
Aberystwyth University

On the role of age diversity for effective aging operators
Jansen, Thomas; Zarges, Christine

Published in:
Evolutionary Intelligence

DOI:
10.1007/s12065-011-0051-6

Publication date:
2011

Citation for published version (APA):
Jansen, T., & Zarges, C. (2011). On the role of age diversity for effective aging operators. Evolutionary
Intelligence, 4(2), 99-125. https://doi.org/10.1007/s12065-011-0051-6

General rights
Copyright and moral rights for the publications made accessible in the Aberystwyth Research Portal (the Institutional Repository) are
retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the Aberystwyth Research Portal for the purpose of private study or
research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the Aberystwyth Research Portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

tel: +44 1970 62 2400
email: is@aber.ac.uk

Download date: 11. Dec. 2021

https://doi.org/10.1007/s12065-011-0051-6
https://pure.aber.ac.uk/portal/en/persons/thomas-jansen(56fd5946-bf48-4241-8410-1f5be209c6f1).html
https://pure.aber.ac.uk/portal/en/persons/christine-zarges(140b65a7-99a9-4c4d-bc4e-76c894591b75).html
https://pure.aber.ac.uk/portal/en/publications/on-the-role-of-age-diversity-for-effective-aging-operators(791da2f3-5c6c-48a6-acbc-512bc2ee54b7).html
https://doi.org/10.1007/s12065-011-0051-6

Noname manuscript No.
(will be inserted by the editor)

On the Role of Age Diversity for Effective Aging Operators

Thomas Jansen · Christine Zarges

Received: date / Accepted: date

Abstract Aging is a general mechanism that some randomized search heuristics em-

ploy to increase the diversity of their collection of search points. A more diverse col-

lection of search points is believed to improve the search heuristic’s performance for

difficult problems. The most prominent randomized search heuristics with aging are

evolutionary algorithms and artificial immune systems. While it is known that ran-

domized search heuristics with aging can be very much more efficient than randomized

search heuristics without aging the details of the origin of such benefits are difficult to

understand. We contribute to this understanding by presenting a detailed and struc-

tured analysis of aging. We prove that in addition to diversity with respect to search

points diversity with respect to age plays a key role. We analyze different ways of dealing

with age diversity by means of theoretical as well as empirical analyses. Major results

include a more structured understanding of aging and showcases where age diversity

can make the difference between efficient and completely inefficient optimization.

1 Introduction

Randomized search heuristics are a broad class of general search algorithms that com-

prises nature-inspired heuristics like artificial immune systems [14], evolutionary al-

gorithms [27], simulated annealing [28], and others. Each heuristic implements some

general idea of how search should be conducted. These ideas are often borrowed from

other fields, evolutionary algorithms mimicking the process of natural evolution, ar-

tificial immune systems being modeled after the immune systems of vertebrates, and

simulated annealing implementing the process of annealing in metallurgy in an ab-

stract way. Although these randomized search heuristics derive from quite different

paradigms they can share some general ideas and exhibit certain similarities. However,

Thomas Jansen
Department of Computer Science, University College Cork, Cork, Ireland
Tel.: +353-(0)21-420-5926
Fax: +353-(0)21-420-5367
E-mail: t.jansen@cs.ucc.ie

Christine Zarges
Lehrstuhl 2, Fakultät für Informatik, TU Dortmund, 44221 Dortmund, Germany

2

despite these similarities they do differ in the concrete implementations of the concepts

and thus, an implementations deriving from one specific paradigm may appear sense-

less in another one. All such randomized search heuristics are hoped to be efficient

on a broad class of problems and are applied when there is only insufficient time or

expertise to develop a problem-specific algorithm. While the general idea is to apply

a randomized search heuristic ‘right out of the box’ in practice it is almost always

necessary to adjust the randomized search heuristic to the concrete problem at hand

to achieve acceptable performance. Thus, in practice, it makes sense to combine ideas

from different randomized search heuristics in order to improve the performance of the

algorithm.

There are many different ways of tweaking the performance of randomized search

heuristics one being the addition of more advanced and sometimes rather complicated

mechanisms. One such mechanism is aging where each point in the search space is

equipped with an individual age and ages in each round of the search heuristics. A

maximal age τ is introduced and each search point with an age exceeding τ is removed

from the current collection of search points making room for new and perhaps more

promising search points. The mechanism of aging is thought of as increasing the di-

versity of the collection of search points the randomized search heuristics utilize and

is hoped to be helpful for multi-modal problems where simpler search heuristics may

get stuck in local optima.

Aging has been used in different kinds of randomized search heuristics, for example

in evolutionary algorithms [3,17,19–21,29,31] and artificial immune systems [2,5–13,

32]. It is used for decisions made during the optimization process, e. g., for the selection,

for controlling the mutation strength or controlling the size of the collection of search

points. Hence, it is not surprising that there exists a large variety of different aging

operators.

In this paper, we apply aging during the selection process of a randomized search

heuristic. In this context in evolutionary computation aging is often used by assigning

age 0 to each new offspring. The age is increased by 1 in each generation. In selection

for replacement the age is taken into account: Search points exceeding a pre-defined

maximal age τ are removed from the collection of search points. The extreme cases of

this aging strategy with τ = 0 and τ = ∞ are known as comma selection and plus

selection, respectively [31]. We call this type of aging evolutionary aging.

In artificial immune systems a different kind of aging, called static pure aging is

more common. Again, search points are associated with an individual age and the age

is increased by 1 in each round, but in contrast to the former version the offspring

inherits by default the age of its parent and is only assigned age 0 if its fitness is

strictly larger than its parent’s fitness. This aging scheme intends to give an equal

opportunity to each improving new search point to effectively explore the landscape.

An experimental analysis for this operator was carried out by Castrogiovanni et al. [2].

An elitist version of the aging operator can be obtained by giving the currently best

search point in the collection of search points age 0 [13] or, alternatively, by simply

forbidding the elimination of the best search point and keeping its age. Moreover, there

exists a stochastic version of aging where an search point x with age τ is eliminated

with probability Pelim(τ) = 1− e− ln 2/τ [7–9,13].

Clearly the most important parameter for aging operators is the maximal age τ . It

has been shown that the choice of this parameter is both crucial for the performance

and difficult to set appropriately [22]. On one hand, the maximal age must not be

too small as search points need sufficient time to explore the fitness landscape, where

3

‘sufficient’ highly depends on the considered fitness function. On the other hand, the

maximal age must not be too large as aging comes into play only when the maximal

age is reached. Thus, it needs to be reasonable if aging is to be effective during the

optimization process. Clearly, there is no general good setting, the appropriate maximal

age depends on the optimization problem [22].

It is known [24] that these different aging strategies have different strengths and

weaknesses. While static pure aging can escape from local optima by recognizing stag-

nation and performing a kind of restart it fails on plateaus, i. e., a set of neighboring

points in the search space with equal function value, where it mistakes missing progress

in function values for stagnation. On the other hand, evolutionary aging recognizes the

random walk on plateaus but fails to escape local optima.

While it is known that employing aging can make the difference between very

inefficient and efficient search [22] until very recently in all cases where an artificial

immune system with aging was proved to be very much superior to an artificial immune

system without aging the same improvement can be achieved when aging is replaced by

an appropriate restart strategy [22,24]. A restart strategy decides at some point of time

to stop a randomized search heuristic and start again with a new randomly generated

collection of search points. Such restart strategies are conceptually simpler, easier to

implement, and computationally cheaper than aging. Thus, it is highly interesting to

see what aging can achieve with respect to efficiency of an artificial immune system

that cannot be achieved by restarts. Very recently, one example problem has been

presented where aging is proven to facilitate a speed-up that cannot be achieved by

restarts [25,26]. This was done by introducing a randomized search heuristic using

static pure aging from artificial immune systems and a variation operator known from

evolutionary algorithms. Moreover, Jansen and Zarges [25,26] used a very mild strategy

to maintain a certain level of age diversity.

In this paper, we make further investigations with respect to those diversity mecha-

nisms by comparing different selection operators and point out the importance of such

diversity strategies. We consider the same example problem and algorithm. We pro-

vide upper and lower bounds on its expected optimization time with complete formal

proofs. The results are accompanied by an empirical evaluation of the algorithm for

different sizes of the collection of search points. Our findings contribute to the theoret-

ical foundation of aging in randomized search heuristics and in particular in artificial

immune systems and help to understand the role of different aspects of aging.

In order to make the paper self-contained, we give a detailed and formal descrip-

tion of the complete algorithm and the example problem considered in the following

section. In Section 3 we prove upper and lower bounds on the performance of this algo-

rithm on this problem depending on the problem size n, the size µ of the collection of

search points, and the maximal age τ . These results hold for a wide range of crossover

probabilities pc. In particular, we point out similarities and differences of the different

algorithmic variants. The results are structured in results that hold for all considered

variants of static pure aging (Section 3.1), results that depend on the aging strategy

but are independent of the replacement strategy (Section 3.2), and results that depend

on the concrete instantiation of static pure aging. Since all our theoretical results are

asymptotic in nature it makes sense to provide experimental supplements. We do so

in Section 4. The empirical findings agree with the proven bounds and provide deeper

insights into the different variants and in particular the role of the size of the collection

of search points. Finally, we summarize, conclude, and discuss directions for future

research in the closing section.

4

2 The Analytical Testbed

We are interested in the effects age diversity mechanisms can have on the efficiency of

the optimization. We analyze this by considering a simple randomized search heuris-

tic as algorithmic framework that is equipped with an aging operator from artificial

immune systems and a variation operator from evolutionary algorithms. The search

heuristic was already introduced in [25,26] in order to show that aging can achieve

performance improvements that restarts cannot. Moreover, we use the example func-

tion from [25,26] for our considerations.

2.1 The Algorithm

The randomized search heuristic uses a collection of search points of size µ. It works

in rounds where in each round all search points grow older, one new search point is

generated as random variation of existing search points, its age is decided, search points

that are too old are removed and new randomly generated search points are introduced

to keep the number of search points constant at µ. A more formal description of the

algorithmic framework is given in Algorithm 1.

Algorithm 1 Algorithmic Framework.

1. Initialization

Initialize collection of search points C of size µ.
2. Aging: Growing older

Increase age of all search points in C.
3. Variation

Generate new search point z.
4. Aging: Age of new search points

Decide about the age of the new search point z.
5. Aging: Removal due to age

Remove search points with age exceeding τ .
6. Selection for Replacement

Decide if z is to be inserted in C. Remove or add search points as needed.
7. Stopping

If stopping criterion not met continue at line 2.

We use Algorithm 1 for maximization of an objective function f : {0, 1}n → R

and implement the seven modules in very simple ways. The initialization (line 11,

Algorithm 2) is carried out uniformly at random. All search points are assigned age 0.

