to a series of treatments and the outcome 

in each case is detailed below.  

Phylogenetic conflict does not decrease with a reduction in the number of taxa 

It has been debated whether more sequence data or more thorough sampling improves phylogeny 

reconstruction (Hedtke et al. 2006; Hillis et al. 2003; Pollock et al. 2002; Rosenberg and Kumar 

2001, 2003). To test the impact of reduced taxon sampling on phylogenetic signal, a subset of taxa 

were sampled (between nine and 13 species) for each of the mtGenes. In each case a representative 

from each placental mammal Superorder was retained in the dataset. The reduced taxon datasets 

were re-tested for phylogenetic conflict using LM (Schmidt et al. 2002). From this analysis, it was 

observed that there was no individual gene that when removed from the dataset showed a 

significant reduction in phylogenetic conflict (Supplementary Table 4). More specifically, conflict 

increased in 12 out of 13 mtGenes, the only exception was CO1 that manifested a small reduction 

from 18.5% to 17.3% conflict. The SM dataset, with reduced taxon sampling, showed the lowest 

level of conflict of all the datasets with a conflict score of 3.4%. Phylogenetic reconstruction of the 

treated SM dataset was expected to resolve four placental Superorders with platypus positioned as 

outgroup (van Rheede et al. 2006).  However, there were only low levels of support for the four 

placental Superorders and there was 97% bootstrap support for a relationship joining Opossum and 

Platypus as sister taxa to the exclusion of all other mammals. Regardless of the strategy of restricted 

sampling from the Superorders, the data were still unable to provide support for the placement of 

four placental mammal Superorders.  Therefore the reduction in taxa sampled from the mtGene data 

did not reduce phylogenetic conflict or improve phylogenetic resolution. The phylogenetic 

inconsistencies may have resulted from missing data.  
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Phylogenetic signal is stronger when gene coverage across taxa is higher 

MtGenes have been sequenced to varying extents across placental mammals, and only 25 taxa have 

been sequenced for all 13 mtGenes. Congruence between phylogenies indicates how much error is 

contained in each phylogeny (Pisani et al. 2007). Missing sequence data is problematic in 

phylogeny reconstruction (Kearney 2002; Lemmon et al. 2009), however if enough 

phylogenetically informative characters are available then missing sequence data does not impact 

accurate phylogeny reconstruction (Philippe et al. 2004; Wiens 2003). Consequently, our next 

approach was to determine the impact of increasing gene coverage across the data. We increased 

the gene coverage gradually from two to 13 genes, and at each step generated a dataset 

(consequently the number of taxa decreased at each step). The SM dataset and the individual 

mtGene datasets were treated in this way. 

 

LM (Schmidt et al. 2002) was employed to test the change in phylogenetic signal as gene coverage 

was increased (Figure 2). Phylogenetic conflict remained extremely high in ATP6, ATP8, CO1, 

CO2, CO3, ND3, ND4L and ND6 across all datasets regardless of gene coverage. ND1 showed 

variable phylogenetic conflict (12.2 - 14.9%) across the different levels of gene coverage but failed 

to reach our pre-defined cut-off value of < 10% conflict. CYTB, ND2, and ND5 showed < 10% 

phylogenetic conflict with the highest gene coverage and lowest taxon coverage conditions (Figure 

2). ND5 maintained reasonably low phylogenetic conflict across all gene coverage situations (5.8-

8.6% conflict). The RF distance was calculated between ND5 gene topologies and topologies from 

other mtGene datasets and the SM dataset to assess if congruence between gene trees improved at 

any coverage point. It was expected that if the datasets had more taxa in common, then the 

topological distance between gene topologies would be smaller. The RF distances showed that 

when gene coverage was at its lowest (i.e. just two mtGenes) then the ND5 gene had the closest RF 

distance between seven other mtGenes (CO1, CO2, CO3, ND1, ND4, ND6) and the SM topologies 

(Supplementary Table 5). Therefore, maximising the gene coverage across genes to improve 

congruence in these data does not have the expected effect. Only the Glires, Carnivora and 

Cetartiodactlya are represented in the 13 mtGene set, and so resolution of other clades is not 

possible with current data.  