Algorithm 2 Initialization.

1. Set C := ∅. Repeat the following µ times.
2. Select x ∈ {0, 1}n uniformly at random.
3. Set x.age := 0. Set C := C ∪ {x}.

The search points grow older by 1 in each iteration of the main loop (line 2, Algo-

rithm 3).

Variation creates one new search point y by means of k-point crossover and standard

bit mutations (line 3, Algorithm 4) known from evolutionary algorithms [27]. The

crossover operator is efficient when the collection of search points is sufficiently diverse.

Since aging aims at increasing the diversity it is a good idea and interesting test case to

1 all line numbers from Algorithm 1

5

combine crossover with aging. In k-point crossover two search points x, y ∈ {0, 1}n are

cut into k+1 pieces by selecting uniformly at random k different cut positions. A new

search point is constructed from the pieces by taking all the odd numbered pieces of x

(the first, third, . . .) and all even numbered pieces of y (the second, fourth, . . .) and

concatenating them in increasing interleaving order. Usually, k-point crossover with

very small values for k is employed, most often k = 1 or k = 2.

The standard bit mutation operator takes one search point x ∈ {0, 1}n and performs

independently for each of the n bits one random experiment. With probability 1/n the

bit is inverted, otherwise it remains unchanged. We apply these two variation operators

in line 3 in the following way. With probability pc (a parameter of the algorithm), we

select two search points from C uniformly at random and perform k-point crossover.

The result is subject to mutation. The final result is the new search point z. If no

crossover is performed (with probability 1 − pc), we select one search point from C

uniformly at random and mutate it, the result being the new search point z.

Algorithm 3 Aging: Growing Older

1. For all x ∈ C
2. Set x.age := x.age + 1.

Algorithm 4 Variation.

1. With probability pc
2. Select x, y ∈ C uniformly at random.

k-Point-Crossover of x and y
3. Select c1 6= c2 6= · · · 6= ck ∈ {0, 1, 2, . . . , n} uniformly at random.
4. Sort c1, . . . , ck in ascending order. ck+1 := n+ 1.
5. If c1 > 0 Then h := 1; i := 0 Else h := 2; i := 1.
6. For j := 1 To n do
7. If i = 0 Then z[j] := x[j] Else z[j] := y[j].
8. If j ≥ ch Then i := 1− i; h := h+ 1
9. Else
10. Select x ∈ C uniformly at random.
11. Set z := x. Set y := x.
12. Independently for each i ∈ {1, 2, . . . , n}
13. With probability 1/n set z[i] := 1− z[i].

As in [26] we consider three different variants to decide about the age of the new

search point (line 4, Algorithm 5). The basic idea of static pure aging is to assign

age 0 if the new search point is an improvement. Otherwise it inherits its age from the

search points it is derived from. As search points created by crossover have two search

points as origin, things are less obvious in that case. It is unclear how the comparison

with respect to the function value is to be made and what age is to be inherited if no

improvement was made. One may believe that these are unimportant details as they

only matter in the case of crossover and if the new search point is not good anyway.

However, the analytical and experimental results from [26] show, that these details do

matter. We discuss the different strategies considered in Section 2.1.1.

Algorithm 5 Outline of Static Pure Aging.

1. If f(z) > max{f(x), f(y)} Then
2. Set z.age := 0.
3. Else
4. Set z.age := age of either x or y.

6

Again following common practice in static pure aging all search points exceeding

the maximal age τ are removed and replaced by new random search points to keep the

size of the collection of search points constant (line 5, Algorithm 7).

Algorithm 6 Aging: Removal Due to Age.

1. For all x ∈ C
2. If x.age > τ Then
3. C := C \ {x}.

The selection for replacement (line 6, Algorithm 7) is the part of the algorithm

where age diversity mechanisms come into play. However, the function values are the

more important selection criteria. If at least one current search point is removed due

to its age the new search point is inserted. Otherwise it is only inserted if its function

value is not worse than the worst function value of any of the current search points. If

its function value is strictly larger than this value it replaces one current search point

that is selected uniformly at random among all search points with worst function value.

If its function value is equal to the worst function value, we have to be more careful. If

age is considered to be helpful it makes sense to avoid having all current search points

of the same age. We discuss different strategies for that in Section 2.1.2.

Algorithm 7 Outline of Selection for Replacement.

1. If |C| < µ Then
2. If z.age ≤ τ Then
3. Set C := C ∪ {z}.
4. While |C| < µ do
5. Select x ∈ {0, 1}n uniformly at random.
6. Set x.age := 0. Set C := C ∪ {x}.
7. Else If f(z) ≥ min

x∈C
f(x) Then

8. If f(z) > min
x∈C

f(x) Then

9. Set D :=

{

x ∈ C : f(x) = min
x′∈C

f(x′)

}

.

10. Else
11. Determine D considering an appropriate replacement strategy.
12. Select y ∈ D uniformly at random.
13. Set C := (C ∪ {z}) \ {y}.

We avoid to discuss stopping criteria (line 7) by concentrating on the optimization

time. Formally, we let the algorithm (Algorithm 1) run forever and consider the first

point of time when a global optimum of f is found. As usual we make use of the

number of generations as measure of time. Thus, TA,f is the number of generations

Algorithm 1 has made when max{f(x) : x ∈ C} = max{f(x) : x ∈ {0, 1}n} holds for

the first time. Clearly, TA,f is a random variable and we are mostly interested in its

mean value E
(

TA,f

)

.

We derive asymptotic results for the optimization time and use the well known

Landau notation for describing the asymptotic growth of functions [4] as stated in

Definition 1. This implies that our results hold if the parameter n is sufficiently large.

Note, that this is different from an analysis that assumes n → ∞.

Definition 1 (Landau notation) Let f, g : N → R.

– f(n) = O(g(n)) ⇔ ∃n0 ∈ N, c ∈ R
+ : f(n) ≤ c · g(n), i. e., f does not grow faster

than g

7

– f(n) = Ω(g(n)) ⇔ g(n) = O(f(n)), i. e., f grows at least as fast as g

– f(n) = Θ(g(n)) ⇔ f(n) = O(g(n)) and g(n) = O(f(n)), i. e., f and g have the

same order of growth

– f(n) = o(g(n)) ⇔ lim
n→∞

f(n)/g(n) = 0, i. e., f grows slower than g

– f(n) = ω(g(n)) ⇔ g(n) = o(f(n)), i. e., f grows faster than g

We remark that all our results are asymptotic in n (not in any other parameter),

i. e., they hold for sufficiently large finite values of n. This also holds if other parameters

appear in the stated bounds. Consider for example a bound of Θ(µ log µ). We get the

‘correct’ term with respect to the considered asymptotics by replacing the parameter

µ with a term depending on n. For µ = log n this yields for example Θ(log n log log n)

while constant µ, i. e., µ = O(1), results in Θ(1).

Note that the randomized search heuristic we consider has four parameters: the

size of the collection of search points µ ∈ N, the crossover probability pc ∈ [0, 1],

the number of crossover points in k-point crossover k ∈ {1, n + 1}, and the maximal

age τ ∈ N. We discuss sensible settings for all four of them.

Since for k-point crossover(x, x) = x holds for all x ∈ {0, 1}n we see that using

crossover requires at least potentially different parents. Thus, the size of the collec-

tion of search points µ ∈ N needs to be µ ≥ 2. On the other hand, we want to have

µ = nO(1) since otherwise already the initialization requires super-polynomial compu-

tational effort and the algorithm cannot be efficient. We investigate the full range of

possible sizes of the collection of search points within these limitations.

The crossover probability pc ∈ [0, 1] is usually set to some rather large constant

like pc = 0.8. Sometimes, very small crossover probabilities are used in proofs (see for

example [23]) but in practice this is hardly ever done. We concentrate on crossover

probabilities pc with ε ≤ pc ≤ 1 − ε for some arbitrarily small positive constant

ε ∈ (0, 1).

The number of crossover points in k-point crossover is usually a very small constant,

k = 1 and k = 2 are by far the most common choices. We consider k = O(1) here.

It is known that setting the maximal age τ appropriately is extremely difficult and

can make the difference between very inefficient and highly efficient [22]. Known results

due to Horoba et al. [22] imply some lower bound on the maximal age for the example

function considered here. We derive upper bounds on the expected optimization time

for all settings of τ that respect this lower bound. Moreover, we derive lower bounds

on the expected optimization time for all values of τ . In our experimental evaluation

in Section 4 we set τ to an appropriate value.

2.1.1 Variants of Static Pure Aging

We consider all three known variants here and recall their formal definition from [26].

Definition 2 A new search point z that was either created by crossover of x and y

or by mutation of x (where we have x = y for notational simplicity) is assigned its

age as outlined in Algorithm 5. Line 4 of this algorithm is detailed in three variants as

follows.

In age-based static pure aging the age is set to the age of the older search point:

z.age := max{x.age, y.age}.
In optimistic value-based static pure aging the age is set to the age of the search

point with larger function value, in case of equal function values to the larger age: If

f(x) 6= f(y) then z.age := argmax{f(x), f(y)}.age, else z.age := max{x.age, y.age}.

8

In pessimistic value-based static pure aging the age is set to the age of the search

point with smaller function value, in case of equal function values to the larger age: If

f(x) 6= f(y) then z.age := argmin{f(x), f(y)}.age, else z.age := max{x.age, y.age}.

The idea of static pure aging is to punish a new search point that fails to be an

improvement by having it inherit its age. Improvements are rewarded by assigning age 0

and thus a longer lifespan. In the case of crossover the worst punishment possible is to

assign the new search point z the larger age of the two other involved search points, x

and y. This is what we call age-based static pure aging. This variant has been analyzed

in [25,26]. While being simple it does not appear to be entirely fair. The reason the

new search point fails to be an improvement could be that a good search point was

combined with a bad search point. It therefore makes sense to compare the function

values of x and y. If these function values are equal we set the new search point’s age to

the older age. If, however, the two search points have different function values we have

a choice. We can react in an optimistic way to this difference and assign the new search

point the age of the better search point. This is what we call optimistic value-based

static pure aging. Alternatively, we could be pessimistic and assign the new search

point the age of the worse search point. We call this pessimistic value-based static pure

aging. The latter two variants have been analyzed in [26].

2.1.2 Variants of Selection for Replacement

Probably the simplest way to maintain a certain degree of age diversity is to replace a

search point whose age appears most frequently within the current collection of search

points (including the new point itself). This mechanism ensures that the number of

different age values among the worst search points does not decrease by exchanging two

search points with worst function value. Note that it only affects the worst points in

the current selection and only comes into play if another point with this worst function

value is inserted.