 

Upon examination of the SM dataset, there was a notable trend towards a decrease in phylogenetic 

conflict, from 7.2% to 1.1%, as gene coverage increased and taxa number decreased (Figure 2). 

This is unsurprising given longer sequences (e.g. concatenated alignments) increase the number of 

usable characters and that has been shown to overcome the phylogenetic inconsistencies of 

individual gene data (Gadagkar et al. 2005).  
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To test the quality of the phylogenetic signal, ML trees were drawn from the SM dataset across all 

gene coverage levels (Supplementary Table 3). The topologies do not reflect trends in LM tests, as 

improvement in node support is not observed with decrease in phylogenetic conflict. When gene 

coverage is between two and four genes, there are multiple collapsed nodes (branch support < 

50%), which is indicative of large proportions of phylogenetic conflict (Supplementary Table 3). 

Four clearly defined Superorders were observed when gene coverage was exactly 4 and also when it 

was between six and nine genes, with a range of 109 to 284 taxa (Supplementary Table 3). The 

topological distance between phylogenies for each mtGene dataset and the SM dataset were 

calculated using RF distances at each level of gene coverage. It was found that there was no exact 

agreement between topologies (RF > 0.00) from individual mtGenes and the SM datasets for the 

same gene coverage.  While an increase in gene coverage and a decrease in missing data provided 

sufficient signal to resolve the four Superorders, strong node support for intra-ordinal nodes was not 

achieved using these data.  

Removal of saturated sites does not reduce the conflict in mitochondrial data 

Mitochondrial datasets tend to have more saturation compared to nuclear datasets (Brown et al. 

1982). In an effort to identify and remove rapidly evolving or saturated sites from the data, sites 

were categorised based on their rates of evolution using the phylogeny independent method TIGER 

(Cummins and McInerney 2011) and the ML phylogeny-dependent method implemented in 

TreePuzzle (Schmidt et al. 2002).  LM was performed at each stepwise reduction in alignment 

length, and changes in the level of phylogenetic conflict were assessed (Supplementary Table 4). 

 

The TIGER (Cummins and McInerney 2011) method showed that when the fastest site category 

was removed (site category 20), a slight reduction in phylogenetic conflict was observed for ATP8 

(36.6% to 35.4%) and ND5 (8.1% to 8.0%), but there was no change in phylogenetic conflict 

observed in the ATP6 gene (17.8%) for the same manipulation. The removal of site category 20 

resulted in an increase in phylogenetic conflict for the remaining 10 mtGenes, suggesting that 

removal of site category 20 could be removing necessary phylogenetic signal. Subsequent removals 

of site categories, e.g. site categories [20 and 19] and site categories [20, 19 and 18], resulted in an 

increase in the phylogenetic conflict in all 13 mtGenes. Removal of site category 20 from the SM 

dataset reduced the concatenated alignment from 4329 aa to 882 aa. Unfortunately, this reduction in 

sequence length left too few of overlapping characters per taxa for phylogeny reconstruction to be 

carried out. 
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Phylogenies were generated at each step for the individual mtGene datasets. However, as the fast 

evolving site categories were stepwise removed, this resulted in a reduction in the number of 

bifurcating nodes in the resultant phylogeny. A profile of the frequency of amino acids occurring 

under each site category estimated is provided in Figure 3.  For each of the mtGenes, a large 

proportion of site categories were categorised as highly conserved (categories 1-3) or rapidly 

evolving (categories 18-20) with an average of 39.15% of sites (categories 4-17) sites remaining for 

phylogeny reconstruction. Phylogenies and LM results from the TIGER (Cummins and McInerney 

2011) analyses have been provided in Supplementary Table 3 and 4 respectively. 