In [25,26] another mechanism was considered. Here, the new search point replaces

one current search point that is selected uniformly at random among all search points

with minimal difference in age to the new search point. Again, it is ensured that the

number of different age values among the worst search points does not decrease by

exchanging two search points with worst function value.

We additionally consider two variants that do not employ age diversity mechanisms.

On one hand, we analyze an algorithm that ignores the current age structure and simply

replaces one current search point that is selected uniformly at random among all search

points with worst function value. Note that this variant corresponds to the standard

selection for replacement method in evolutionary algorithms. On the other hand, we

consider the extreme case where age diversity is intentionally destroyed by replacing a

search point whose ages appears fewest within the current collection of search points

(including the new point itself). Similar to the different static pure aging strategies we

define a set of replacement strategies formally.

Definition 3 A new search point z that was created during the variation phase of

the algorithm replaces a search point from the current collection of search points C

as outlined in Algorithm 5. Line 11 of this algorithm is detailed in four variants as

follows. In all variants only search points with worst function value are considered for

replacement, namely D′ := {x ∈ C : f(x) = minx′∈C f(x′)}.

9

In most frequent replacement the set of search points whose age occurs most fre-

quently within the current selection of search points (including z) is determined. For-

mally, let fa = |{x ∈ (C ∪ z) : x.age = a}| be the number of occurrences of age a and

fmax = maxy∈(C∪z) |{x ∈ (C ∪ z) : x.age = y.age}| the number of occurrences of the

age that occurs most frequently in the current selection of search points. Note, that

there may be multiple ages that occur most frequently in C. In this case, all these ages

are taken into account. Then, D = {x ∈ C : fx.age = fmax}.
In smallest age distance replacement a search point from D′ with minimal age

distance to the new search point is selected uniformly at random, i. e.,

D =

{

x ∈ D′ : |x.age − z.age| = min
x′∈D′

(

|x′.age− z.age|
)

}

.

In random replacement simply a search point from D′ is selected for replacement

uniformly at random, i. e., D = D′.
In fewest replacement the set of search points whose age occurs fewest within the

current selection of search points (including z) is determined. Formally, let

fmin = min
y∈(C∪z)

|{x ∈ (C ∪ z) : x.age = y.age}|

be the number of occurrences of the age that occurs fewest in the current collection

of search points. Again, there may be multiple ages that occur fewest in C. Then,

D = {x ∈ C : fx.age = fmin}.

2.2 The Example Function

For comparison of the three aging variants we consider an example problem where

aging provably is essential for being efficient. One such example problem where aging

even cannot be replaced by restarts is known [25,26]. We recall its main properties

and give a precise definition. Since we want to see beneficial effects due to aging we

consider a function with a local optimum that is much easier to find than any global

optimum. It is important that a global optimum cannot be found efficiently by means

of an appropriate restart mechanism. The considered function f : {0, 1}n → R achieves

all this and other goals.

We consider the same problem and compare the different variants described above

on it. We start with a formal definition (Definition 4) and add a more detailed informal

explanation of the example problem’s properties.

Definition 4 The function f : {0, 1}n → R is defined for n = 4k, k ∈ N, and x ∈
{0, 1}n by

f(x) =

2n
if x = 1n/40n/4q, q ∈ {0, 1}n/2,
|q|1 ≥ n/12,

n+ i if x = 1i0n−i, i ≤ n/4,

n− |x|1 otherwise.

where |x|1 = OneMax(x) =
n
∑

i=1
x[i].

10

0n

1n

|x|1 = n/41n/403n/4

1i0n−i

|x|1 = 3n/4

|x|1 = n/2

|x|1 = n/3

1n/40n/41n/2

1
n/

4 0
n/

4 qn−OneMax(x)

Fig. 1 The example function.

A visualization of f is given in Figure 1 where the considered search space {0, 1}n is

illustrated as an ellipse. The search point that only contains 1-bits, i. e., 1n, is located

at the top of the ellipse whereas 0n is at the bottom. Points in between are arranged in

a layered fashion and sorted in descending order depending on their number of 1-bits.

Important levels are marked with dotted lines. The region of the global optimum is

shaded in grey. The bold arrows indicate the direction of increasing fitness of the search

points in the rest of the search space.

For the vast majority of the points x in the search space the function value is

defined as n−OneMax(x). It is well known [33] that it is easy to follow the direction

of increasing function values for such functions. The last point of this type is the

all zero bit string 0n. This is the beginning of a path of Hamming neighbors of the

form 1i0n−i with function values n + i increasing with i. Since it is easy to create

the next better point 1i+10n−i−1 from 1i0n−i by means of standard bit mutations

(the probability being (1/n)(1 − 1/n)n−1 ≥ 1/(en) = Θ(1/n)) we see that the local

optimum 1n/403n/4 is easy to find. Points of the form 1n/40n/4q with q ∈ {0, 1}n/2
and OneMax(q) ≥ n/12 are special. The set of all these points

OPT :=
{

1n/40n/4q : q ∈ {0, 1}n/2,OneMax(q) ≥ n/12
}

equals the set of all global optima of f , i. e.,

OPT =
{

x ∈ {0, 1}n : f(x) = max
{

f(y) : y ∈ {0, 1}n
}}

.

The crucial observation is that these points are easy to locate by means of a k-

point crossover of the local optimum 1n/403n/4 and some y ∈ {0, 1}n that is chosen

uniformly at random but very difficult otherwise. This claim was already proven in [25].

In order to make this article self-contained, we restate the corresponding lemma and

argumentation here.

11

n
/
2

7
n
/
1
2

3
n
/
4

5
n
/
6

yA yB yC yD yE yF

local optimum x 1 1 · · · 1 1

n
/
4

0 0 0 0 0 0 0 0 · · · 0 0 0 0 0 0 0

new random search point y

Fig. 2 Visualization of x and y from Lemma 1.

Lemma 1 Let x = 1n/403n/4 and y ∈ {0, 1}n be selected uniformly at random. Let

OPT be the set of global optima of f . Then, for any k = O(1)

Prob (k-Point-Crossover(x, y) ∈ OPT) = Ω(1)

holds.

Proof Optimal search points are of the form 1n/40n/4q where q ∈ {0, 1}n/2 and

OneMax(q) ≥ n/12. We consider one possible way of constructing z ∈ OPT by means

of k-point crossover of x and y and prove that this happens with a probability that

is bounded below by a positive constant. Note that we do not aim at deriving tight

bounds on this probability and sacrifice pointless accuracy in favor of simplicity of

proof.

Consider a crossover point c with c ∈ {0, 1, . . . , n} selected uniformly at random.

For any constants 0 ≤ δ < δ′ ≤ 1 we have that δn ≤ c < δ′n holds with probability at

least ε > 0 where ε is a positive constant depending on δ′ − δ.

Consider crossover points c1 < c2 < · · · < ck ∈ {0, 1, . . . , n} (with k ∈ N and

k = O(1)) selected uniformly at random. We have (1/2)n ≤ c1 < (7/12)n (c1 ∈ yC),

(3/4)n ≤ c2 < (5/6)n (c2 ∈ yE), and (5/6)n ≤ ci ≤ n (ci ∈ yF) simultaneously for

all i ∈ {3, 4, . . . , k} with probability at least εk where ε > 0 is some constant. Note

that this holds for any constant k (and that for very small values of k like k = 1 the

conditions on c2 and ci with i > 2 are empty and thus trivially hold).

In this situation the crossover of x = 1n/40n/4 and y (where y ∈ {0, 1}n uniformly

at random) is carried out as can be seen in Figure 2. Having (1/2)n ≤ c1 < (7/12)n

implies that the leftmost n/2 bits of z equal 1n/40n/4 since these bits are copied from

x. The bits between c1 and c2 (c2 = n in the case of 1-point crossover) are copied

from y. Since we have (1/2)n ≤ c1 < (7/12)n and (3/4)n ≤ c2 < (5/6)n we know that

these are at least (3/4)n− (7/12)n = (1/6)n bits copied from y. Clearly, these bits are

distributed uniformly at random. The expected number of 1-bits in these (1/6)n bits

equals (1/12)n and we have at least (1/12)n 1-bits among these bits with probability

at least 1/2. Thus, we have Prob (z ∈ OPT) ≥ (1/2) · εk = Ω(1) as claimed. ⊓⊔

It is easy to see that the global optima of f are difficult to find in a different way.

For all points x ∈ OPT we have n/3 ≤ OneMax(x) ≤ (3/4)n and thus there are

always exponentially many points with the same number of 1-bits. For each number i

of 1-bits let OPTi denote the set of bit strings from OPT with this number of 1-bits,

i. e., OPTi = {x ∈ OPT: OneMax(x) = i}. Let OPTi = {x ∈ {0, 1}n : OneMax(x) =

i} \ OPTi denote the other strings with the same number of 1-bits. Clearly, we have

|OPTi| /
∣

∣OPTi

∣

∣ = 2−Ω(n) and we conclude that it is highly unlikely to find OPT

by pure random sampling. This implies that restarts do not help. Also randomized

search heuristics that are efficient on OneMax are unlikely to encounter OPT since

12

they quickly leave the part of the search space with these numbers of 1-bits. Thus,

they sample only a polynomial number of such bit strings and encounter OPT only

with probability nO(1) · 2−Ω(n) = 2−Ω(n).

Note that we do not claim that no search heuristic without aging can be efficient on

f . Clearly, search heuristics choosing some x ∈ OPT as initial search point optimize f

with a single function evaluation. While such search heuristics obviously cheat on f by

incorporating too much knowledge about it into their ‘search strategy’ there are other

mechanisms that ‘cheat’ in less obvious ways. Mechanisms that maintain a high degree

of diversity in the collection of search points are another way of coping with multi-

modal problems. Friedrich et al. [16] consider several such mechanisms, among those

one that preserves diversity on the level of fitness values (that the authors incorrectly

denote as phenotypic diversity). This mechanism works well on many functions where

the number of function values is small, i. e., polynomially bounded. Clearly, for noisy

functions or continuous functions in R
n such a mechanism cannot work. Moreover, for

Ackley’s well-known trap function [1] it achieves highly efficient optimization, a clear

indication that this mechanism is cheating in some way. When discussing example

functions it is completely pointless to discover or, even worse, invent search heuristics

that are efficient on the example function under consideration. The point of considering

example functions is to exhibit situations that highlight the usual working patterns

of commonly used randomized search heuristics. While randomized search heuristic

are very often used in practice and aging is a commonly used mechanism to improve

their performance on difficult problems this fitness-based diversity mechanism is not

commonly used. We therefore claim that reasonable search heuristics without aging

and crossover fail to be efficient on this example function f .

We have seen that appropriate k-point crossover operations can yield a global opti-

mum of f with good probability. For the smallest age distance replacement it was shown

in [25] that the probability that the randomized search heuristic under consideration

(Algorithm 1) performs such crossover operations is sufficiently large to be efficient

on f . Moreover, it was shown that the algorithm is efficient for a very large number

of settings of its parameters and thus this good performance is achieved in a robust

and reliable way. In the next section we extend our analysis to the different variants of

selection for replacement described in Definition 3. For the sake of completeness, the

exact results for smallest age distance from [25] are also repeated.

The example function f as defined in Definition 4 is very specific. It is used as a

vehicle to demonstrate and formally prove a number of properties of the aging operators

we consider here. The same effects can be observed when optimizing other problems,

too. For example, it is not essential that f contains exactly one local optimum where a

crossover with random search points is needed to locate the global optimum. Functions

with several of such local optima would not be very much different. However, it is

essential that a partial restart is needed for the optimization. If a complete restarts

suffices aging is not needed and may be replaced by an appropriate restart strategy.

3 Theoretical Analyses

In this section we prove upper and lower bounds for Algorithm 1 using the different

strategies for static pure aging and selection for replacement from Definition 2 and

Definition 3. We see that the algorithm is efficient on our example problem f (Defi-

nition 4) if most frequent replacement or smallest age distance replacement are used

13

together with an arbitrary static pure aging variant given that its parameters are cho-

sen appropriately. Moreover, we will show that the strategies random replacement and

fewest replacement lead to inefficient optimization. The different algorithmic variants

we consider share many properties, in particular while approaching the local optimum.

We reflect this by starting with a section on these common properties.

3.1 Common Properties of All Considered Aging Variants

The most critical parameter is the maximal age τ employed in aging. We use a com-

mon lower bound τ = ω(µn log µ) for all upper bounds on the expected optimization

time. The work of Horoba et al. [22] indicates that this bound is sufficiently large for

optimizing f . Apart from this the algorithm as well as our proofs work for most set-

tings of the other parameters. We require µ ≥ 2 since we need crossover and the usual

bound µ = nO(1), thus the size of the collection of search points µ is almost completely

unrestricted. The crossover probability pc can be set almost arbitrarily. We deal with

any value 0 < ε ≤ pc ≤ 1 − ε < 1 for some arbitrarily small constant ε > 0. Setting

pc in this way the concrete value of pc has no influence on the asymptotic expected

optimization time. Note, however, that having pc converge to either 0 or 1 may change

things considerably. While it is not difficult to adjust our upper bound to such set-

tings we refrain from considering these rather unusual cases. As already pointed out

in Lemma 1 the number k of crossover points used in k-point crossover is not very

important as long as it is bounded above by a constant. Clearly, smaller values are

better for f and we restrict our attention to the commonly used 1-point crossover in

Section 4 when performing experiments.

The different variants of Algorithm 1 under consideration behave very similarly

until the local optimum is reached for the first time. The main difference of the con-

sidered variants is the way a global optimum can be constructed by recombination of a

local optimum and a randomly chosen search point like in Lemma 1. This can happen

when we have at least two search points in the local optimum and some but not all

of those locally optimal search points are removed due to their age. We call such an

event a partial restart. It is unclear how likely it is that such a partial restart occurs.

Moreover, we need to derive the probability that given that a partial restart occurs an

appropriate crossover operation is executed afterwards. We leave these two questions

open for the moment and first prove parameterized lower and upper bounds for all

strategies. In these bounds the probabilities for these two events appear as unknowns.

Afterwards, we investigate them separately for the different replacement strategies.

We start with the upper bound on the optimization time of the Algorithm 1 and the

parameter settings discussed above.

Lemma 2 Consider the function f : {0, 1}n → R from Definition 4. Let A denote

Algorithm 1 using an arbitrary strategy for static pure aging from Definition 2 and

an arbitrary strategy for selection for replacement from Definition 3, a size of the

collection of search points µ ∈ N with µ ≥ 2 and µ = nO(1), crossover probability pc
with 0 < ε ≤ pc ≤ 1 − ε < 1 for a positive constant ε, k = O(1) crossover points in

k-point crossover, and maximal age τ = ω(µn log µ).

Moreover, let p denote the probability that a partial restart occurs and q the prob-

ability for an appropriate crossover operation creating the global optimum after such

partial restart.

Then, E
(

TA,f

)

= O
(

p−1q−1
(

τ + n2 + µn log n
))

.

14

The probabilities p and q depend on n, µ, pc, k and τ and the aging and replacement

strategies used. For the sake of readability we just write p and q since the parameters

are obvious from the context.

Proof (of Lemma 2) There are three regions of the search space that correspond to

phases of a run of Algorithm 1 on f . In the vast majority of the search space the fit-

ness value is given as n−OneMax(x). Due to our lower bound on the maximal age τ

this part can be optimized as Algorithm 1 without aging, i. e. the so-called (µ+1) EA,

optimizes OneMax. The additional use of crossover cannot increase the asymptotic

growth of the expected optimization time here since with probability 1−pc ≥ ε = Ω(1)

no crossover is performed. Thus the expected optimization of O(µn+ n log n) [33] car-

ries over. Second, there are the bit strings of the form 1i0n−i with i ≤ n/4. Again,

due to our lower bound on the maximal age τ this part can be optimized as the

(µ+1) EA optimizes LeadingOnes, a well-known example function that is given by

LeadingOnes(x) =
n
∑

i=1

i
∏

j=1

x[j]. It is known [33] that the (µ+1) EA’s expected opti-

mization time is O
(

n2 + µn log n
)

and this bound carries over, too.

Finally, we are interested in constructing a global optimum by recombination of

a local optimum and a randomly chosen search point like in Lemma 1. This happens

with probability q after a partial restart that in turn occurs with probability p. Both

experiments follow the geometric distribution. Thus, after expected q−1 partial restarts

a globally optimal search point is created. Moreover, Algorithm 1 requires expected p−1

trials to perform a partial restart.

Clearly, the time we need to wait until a search point is removed due to its age (or

earlier due to other reasons) is at most τ which concludes the proof. ⊓⊔

The following lower bound on the optimization time of the Algorithm 1 holds for

all possible values of τ and the same settings of µ and pc as before.

Lemma 3 Consider f : {0, 1}n → R from Definition 4. Let A denote Algorithm 1

using an arbitrary strategy for static pure aging from Definition 2 and an arbitrary

strategy for selection for replacement from Definition 3, a size of the collection of

search points µ ∈ N with µ ≥ 2 and µ = nO(1), crossover probability pc with 0 < ε ≤
pc ≤ 1−ε < 1 for a positive constant ε, k = O(1) crossover points in k-point crossover,

and any maximal age τ (with τ = 2O(n)).

Moreover, let p denote the probability that a partial restart occurs and q the prob-

ability for an appropriate crossover operation creating the global optimum after such

partial restart.

Then, E
(

TA,f

)

= Ω
(

p−1q−1
(

τ + n2 + µn log n
))

.

Proof As in the proof of Lemma 2 there are three regions in the search space that

correspond to phases of a run of Algorithm 1 on f : the part where the fitness value

is given by n − OneMax(x), the LeadingOnes path to the local optimum and the

region of the global optimum.

First assume that the maximal age τ is sufficiently large, say ω(µn log µ). In this

case a lower bound can be proven similarly to the (µ+1) EA on LeadingOnes [33].

For this we need to show that the LeadingOnes-like path is first reached by a search

point with a number of 0-bits that is Ω(n). We pick (7/8)n here somewhat arbitrarily.

As already discussed in Section 2 the probability that the algorithm initializes in

some x ∈ OPT is 2−Ω(n). Moreover, the probability to encounter OPT by optimizing

15

the n −OneMax(x) part in the first phase is 2−Ω(n). Analogously we can show that

Algorithm 1 first hits the path to the local optimum with a search point with at most

n/8 1-bits with probability 1 − 2−Ω(n). Let Li denote the set of bit strings with i

1-bits. Then, the local optimum belongs to Ln/4 and the probability that Algorithm 1

reaches the path at some point with at least n/8 1-bits is

(n/8)/

n/8
∑

i=1

|Li| = 2−Ω(n).

Note that crossover does not increase the probability of finding the path with a larger

number of 1-bits as after initialization all search points have at least n/16 0-bits within

the first n/4 of the bit string with probability 2−Ω(n) and the number of 0-bits is

increasing during the n−OneMax(x) phase.

We now investigate the probability to make some progress on the path. Assume,

there are b search points on the path. Then, the probability to create a new best search

point on the path by means of mutation is O(b/(µn)) as one of the b search points has

to be selected and at least a mutation of a single bit is needed.

Considering a crossover operation of a search point x = 1i0n−i on the path and a

search point y that has not yet reached the path, we easily get the same upper bound.

In order to create another point on the path, x has to be selected as first parent which

happens with probability at most b/µ. Moreover, yi+1 = 1 is needed to increase the

number of leading ones and thus, yield progress on the path. This event has probability

at most 1/2. Finally, we require c1 = i for the first crossover point in order to copy the

old i leading ones from x and the additional one from y. This happens with probability

at most 1/n.

Clearly, it is not possible to create a new best search point with crossover of two

search points on the path. Points on the path have the form 1i0n−i and if the crossover

of 1i0n−i and 1j0n−j yields another path point then this path point is 1k0n−k with

min{i, j} ≤ k ≤ max{i, j}. Now consider a crossover where a search point participates

that is not a path point. We consider the sequence of its ancestors. If any of these is

a path point we call this point a former path point. For former path points the same

reasoning implies as for path points. Repairing them back into path points cannot

increase the probability for progress on the path. If the point is not a former path point

it was created by random initialization and optimization of n−OneMax(x). The local

optimum is 1n/403n/4. The probability that a purely random search point also starts

with a sequence of n/4 1-bits equals 2−n/4. When optimizing n − OneMax(x) this

probability decreases since the number of 1-bits cannot increase. Thus, with probability

very close to 1 crossover does not help in finding the local optimum. Thus, the first

search point in the local optimum has to be created by means of mutation and thus,

gets age 0.

We still need to consider if crossover can asymptotically decrease the time we need

to increase the number of best search points on the path from 1 to b. The probability

to increase this number from b to b+ 1 by means of mutation is Θ(b/µ) since we need

to select one of the b best search points and do not flip any bits during mutation which

happens with probability 1/4 ≤ (1−1/n)n ≤ 1/e. For crossover it is necessary to select

a currently best search point as first parent and thus, the probability to create a copy

by means of crossover is also O(b/µ).