Phylogenetic signal does not improve at more shallow divergence times 

Previous studies have shown that high levels of homoplasy are observed when sampling from deep 

nodes using mitochondrial data (Caterino et al. 2001; Reed and Sperling 1999). The aim of this part 

of the analysis was to understand precisely at which depth the phylogenetic signal starts to degrade 

when using mtGenes.  Groups of taxa were selected at different depths on the known species 

phylogeny (Meredith et al. 2011; Morgan et al. 2013) (Figure 4(A)). The closest available species 

were chosen as outgroups for each subset of data. Phylogenetic conflict was estimated from each 

dataset using LM (Schmidt et al. 2002) and all topologies were generated using RAxML 

(Stamatakis 2006). The levels of phylogenetic conflict varied over the 13 mtGenes depending on 

node depth. A summary of datasets that passed the < 10% phylogenetic conflict cut-off are shown 

in Figure 4 (detailed LM results are available in Supplementary Table 4).  

 

A decrease in phylogenetic conflict was observed at shallower phylogenetic depths for ATP6, 

COX1, COX2, COX3, CYTB, ND1, ND2, ND3, ND4, ND5 and the SM, however, no improvement 

in tree-likeness (phylogenetic conflict > 10% at all nodes) was observed for mtGenes ATP8, ND4L 

and ND6. While we observed less phylogenetic conflict when nodes were sampled from shallower 

depths on the known species tree for some of the data, phylogenetic conflict did not decrease 

uniformly from deep to shallow nodes, e.g. the phylogenetic conflict for ND4 was as follows: 

Eutherian node (9.7% conflict), Boreoeutheria node (8.2% conflict), Euarchontoglires node (8.9% 

conflict) and Primates (5.8% conflict). Sampling the mtGene ND4 at the node defining the 

Eutherian ancestor and comparing the resultant topology with those generated from data sampled at 

shallower nodes, the distance between the trees varies as follows: Boreoeutheria node (RF distance 

= 0.0176), Euarchontoglires node (RF distance = 0.0294) and Primates (RF distance = 0.0405).  

While small improvements in tree-likeliness are observed from sampling taxa at shallower nodes 

this methodology does not produce a consistent results as congruence between sub sampled data is 

not observed. 
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The most successful shallow nodes for producing tree-likeness were Primates, Cetartiodactyla, 

Perissodactyla, Carnivora and Afrotheria. We produced a SM using the best performing mtGenes, 

CYTB, ND1, ND2 and ND5 which resulted in a LM conflict score of 7.27% but a phylogenetic tree 

that showed the Primates as paraphyletic thus not fully resolving the tested taxa into their associated 

Superorders, Euarchontoglires and Laurasiatheria.  

 

Overall there are considerable levels of variation in the topological findings and there is more 

discordance between the phylogenies from the mtGenes and the SuperMatrix datasets than there is 

topological congruence.  

 

Discussion 

Previous phylogenetic studies of mitochondrial data show that homoplasy is not as prevalent at 

shallower nodes (Caterino et al. 2001; Reed and Sperling 1999). Here we find phylogenetic conflict 

in mtGene data at both deep and shallow nodes calling into question the use of mtDNA in 

phylogenetic studies of mammals at all levels. According to our results, none of the mtGenes were 

determined to be good candidates for phylogenetic reconstruction. This includes CYTB and CO1 

currently used in the bar code of life project (Borisenko et al. 2008; Hebert et al. 2003) and 

previously held as a valid approach for resolving the phylogeny of rodent species such as the 

Praomyini (Nicolas et al. 2012). While there are a number of individual cases where using CYTB 

and CO1 as phylogenetic markers have been successful (Nicolas et al. 2012), preference has been 

awarded to CO1 as a phylogenetic marker over other mitochondrial genes (Luo et al. 2011) and 

studies have pointed out the usefulness of these data to pinpoint misidentified species (Shen et al. 

2013). In this study we have observed levels of incongruence that call into question the application 

of any mitochondrial gene for taxonomic identification.  

 

The root of the placental mammal tree has been widely contested of late (Morgan et al. 2013; 

Romiguier et al. 2013; Teeling and Hedges 2013) and so it was unsurprising to see variations in the 

position of the Xenarthra and the Afrotheria at the base of the placental tree. The four Superorders 

of placental mammals are observed by multiple independent studies using nuclear data (Hallstrom 

and Janke 2008; Meredith et al. 2011; Murphy et al. 2001b), rare genomic change (Murphy et al. 