16

Altogether, we see that the lower bound for the LeadingOnes part carries over

from the (µ+1) EA [33] and we get Ω
(

n2 + µn log n
)

for the second phase. Note, that

this dominates the upper bound for the first phase.

Once the complete collection of search points is on the path to the local optimum

or in the local optimum, i. e., of the form 1i0n−i for possibly different values of i with

1 ≤ i ≤ n/4 for all of them, the global optimum can only be reached via a direct

mutation to the OPT region. Such a mutation has probability at most

(

n

n/12

)

·
(

1

n

)n/12

≤ 1

(n/12)!

as at least n/12 bits in the second half of the bit string have to flip. Thus, the probability

to create a global optimum by means of mutation is n−Ω(n). Clearly, it is not possible

to create a global optimum with crossover of two search points on the path.

As the waiting time for a partial or complete restart is at least τ , we need time

Ω
(

τ + n2 + µn log n
)

to get into a situation where the first search point in the local

optimum is removed due to the maximal age. As in Lemma 2 we need expected q−1

partial restarts to create a globally optimal search point and expected p−1 trials to

perform a partial restarts which proves the claimed lower bound in the case where the

maximal age τ is sufficiently large.

If the maximal age τ is not sufficiently large the search process is slowed down as

it becomes harder to reach the local optimum. If τ is very small almost constantly new

search points are created uniformly at random. In t time steps, at most µ/τ new search

points are created in this way. Each of these new search points is equal to a specific

globally optimal search point with probability 2−n as discussed above. Such a process

finds some of the less than 2n/2 global optima in an expected number of more than

2n/2 steps. ⊓⊔

3.2 Properties of Static Pure Aging Independent of Replacement Strategies

Before considering the different replacement strategies, we further discuss the concept of

partial restarts. Remember that partial restart denotes the event when we have at least

two search points in the local optimum and some but not all of those locally optimal

search points are removed due to their age. A necessary condition for such an event is

that by the time when the maximal age τ is reached by one of the search points in the

local optimum, at least two search points with different ages are in the local optimum.

Moreover, there is no possibility to create another locally optimal search point with

different age once all search points have reached the local optimum as descendants

always inherit the age of one of their parents. Thus, the two search points in the local

optimum with different ages have to be created while the collection of search points

approaches the local optimum. Additionally, after all search points have reached the

local optimum, this property of the age structure within the collection of search points

has to be preserved by the replacement strategy until the maximal age τ is reached by

one of the search points in the local optimum.

The first condition, i. e., creating two search points with two different ages in the

local optimum, is independent of the replacement strategy. We therefore analyze the

probability for this event and the three static pure aging variants before looking closer

at the different replacement strategies.

17

Lemma 4 Consider the function f : {0, 1}n → R from Definition 4 and Algorithm 1

using age-based or pessimistic value-based static pure aging from Definition 2 and an

arbitrary strategy for selection for replacement from Definition 3, a size of the collection

of search points µ ∈ N with µ ≥ 2 and µ = nO(1), crossover probability pc with

0 < ε ≤ pc ≤ 1− ε < 1 for a positive constant ε, k = O(1) crossover points in k-point

crossover, and maximal age τ = ω(µn log µ).

Let p1 be the probability for the event that two search points with different ages enter

the local optimum before all search points are in the local optimum. Then, p1 = Ω(1).

Proof Consider a point of time when max {f(x) : x ∈ C} is increased to (5/4)n, i. e.,

a first locally optimal search point x is produced. Clearly, this search point enters the

collection of search points and is assigned age 0. Note, that at this point of time all

other search points have age different from x. At later points of time descendants of x

may have the same age.

We claim that at this point of time all other members of the collection of search

points also have form 1i0n−i for different values of i with i < n/4 with probability close

to 1. In the proof of Lemma 3 we saw that with probability close to 1 the first individual

to enter the global optimum does so from the path and needed Ω
(

n2 + µn log n
)

steps

to get there. Since all points on the path have larger function value than the other

search points the probability to increase the number of search points on the path from

some value v to v + 1 is Ω(v/µ): it suffices to select one such individual (probability

v/µ) and do not change it via mutation (probability (1−pc)(1−1/n)n = Ω(1)). Thus,

the process of getting the whole collection of search points on the path has expected

length O(µ log µ) (similar to the coupon collector process [30]), much smaller than the

Ω
(

n2 + µn log n
)

steps needed in expectation to reach the local optimum. This implies

the claim.

We consider the following τ = ω(µn log µ) generations. We prove that within these τ

steps with probability p = Ω(1) another locally optimal search point with age different

from x.age enters the collection of search points. To this end, we consider crossover.

Consider x = 1n/403n/4 and y = 1i0n−i with 0 ≤ i < n/4. We have

Prob (k-Point-Crossover(x, y) = x) = Ω(1)

in the same way as we obtained Lemma 1. Note that the offspring has the same fitness

as x. Thus, in the pessimistic value-based variant, the offspring’s age is set to the age

of y which is different to the age of x, proving p1 = Ω(1) in that case.

For the age-based variant we need to be slightly more careful since the offspring

gets initial age max{x.age, y.age} and hence, it is not clear whether x is older than y or

vice versa. When x entered the collection of search points it was the search point with

minimal age 0. Thus, all other search points have age different from x unless they are

created as descendants of x. We now consider the following Θ(µ) steps. Clearly, in these

steps this first search point x or one of its copies is selected for reproduction involving

crossover with probability Ω(1). The expected number of descendants of x made in

these Θ(µ) steps is bounded above by O(1) with probability 1 − δ for any constant

δ > 0. The number of search points in the collection of search points that may have

improved within these steps is bounded by O(µ/n) since improvements can only occur

via mutations but not by crossover alone as seen in the proof of Lemma 3. Thus, we

only have O(µ/n) improved search points within these steps and this also holds with

probability 1−δ for any constant δ > 0. We conclude that there are Ω(µ) search points

on the path with age larger than x. Thus, one of these is selected together with x with

18

probability Ω(1) in this Θ(µ) steps we consider. These two parents produce another

locally optimal offspring that will have age different from x with probability Ω(1). ⊓⊔

For the considered problem, the only difference between aging in the optimistic

and pessimistic value-based variant is the way partial restarts can be achieved, i. e., the

way a second age can enter the local optimum. The main difference is that crossover no

longer helps in creating another locally optimal search point with age different from the

first search point entering the local optimum. If we perform crossover of x = 1n/403n/4

and y = 1i0n−i with i < n/4 the age of the new search point is given by the age of

the better search point, i. e., by x.age. This is no different from a copy of x. Thus, we

need to rely on mutations only.

Lemma 5 Consider the function f : {0, 1}n → R from Definition 4 and Algorithm 1

using optimistic value-based static pure aging from Definition 2 and an arbitrary strat-

egy for selection for replacement from Definition 3, a size of the collection of search

points µ ∈ N with µ ≥ 2 and µ = nO(1), crossover probability pc with 0 < ε ≤ pc ≤
1− ε < 1 for a positive constant ε, k = O(1) crossover points in k-point crossover, and

maximal age τ = ω(µn log µ).

Let p1 be the probability for the event that two search points with different ages

enter the local optimum before the whole collection of search points has reached the

local optimum. Then,

p1 =

{

Θ(µ log(µ)/n) if µ ≤ δ · n/ log n for constant δ > 0 sufficiently small

Θ(1) otherwise
.

Proof Consider the first search point x that enters the local optimum.

We show that by the time half of the collection of search points is taken over by

copies of x the rest of the collection of search points are all of the form 1(n/4)−103(n/4)+1

with probability close to 1. If there are b copies of x the probability to increase the

number of copies to b+1 is O(b/µ). Since initially we have b = 1 we obtain Ω(µ log µ)

as lower bound for creating µ/2 copies of x. On average in these steps already copies

of the second best have been produced. Since the selection for reproduction is uniform

these copies are selected with higher probability than the first single best. This yields

that all worse search points will be removed.

If there are b copies of a second best search point the probability to create a better

search point is O(b/(µn)) since one of them has to be selected and at least a mutation

of a single bit is needed. However, in the situation described above and as long as

b = Θ(µ), the probability to create another locally optimal search point via mutation is

Ω(1/n). The expected time for increasing the number of copies from b = µ/2 to b = cµ

for some constant c > 1/2 is also Θ(µ log µ). Again, this holds due to the similarity to

to the coupon collector process [30]. Hence, the probability to create another locally

optimal search point with age different from x is Ω(1/n) for Θ(µ log µ) steps. After

this number of steps this probability can decrease even to 0 since after that time the

whole collection of search points may be in the local optimum. In the following we use

c/n (for some sufficiently small positive constant c) as lower bound on this probability.

We start with the lower bound on the probability p1. Assume µ ≤ n/(cc′ log n),
i. e., δ ≤ 1/(cc′), for positive constants c and c′. Using (1 − x)y ≤ e−xy in (∗) and

ex ≤ 1/(1 − x) for x < 1 in (∗∗), the probability that another locally optimal search

19

point with age different from x is created within these Θ(µ log µ) steps is

p1 ≥ 1−
(

1− c

n

)c′µ logµ (∗)
≥ 1− e−cc′ µ log µ

n

(∗∗)
≥ 1− 1

1 + cc′µ log(µ)/n

= 1− n

n+ cc′µ log µ
=

cc′µ log µ

n+ cc′µ log µ
≥ cc′µ log µ

2n
.

Otherwise we get

p1 ≥ 1−
(

1− c

n

)c′µ logµ
≥ 1− e−cc′ µ log µ

n = 1− e−Ω(1) = Ω(1).

Since p1 is a probability (and thus p1 ≤ 1), p1 = Ω(1) implies p1 = Θ(1).

We still need to consider the upper bound for µ ≤ δn/ log n. The probability to

create another locally optimal search points is at most 1/n as at least a mutation of a

single bit is needed. Again, assume µ < n/ log n. Then, µ log µ/(n−1) ≤ 1 holds. Using

1− e−x ≤ 2x/(1+ 2x) for x ≤ 1 in (∗ ∗ ∗) we see analogously to the calculations above

that another locally optimal search point with different age is created in Θ(µ log µ)

steps with probability

p1 ≤ 1−
(

1− 1

n

)cµ logµ

≤ 1− e−
cµ log µ

n−1

(∗∗∗)
≤ 2cµ log(µ)/(n− 1)

1 + 2cµ log(µ)/(n− 1)
=

2cµ log µ

n− 1 + 2cµ log µ
≤ 2cµ log µ

n

for some positive constant c, concluding the proof of the lemma. ⊓⊔

We are now ready to consider the different replacement variants.

3.3 Smallest Age Distance Replacement Strategy

The smallest age distance replacement was already analyzed in [25,26]. For the sake of

completeness we restate these results here.

Theorem 1 Consider the function f : {0, 1}n → R from Definition 4. Let A denote

Algorithm 1 using smallest age distance replacement from Definition 3. a size of the

collection of search points µ ∈ N with µ ≥ 2 and µ = nO(1), crossover probability pc
with 0 < ε ≤ pc ≤ 1 − ε < 1 for a positive constant ε, k = O(1) crossover points in

k-point crossover, and maximal age τ = ω(µn log µ).

Then, we have

E
(

TA,f

)

= O
(

µ ·
(

τ + n2 + µn log n
))

for the age-based and pessimistic value-based static pure aging and

E
(

TA,f

)

= O

((

µ+
n

log µ

)

·
(

τ + n2 + µn log n
)

)

for the optimistic value-based static pure aging.

20

Proof From Lemma 2 we know that E
(

TA,f

)

= O
(

p−1q−1
(

τ + n2 + µn log n
))

holds

where p is the probability that a partial restart occurs and q the probability for an

appropriate crossover operation creating the global optimum after such partial restart.

For the age-based and pessimistic value-based variant we see that it suffices to prove

that p−1q−1 = O(µ) holds, whereas for the optimistic value-based variant we need to

show p−1q−1 = O(µ+ n/ log µ).

Due to Lemma 4 the probability to have two locally optimal search points with

different age when all search points have reached the local optimum is p1 = Ω(1) for the

first two variants and thus p−1 = O(1). Due to Lemma 5 we have p1 = Θ(µ log(µ)/n)

for sufficiently small µ = O(n/ log n) and p1 = Θ(1) otherwise for the latter variant,

leading to p−1 = O(1 + n/µ log µ). Note that once we have at least two search points

that are both locally optimal but have different age in the collection of search points

this will always be the case until a restart happens. This is due to the smallest distance

replacement where in case of equal fitness an search point with minimal age difference

in selected for replacement. Hence, p = p1 follows.

We still need to derive the probability q for the different variants. Consider the point

of time when the age of x, the first search point that has reached the local optimum,

exceeds τ . In this generation x and all its copies with identical age are removed and

replaced by purely random search points. The expected takeover time for x to take over

the complete collection of search points is O(µ log µ). If there are other points in the

local optimum (with age different from x) the time until all search points are locally

optimal can only be smaller. Since τ = ω(µn log n) holds we have with probability close

to 1 that all other search points are also locally optimal. Thus, after removing b copies

of x we have a collection of search points with µ− b local optima and b random search

points. Remember that 0 < b < µ holds since we have a partial restart. Thus, with

probability

q = Ω

(

b

µ
· µ− b

µ

)

= Ω

(

1

µ

)

the global optimum is produced as next offspring. This establishes that on average

q−1 = O(µ) such partial restarts suffice. Putting these things together, we get the

claimed upper bound. ⊓⊔

Theorem 2 Consider the function f : {0, 1}n → R from Definition 4. Let A denote

Algorithm 1 using smallest age distance replacement from Definition 3. a size of the

collection of search points µ ∈ N with µ ≥ 2 and µ = nO(1), crossover probability pc
with 0 < ε ≤ pc ≤ 1 − ε < 1 for a positive constant ε, k = O(1) crossover points in

k-point crossover, and any maximal age τ (with τ = 2O(n)).

Then, we have

E
(

TA,f

)

= Ω
(

τ + n2 + µn log n
)

for the age-based and pessimistic value-based static pure aging and

E
(

TA,f

)

= Ω

((

1 +
n

µ log µ

)

·
(

τ + n2 + µn log n
)

)

for the optimistic value-based static pure aging.

Proof From Lemma 3 we know that E
(

TA,f

)

= Ω
(

p−1q−1
(

τ + n2 + µn log n
))

holds

where p is the probability that a partial restart occurs and q the probability for an

appropriate crossover operation creating the global optimum after such partial restart.

21

Clearly, we need at least one successful partial restart to obtain the global optimum.

Thus, we have the trivial lower bound for the age-based and pessimistic value-based

variant following directly from Lemma 3. For the optimistic value-based variant we

additionally know p−1 = Ω(1 + n/µ log µ) due to Lemma 5, concluding the proof. ⊓⊔

We see that in the case of smallest age distance replacement the gap between the

lower and the upper bound on the expected optimization time is Θ(µ). This stems from

the fact that we bounded the probability q for creating a globally optimal search points

by means of crossover after a partial restart by q = Ω(1/µ) and q = O(1) respectively.

The smallest distance replacement has the property that the initial age structure

of the collection of search points in the local optimum is not changed after the last

search point enters the local optimum. This is due to the fact that after that point of

time no new age value can enter the collection of search points as in the case of an

non-improving iteration the age is always inherited of one of the parents. Hence, there

is always at least one search point in the collection of search points that has the same

age as the new search point. Since the age distance to these points is zero, simply two

search points with the same age are exchanged. This is different for the most frequent

replacement as shown in the next subsection.

3.4 Most Frequent Replacement Strategy

The most frequent replacement is probably the easiest and most direct way of preserv-

ing some degree of diversity with respect to age. Like smallest distance replacement it

is effective enough to yield efficient optimization since again once we have at least two

search points that are both locally optimal but have different age in the collection of

search points this will always be the case until some restarts happens. Thus, the upper

and lower bounds for smallest age distance replacement simply carry over to the most

frequent replacement strategy as stated in the following two corollaries.

Corollary 1 Consider the function f : {0, 1}n → R from Definition 4. Let A denote

Algorithm 1 using most frequent replacement from Definition 3. a size of the collection

of search points µ ∈ N with µ ≥ 2 and µ = nO(1), crossover probability pc with

0 < ε ≤ pc ≤ 1− ε < 1 for a positive constant ε, k = O(1) crossover points in k-point

crossover, and maximal age τ = ω(µn log µ).

Then, we have

E
(

TA,f

)

= O
(

µ ·
(

τ + n2 + µn log n
))

for the age-based and pessimistic value-based static pure aging and

E
(

TA,f

)

= O

((

µ+
n

log µ

)

·
(

τ + n2 + µn log n
)

)

for the optimistic value-based static pure aging.

Corollary 2 Consider the function f : {0, 1}n → R from Definition 4. Let A denote

Algorithm 1 using most frequent replacement from Definition 3, a size of the collection

of search points µ ∈ N with µ ≥ 2 and µ = nO(1), crossover probability pc with

0 < ε ≤ pc ≤ 1− ε < 1 for a positive constant ε, k = O(1) crossover points in k-point

crossover, and any maximal age τ (with τ = 2O(n)).

22

Then, we have

E
(

TA,f

)

= Ω
(

τ + n2 + µn log n
)

for the age-based and pessimistic value-based static pure aging and

E
(

TA,f

)

= Ω

((

1 +
n

µ log µ

)

·
(

τ + n2 + µn log n
)

)

for the optimistic value-based static pure aging.

In contrast to smallest age distance replacement most frequent replacement changes

the initial distribution of the different age values. It aims at obtaining and preserving

a completely balanced distribution of ages within the collection of search points. Given

such a balanced distribution better bounds on the expected optimization time can

be proved. We consider Lemma 2 and remember that p denotes the probability for a

partial restart and q denotes the probability that this partial restart is successful, i. e.,

generates a globally optimal search point. Now we replace p and q by p′ and q′ where p′

denotes the probability to have a collection of search points completely within the local

optimum with r+1 different ages. In this situation we will have r partial restarts within

the next τ steps or the global optimum is found. If q′ denotes the probability that at

least one of these partial restarts leads to the global optimum we obtain essentially the

same bound as in Lemma 2. We state this as a corollary.

Corollary 3 Consider the function f : {0, 1}n → R from Definition 4. Let A denote

Algorithm 1 using an arbitrary strategy for static pure aging from Definition 2 and

an arbitrary strategy for selection for replacement from Definition 3, a size of the

collection of search points µ ∈ N with µ ≥ 2 and µ = nO(1), crossover probability pc
with 0 < ε ≤ pc ≤ 1 − ε < 1 for a positive constant ε, k = O(1) crossover points in

k-point crossover, and maximal age τ = ω(µn log µ).

Moreover, let p′ denote the probability that within the next τ steps r partial restarts

occur and q′ the probability for an appropriate crossover operation creating the global

optimum after one of these partial restarts.

Then, E
(

TA,f

)

= O
(

(p′ · q′)−1
(

τ + n2 + µn log n
))

.

Now we consider the different static pure aging strategies from Definition 2. The

main difference between optimistic value-based aging and the two other variants (pes-

simistic value-based aging and age-based aging) is that in optimistic value-based aging

a new age can only be introduced to the local optimum via mutation. Crossover op-

erations without mutation need to involve one search point that already is a local

optimum and one other search point. This other search point is worse with respect

to function value in comparison to the other search point. Thus, in the pessimistic

value-based variant this age is used and introduced as a (potentially) new age in the

local optimum. Moreover, this other search point may be older than the search point

that first entered the local optimum since this search point was assigned age 0 when

it was created (as it was an improvement) and is thus younger than the other search

points. If it is older, in the age-based variant again this age is used and introduced as

(potentially) new age. In the optimistic value-based variant, however, the age of the

better search points, i. e., the local optimum, is used and therefore the number of ages

in the local optimum cannot increase. This does not only limit the number of different

ages in the local optimum (in expectation it is O(µ log(µ)/n)) but also ensures that

the first point that entered the local optimum has maximal age in the local optimum.

23

This yields a lower bound on the number of steps before a partial restart occurs that

we can exploit to prove a better upper bound on the expected optimization time.

The following lemma makes a strong assumption on the age distribution at the

local optimum. Given this assumption we can prove a high probability for finding a

global optimum. We discuss afterwards how these assumptions can be met.

Lemma 6 Consider the function f : {0, 1}n → R from Definition 4. Let A denote

Algorithm 1 using an arbitrary strategy for static pure aging from Definition 2 and

an arbitrary strategy for selection for replacement from Definition 3, a size of the

collection of search points µ ∈ N with µ ≥ 2 and µ = nO(1), crossover probability pc
with 0 < ε ≤ pc ≤ 1 − ε < 1 for a positive constant ε, k = O(1) crossover points in

k-point crossover, and maximal age τ = ω(µn log µ).

Let the algorithm be completely at the local optimum, i. e., {f(x) : x ∈ C} =

{(5/4)n}. Let r + 1 denote the number of different ages in C. For each of the r + 1

different ages, let the number of x ∈ C with each age be Θ(µ/r) for the subsequent τ

steps or until a global optimum is found.

The probability that within the subsequent τ steps a global optimum is found is Ω(1).