2007), nuclear and mitochondrial data combined (Murphy et al. 2001a) and a study that used the 

entire mitochondria genome on 78 taxa (Kjer and Honeycutt 2007). The SM dataset applied here 

displayed less phylogenetic conflict than the individual gene datasets, but the four well-defined 
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Superorders were not supported. While longer alignments have been shown to overcome 

phylogenetic inconsistencies of smaller datasets our results suggest that this is not always the case 

(Gadagkar et al. 2005; Gee 2003). Likewise, previous large-scale phylogenomic studies have found 

phylogenetic inconsistencies regardless of implementation of large Supermatrix (SM) style datasets 

(Dunn et al. 2008; Philippe et al. 2009; Schierwater et al. 2009). Phylogenomic studies of mammals 

have attributed this inconsistency to introgression or gene flow as a result of hybridization 

(Hallstrom and Janke 2008). The observations from Hallstrom and Janke (2008) were based on 

nuclear data. Introgression in mtGenes has been identified within species of mammals such as the 

Canis genus (Hailer and Leonard 2008) and full mitochondrial genome replacement has been 

shown within the Chiroptera Order (Berthier et al. 2006). It is possible that these evolutionary 

phenomena acting on mtGenes are negatively impacting the accurate resolution of the phylogenetic 

history of mammals. 

 

There is an array of opinions on the impact of missing data on phylogeny reconstruction (Kearney 

2002; Lemmon et al. 2009; Philippe et al. 2004; Wiens 2003). In this study small improvements 

were observed when increasing gene coverage across the SM dataset with regards to the placement 

of the Superorders but phylogenetic conflict was still observed at shallower nodes. Removal of fast 

evolving sites from mtGene sequence data did not reduce the phylogenetic conflict nor did it 

improve overall resolution of the phylogeny. Incongruence between mtGene phylogenies is an 

indicator of the level of error between two trees (Pisani et al. 2007) and as high levels of 

incongruence have been observed throughout this study (regardless of whether the data was treated 

or not), it does not increase our confidence in the application of mtGenes as a phylogenetic marker 

in mammal studies.  

 

While congruence in phylogenies generated from mtGene data is important, so too is congruence 

between different data types such as nuclear sequences, morphological data and rare genomic 

elements (Branger et al. 2011; Campbell et al. 2011; Pisani et al. 2007; Rota-Stabelli et al. 2011). 

Once again, the mtGene data was unable to generate topologies that agreed with previous studies of 

different data types (Meredith et al. 2011; Morgan et al. 2013; Murphy et al. 2007; Shoshani et al. 

1996), and differed in the resolution of the four Superorders and inter-ordinal placements. 

 

Previously, caution has been issued against phylogenetic reconstruction using exclusively 

mitochondrial data (Rubinoff and Holland 2005; Shaw 2002), and others have supported the use of 

a single mtGene (CO1) for taxonomic placement (Luo et al. 2011). Here we demonstrate that 

mtGenes are not suitable for resolving the mammal phylogeny. While improvements are observed 
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upon treating the mtGene data using various partitioning techniques, the resultant topologies are 

incongruent with the well-known Superorder groupings (Figure 1(A)). Using individual genes is not 

recommended for further topological evaluations of the placental mammals; this includes those 

genes used in the bar code of life project (CO1 and CYTB). 
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Supplementary Tables 

 

Supplementary Table 1: Taxon coverage across mtGenes. 

The species name is given along with whether or not it is represented in each of the 13 mtGenes. 

The final column shows the total number of times the species is represented across all mtGenes. 

 

Supplementary Table 2: MSA for untreated mtGene and SM datasets. 

All alignments used in this study are supplied in this file.  

 

Supplementary Table 3: Phylogenetic trees obtained for all Datasets. 

The dataset is listed along with the phylogenetic tree and its associated lnL score. The Γ parameter 

is denoted as +G throughout. 

 

Supplementary Table 4: Summary of Likelihood Mapping for all Datasets 

For each dataset, the number of taxa and amino acids are given along with the scores for regions 1-7 

from LM analysis. The phylogenetic conflict score is the sum of values from regions 4-7 and this is 

given in the final column. 