Proof Due to our assumptions there are either r partial restarts in the subsequent τ

steps or the global optimum is found. For each of these restarts we have probability

Θ

(

µ/(r + 1)

µ
· µ− µ/(r + 1)

µ

)

= Θ
(

1

r + 1
·
(

1− 1

r + 1

))

= Θ
(

1

r

)

to select one locally optimal search point and one search point generated uniformly at

random by the partial restart for crossover. A crossover of these points creates a global

optimum with probability Ω(1) (Lemma 1) so that each of the r partial restarts has

success probability Ω(1). The probability to have at least one of these successful is

1−
(

1−Ω
(

1

r

))r

= Ω(1)

as claimed. ⊓⊔

Note that Lemma 6 holds for all variants of Algorithm 1. However, the assumption

to always have Θ(µ/r) search points for each of the r different ages is not realistic for

all variants. However, for optimistic value-based aging in combination with the most

frequent replacement strategy it is as the following lemma shows.

Lemma 7 Consider the function f : {0, 1}n → R from Definition 4. Let A denote

Algorithm 1 using optimistic value-based static pure aging from Definition 2 and the

most frequent replacement strategy from Definition 3, a size of the collection of search

points µ ∈ N with µ ≥ 2 and µ = nO(1), crossover probability pc with 0 < ε ≤ pc ≤
1− ε < 1 for a positive constant ε, k = O(1) crossover points in k-point crossover, and

maximal age τ = ω(µn log µ).

Consider the point of time when the number of different function values is reduced

to 1 and all search points are in the local optimum, i. e., {f(x) : x ∈ C} = (5/4)n.

The conditions of Lemma 6 are met with probability Ω(1).

Proof Consider the first search point x to enter the local optimum. It is assigned age 0

at this point of time and as argued above no search point with a larger age can enter the

local optimum. Thus, the first (partial) restart after x entered the local optimum occurs

24

after τ = ω(µn log µ) steps. The expected takeover time for the complete population is

Θ(µ log µ). Thus, on expectation after O(µ log µ) steps we have the complete collection

of search points in the local optimum and this can only change when the first partial

restart occurs, i. e., after τ − O(µ log µ) = ω(µn log µ) steps. Thus, there is sufficient

time to obtain a balanced distribution of the ages within the local optimum. ⊓⊔

Lemma 7 proves q′ = Ω(1). All we need to obtain a better upper bound on the

expected optimization time is a bound on p′. We recall that we already have such a

bound.

Theorem 3 Consider the function f : {0, 1}n → R from Definition 4. Let A denote

Algorithm 1 using optimistic value-based static pure aging from Definition 2 and the

most frequent replacement strategy from Definition 3, a size of the collection of search

points µ ∈ N with µ ≥ 2 and µ = nO(1), crossover probability pc with 0 < ε ≤ pc ≤
1− ε < 1 for a positive constant ε, k = O(1) crossover points in k-point crossover, and

maximal age τ = ω(µn log µ).

Then, E
(

TA,f

)

= Θ
((

1 + n
µ logµ

)

·
(

τ + n2 + µn log n
)

)

.

Proof We apply Corollary 3. According to Lemma 6 and Lemma 7 we have q′ = Ω(1).

Moreover, Lemma 5 yields p′ = Ω(µ log(µ)/n) for not too large µ and p′ = Ω(1)

otherwise. Together this yields the claimed upper bound. The lower bound is already

contained in Corollary 2. ⊓⊔

Unfortunately, we are not able to prove a similar result for the other two variants

of static pure aging. Since older search points can enter the local optimum we have no

lower bound on the number of steps until a partial restart occurs. This implies that

we cannot prove that the age structure is balanced and thus are unable to prove that

the conditions of Lemma 6 are met. The improvement of the upper bounds to obtain

tight bounds for these static pure aging variants is an open problem.

3.5 Fewest Replacement Strategy

In contrast to the former two replacement strategies, fewest replacement does not

incorporate any age diversity mechanism. Even worse, diversity with respect to age

is intentionally destroyed. In the next theorem we show that such an algorithm is

with probability converging to 1 exponentially fast not able to optimize our considered

example function.

Theorem 4 Consider the function f : {0, 1}n → R from Definition 4. Let A denote

Algorithm 1 using fewest replacement from Definition 3 and optimistic value-based

aging from Definition 2, a size of the collection of search points µ ∈ N with µ ≥ 2 and

µ = nO(1), crossover probability pc with 0 < ε ≤ pc ≤ 1−ε < 1 for a positive constant ε,

k = O(1) crossover points in k-point crossover, and a maximal age τ = ω(µn log µ).

Then, the probability that Algorithm A does not find the optimum of f within 2cn

steps (c > 0 a sufficiently small constant) is bounded below by 1− 2−Ω(n).

Proof Consider the first point in time when all search points are locally optimal. As

seen in the proof of Lemma 7 the age of all search points is bounded above by O(µ log µ)

at this point. With probability 1− 2−Ω(n) all ages are bounded by O(µn log µ). Thus,

25

there are still τ −O(µn log µ) = ω(µn log µ) steps left before the first (partial) restart

can occur.

Let x be a search point with some age x.age that occurs most frequently in the

current collection of search points. If there exist more than one such age we select an

arbitrary one. Due to the replacement strategy the number of search points with that

age will not decrease during the ongoing search process. Moreover, any time such a point

is selected and copied the number of search points with the same age increases and the

number of search points with other ages decreases. Thus, after expected Θ(µ log µ), say

dµ log µ (d > 0 constant), steps the collection of search points only consists of search

points with only one single age, keeping the algorithm from performing a partial restart

and yielding inefficient optimization time. Due to Markov’s inequality the probability

not to have such an event within 2dµ log µ is at most 1/2. Moreover, the probability

not to have such an event in n rounds of 2dµ log µ steps can be bounded above by

(1/2)n. Since τ = ω(µn log µ) this yields the theorem. ⊓⊔

The proof of Theorem 4 does not work for age-based and pessimistic value-based

static pure aging. These two different aging variants allow that search points may

enter the local optimum that are older than the first search point that entered the

local optimum. Since the age of these search points may be much older it cannot

be ruled out that these search point cause a partial restart rather quickly and thus

lead to successful optimization. However, it seems to be highly unlikely that very old

search points survive long enough for this event to happen. We therefore speculate that

Theorem 4 can be generalized for the other two aging variants, too. This, however, is

currently an open problem.

3.6 Random Replacement Strategy

Finally we consider the random replacement variant. Here again no diversity mechanism

with respect to age is used but in contrast to the fewest replacement diversity is just not

cared about. Thus, we simply replace a random search point with worst fitness value.

This is equivalent to the standard replacement strategy in evolutionary algorithms

where age is not used at all. We prove that this also leads to inefficient optimization time

if used in combination with the optimistic value-based aging strategy. We speculate

that the same holds for the other aging strategies and discuss difficulties in proving

this after the proof of the following result. This results demonstrates that age diversity

mechanisms are an important concept for effective aging operators.

Theorem 5 Consider the function f : {0, 1}n → R from Definition 4. Let A denote

Algorithm 1 using random replacement from Definition 3 and the optimistic value-based

static pure aging variant from Definition 2, a size of the collection of search points

µ ∈ N with µ ≥ 2 and µ = nO(1), crossover probability pc with 0 < ε ≤ pc ≤ 1− ε < 1

for a positive constant ε, k = O(1) crossover points in k-point crossover, and maximal

age τ = ω(µn log µ).

Then, the probability that Algorithm A does not find the optimum of f within 2cn

steps is bounded below by 1− 2−Ω((n log log µ)/ logµ).

Proof We aim at proving that with probability close to 1 no partial restart will occur.

This immediately implies the result since such a partial restart is needed for efficient

optimization of f .

26

We consider the situation when max{f(x) : x ∈ C} is increased to (5/4)n, i. e., a

first point enters the local optimum. Since this point is an improvement it is assigned

age 0. We consider the subsequent steps and are interested in the first point of time

when min{f(x) : x ∈ C} = (5/4)n holds, i. e., the complete collection of search points

is in the local optimum. We claim that at this point of time x (and its descendants)

have maximal age in C. Consider another search point z that enters the local optimum.

Clearly, z was created either involving crossover or by mutation only. If it was created

by mutation of a search point that is not locally optimal z is an improvement and

age.z = 0 < age.x holds. If z is a clone of a local optimum it inherits its age. Thus,

by means of mutation only no search point with larger age can be introduced into the

local optimum. Now, consider the case where z is created by means of crossover. If

both search points are not locally optimal again z is an improvement. If at least one

search point is a local optimum than z inherits its age since we are using optimistic

value-based aging. Thus, also crossover cannot introduce a search point with age larger

than age.x. Thus, x has maximal age. We claim that we have age.x = O
(

µ log2 µ
)

at this point of time with probability 1 − 2−Ω(log2 µ). As noted before the process of

taking over the collection of search points is similar to the coupon collector process

yielding an expected duration of O(µ log µ). The bound µ−Ω(β) on the probability for

taking Ω(βµ log µ) steps [30] carries over, too. Setting β = log µ we obtain the bound

2−Ω(log2 µ) as claimed. Note that during this process in all steps the order of growth

of the probability of inserting another point to the local optimum is bounded above by

the probability of adding another copy of x to the local optimum. Consequently, also

with probability 1 − 2−Ω(log2 µ) we have Ω(µ) copies of x in C. This implies that in

each selection such a search point is selected with probability Ω(1).

We consider the subsequent steps and claim that after some number of steps (where

the number of steps will be discussed afterwards) x will have taken over the complete

collection of search points (and thus there is only one age present in C) with probability

1 − 2−Ω(µ). Note that if this happens before a partial restart happens no partial

restart can happen anymore. Let nx denote the number of copies of x in the beginning.

Remember that we have nx = Ω(µ) with probability close to 1. In one round this

number nx may remain unchanged or it may either by increased or decreased by

exactly 1. We want to prove that it will be increased to µ with probability close to 1.

Since we consider the situation when the whole collection of search points is in the

local optimum we have that all search points have equal fitness and thus the age of the

new search points equals max{age.x, age.y}. Moreover, crossover of any two parents

can only yield another local optimum as result. The event ‘nx is increased’ can happen

with and without crossover. Without crossover it happens if one such search point is

selected (probability nx/µ), it is not changed by mutation (probability (1−1/n)n), and

none of the nx search points is selected for replacement (probability (µ−nx)/µ). This

leads to a contribution of (1−pc)(nx/µ)(1−1/n)n(µ−nx)/µ to Prob (nx is increased)

by this case. With crossover it happens if at least one such search point is selected

(probability 1 − ((µ − nx)/µ)
2 = (nx/µ)(2 − nx/µ)), the result of crossover is not

changed by mutation (probability (1 − 1/n)n), and none of the nx search points is

27

selected for replacement (probability (µ− nx)/µ). Together we obtain

Prob (nx is increased)

= (1− pc)
nx

µ

(

1− 1

n

)n µ− nx

µ
+ pc

nx

µ

(

2− nx

µ

)

(

1− 1

n

)n µ− nx

µ

=
nx(µ− nx)

µ2

(

1− 1

n

)n
(

1 + pc − pc
nx

µ

)

.