 

Supplementary Table 5: Robinson-Fold distances between topologies.  
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Figure Legends 

 

Figure 1 Phylogeny inferred from nuclear and mitochondrial data. 

The phylogeny obtained using (A) nuclear data and (B) mitochondrial data is shown. The accepted 

Superorders of the placental mammals are colour coded according to the following scheme: 

Euarchontoglires = red, Laurasiatheria = blue, Afrotheria = green and Xenarthra = purple.  

 

Figure 2 The impact of Gene Coverage versus Taxon Sampling on phylogenetic Signal as measured 

by percentage of phylogenetic conflict 

The rows represent datasets generated from the individual mtGenes and the SM dataset. The 

columns represent gene coverage across taxa (from 13 to 2 genes) for each dataset and the numbers 

in each cell represent the number of taxa in a given dataset. The percentage of phylogenetic conflict 

is colour coded as shown in (B) from acceptable levels (< 10% conflict) represented by pale yellow 

and green, to unacceptable levels (≥ 10% conflict) represented by orange and red. 

 

Figure 3: A profile of the distribution of site-categories across the datasets. 

The frequency of amino acids (y-axis) that are estimated to be evolving at a rate corresponding to a 

given “site-category” depicted on the x-axis as site categories (or Bins) 1 – 20 (i.e. from slowest to 

fastest evolving). The results of this site-categorization are shown for each of the untreated mtGenes 

(A –M) and for the SM dataset (N). 

 

Figure 4: Assessing phylogenetic conflict in datasets sampled at different depths on the known 

placental mammal phylogeny. 

Panel (A) shows nodes circled with grey that were tested in the analysis and numbers within these 

circles represent how many mtGenes support the tree-likeliness of that node. A summary table of 

which genes support each node is provided to the left of panel (A). Each phylogenetic tree (B-I) 

represents the analysis of a mtGene as labelled, and (J) represents the Supermatrix (SM) dataset. 

The representative taxa used in each dataset (A-J) are identical. The bolded lines represent either 

Superorders or Orders where the phylogenetic conflict was < 10%. 1Caniforma and 2Cetacea 

denotes where these Orders within their Superorders also passed cut-off criteria of < 10% 

phylogenetic conflict. 
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Table Legends 

Table 1: Details of untreated mitochondrial data, model choice and Likelihood Mapping 

results. 

The total number of taxa, and the sequence lengths are given for each untreated dataset along with 

their associated models of evolution and lnL values for the phylogenies generated through RAxML 

(Stamatakis 2006). The column on the left is the phylogenetic conflict score, i.e. the cumulative 

score from regions 4 through 7 inclusive from the LM analysis. 
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Table 1: Details of untreated mitochondrial data and model choice. 

mtGene 
Name Taxa # 

MSA 
Length 

(aa) 
Model of Evolution -lnL 

 
Conflict [4-7] 

ATP6 253 228 MtMam+I+4Γ -13653.63 17.80 

ATP8 281 71 MtMam+I+4Γ -9145.23 36.60 

CO1 187 518 MtMam+I+4Γ -7530.62 18.50 

CO2 217 237 MtMam+4Γ -6430.97 19.50 

CO3 189 269 MtMam+I+4Γ -7175.67 14.30 

CYTB 267 383 MtMam+I+4Γ -23093.23 12.20 

ND1 129 326 MtMam+4Γ -12503.65 14.00 

ND2 152 350 MtMam+4Γ -27716.40 12.40 

ND3 141 119 MtMam+4Γ -5619.87 25.50 

ND4 163 486 MtMam+4Γ -25191.86 9.70 

ND4L 246 98 MtMam+4Γ -7264.63 25.20 

ND5 149 626 MtMam+I+4Γ+F -41499.46 8.10 

ND6 94 200 JTT+4Γ+F -10035.93 18.40 

SM 455 3906 MTMam+G+F -204073.11 12.72 

The total number of taxa, sequence length are given for each dataset along with their associated 

models of evolution and lnL values for phylogeny generated through RAxML (Stamatakis 2006). 

 

 

 

  