The event ‘nx is decreased’ can also happen with and without crossover. Without

crossover it happens if some other search point is selected (probability (µ − nx)/µ),

it is not changed by mutation (probability (1 − 1/n)n), and one of the nx search

points is selected for replacement (probability nx/µ). This leads to a contribution

of (1 − pc)((µ − nx)/µ)(1 − 1/n)nnx/µ to Prob (nx is decreased) by this case. With

crossover it happens if no such search point is selected (probability ((µ−nx)/µ)
2), the

result of crossover is not changed by mutation (probability (1− 1/n)n), and one of the

nx search points is selected for replacement (probability nx/µ). Together we obtain

Prob (nx is decreased)

= (1− pc)
µ− nx

µ

(

1− 1

n

)n nx

µ
+ pc

(

µ− nx

µ

)2
(

1− 1

n

)n nx

µ

=
nx(µ− nx)

µ2

(

1− 1

n

)n
(

1− pc + pc
µ− nx

µ

)

hold. For the sake of comparison we consider

Prob (nx is increased)

Prob (nx is decreased)
=

1 + pc − pcnx/µ

1− pc + pc(µ− nx)/µ
= 1 +

pc
1− pc · nx/µ

> 1 + pc

and see a clear tendency towards increasing nx. For the analysis we consider a Markov

chain X0, X1, . . . on the state space {0, 1, . . . , µ} with Prob (Xt+1 = 0) = 1 for Xt = 0,

Prob (Xt+1 = µ) = 1 for Xt = µ, Prob (Xt+1 = Xt + 1) = (1 + pc)/(2 + pc), and

Prob (Xt+1 = Xt − 1) = 1/(2+pc) in all other cases. Clearly, all transition probabilities

not explicitly stated are 0. This Markov chain corresponds to the algorithm conditioned

on the event that nx changes and is pessimistic with respect to having nx = µ at some

point of time. Moreover, the Markov chain corresponds exactly to the situation in the

gambler’s ruin theorem [15]. Remember that we have nx = Ω(µ), say nx = cµ, initially.

Thus, the probability not to have nx = µ at some point of time is bounded above by

(1 + pc)
cµ − 1

(1 + pc)µ − 1
=

(

1

1 + pc

)(1−c)µ

·
(

1− (1 + pc)
(1−c)µ + 1

(1 + pc)µ − 1

)

= 2−Ω(µ).

The expected duration of the random process described by the Markov chain is O(µ).

However, this is different from the duration of the random process in the algorithm

since we considered the situation conditioned that nx is changed. Thus, we need to

take into account the probability to change nx in one step. This probability is given

by

Prob (nx is increased) + Prob (nx is decreased) = Ω

(

nx(µ− nx)

µ2

)

28

and we see that it is particularly small when nx = O(1) or µ − nx = O(1) holds. We

improve the trivial bound O
(

µ2
)

on the duration to O
((

µ log2 µ
)

/ log log µ
)

in the

following way.

Consider the situation with nx = O(1) for Θ(µ log µ) steps. Since the probability to

increase nx by 1 is bounded below by Ω(1/µ) in this situation we have on expectation

nx = Ω(log µ) after these steps. Consider another round of Θ(µ log µ) steps. Now the

probability to increase nx is bounded below by Ω(log(µ)/µ) and we expect to have

nx = Ω
(

log2 µ
)

at the end. In general, after r such rounds we expect nx = Ω(logr µ).

Thus, after Θ(log(µ)/ log log µ) rounds we have nx = Ω
(

loglog(µ)/ log logµ µ
)

= Ω(µ)

in the end. For µ−nx the situation is symmetric (but reversed in time). Thus, we have

an expected length of O
((

µ log2 µ
)

/ log log µ
)

as claimed.

In summation we have that on expectation after O
((

µ log2 µ
)

/ log log µ
)

steps the

complete collection of search points is of the same age so that a partial restart is

impossible. To obtain the result with probability very close to 1 we consider Θ(µn log µ)

steps in total. These steps can be considered as Θ((n log log µ)/ log µ) repetitions of

length Θ
((

µ log2 µ
)

/ log log µ
)

each. This yields the desired bound on the probability.

⊓⊔

We speculate that a similar result holds for age-based and pessimistic value-based

aging. However, proving this is an open problem. The difficulty is essentially the same

as for Theorem 4.

4 Experimental supplements

The results presented in the preceding sections give new insights into what aging can

achieve in randomized search heuristics. Our theoretical analyses give a coarse picture

of the effects of aging, in particular with respect to partial restarts. Nevertheless, not all

questions are answered. First of all, most of the derived bounds are not tight. Second,

asymptotic results may not describe the situation for typical problem dimensions, in

particular small problem sizes. As the size of the gap between upper and lower bound

depends on the size of the collection of search points µ we further investigate the

influence of this parameter in order to supplement our theoretical results. We hope

that experiments give insights into possible improvements of either the lower or the

upper bounds.

It is not obvious what good values for µ are. However, the theoretical results give

hints. The bounds for the pessimistic value-based variant and the age-based variant

indicate that a smaller size of the collection of search points leads to a smaller optimiza-

tion time. For the optimistic value-based variant, the bounds suggest µ = Θ(n/ log n)

as a good choice. However, as our theoretical bounds are not tight, these speculations

may be wrong.

We do all experiments with sizes µ ∈ {2,⌊√n⌋, ⌊n/ log n⌋, n} for the collection of

search points. Clearly, µ = 2 is interesting as it is the smallest possible size and possibly

a good choice for the pessimistic value-based and the age-based variant. For the same

reason we pick µ = ⌊n/ log n⌋ for the optimistic value-based variant. The choice µ ≈ √
n

has often turned out to be a good choice [18]. Moreover we are interested in the effects

of sizes that are not sub-linear. Thus, we also pick µ = n.

We require τ = ω(µn log µ) and choose τ = ⌊6µn log(µ) log n⌋ for our experiments

where the factor 6 helps for small values of n. All bounds work for arbitrary constant

29

age-, pessimistic value-based optimistic value-based
µ = 2 Θ

(

n2
)

Θ
(

n3
)

µ =
⌊√

n
⌋

Ω
(

n2
)

, O
(

n5/2
)

Θ
(

n5/2/ logn
)

µ = ⌊n/ logn⌋ Ω
(

n2 logn
)

, O
(

n3
)

Θ
(

n2 logn
)

µ = n Ω
(

n2 log2 n
)

, O
(

n3 log2 n
)

Θ
(

n2 log2 n
)

Table 1 Bounds on the expected optimization time for example sizes of the collection of
search points using the most frequent replacement strategy.

crossover probabilities pc. We use pc = 0.5, a medium sized value. All proofs work for

any constant number k of crossover points. We consider the commonly used 1-point

crossover.

We perform two sets of experiments. First of all, we consider the optimization times

for the most frequent replacement and all static pure aging variants. Note, that in [25,

26] the smallest age distance replacement was analyzed in very much the same way.

Second, we compare the optimization times of the other replacement strategies with

most frequent replacement. The results of the different experiments are given in the

following subsections.

4.1 Optimization Times of the Most Frequent Replacement Strategy

We analyze the optimization times of most frequent replacement combined with the

three static pure aging strategies and different values for the size µ of the collection of

search points. Table 1 shows the resulting bounds on the expected optimization times

for this setting due to Corollary 2 for the lower bounds, Corollary 1 for the upper bound

of age-based and pessimistic value-based aging and Theorem 3 for the improved upper

bound of optimistic value-based aging. Note, that we also inserted the concrete value

for τ that is used within the experiments when deriving these bounds. We see that for

the considered parameter settings we have a gap of Θ(µ) for age-based and pessimistic

value-based aging while for the optimistic value-based we have a tight result.

For each setting we perform 100 independent runs and plot the results using box-

and-whisker plots providing the mean together with the minimum, maximum, upper

and lower quartile of the 100 runs for n ∈ {20, 40, . . . , 1000}. Due to the excessive

computation time, we consider only n ∈ {20, 40, . . . , 340} for µ = n (all variants)

and n ∈ {20, 40, . . . , 460} for µ = 2 (optimistic value-based). The results are shown

in Figure 3 for age-based aging, in Figure 4 for optimistic value-based aging and in

Figure 5 for pessimistic value-based aging where the number of iterations are drawn

in logarithmic scale. To facilitate comparison we plot the medians for all sizes of the

collection of search points in one joint diagram in each case (Figure 3-5, bottom) in

linear scale.

Like in [25,26] for smallest age distance replacement, it is obvious that also for

most frequent replacement the variance decreases with increasing size of the collection

of search points. This is due to the fact that the probability for a partial restart increases

with increasing µ. Consider the situation just after the first individual reached the local

optimum. In the extreme case µ = 2 there is only one other individual left that needs

to enter the local optimum with a different age in order to allow for a partial restart.

For larger µ more trials are possible. If the algorithm fails to perform a partial restart,

a complete restart is required. Certainly, complete restarts are rather expensive and

lead to larger variances in the optimization time. For µ = n we see that generally no

30

n

it
er
a
ti
o
n
s

µ = 2
median

0 200 400 600 800 1000

1e+01

1e+03

1e+05

1e+09

1e+07

n

n

it
er
a
ti
o
n
s

µ =
⌊√

n
⌋

median

0 200 400 600 800 1000

1e+01

1e+03

1e+05

1e+09

1e+07

n

it
er
a
ti
o
n
s

µ = ⌊n/ log n⌋
median

0 200 400 600 800 1000

1e+01

1e+03

1e+05

1e+09

1e+07

+08

n

it
er
a
ti
o
n
s

µ = n
median

0 100 200 300

1e+01

1e+03

1e+05

1e+09

1e+07

n

it
er
a
ti
o
n
s

median µ = 2

median µ =
⌊√

n
⌋

median µ = ⌊n/ log n⌋
median µ = n

0

0

100 200 300 400 500 600 700 800 900 1000

1e+07

2e+07

3e+07

4e+07

5e+07

6e+07

7e+07

8e+07

72.61n2

20.51n2

4.05n2 logn

6.05n2 log2 n

Fig. 3 Experimental results for most frequent replacement and age-based aging with different
values for the size µ of the collection of search points.

31

n

it
er
a
ti
o
n
s

µ = 2
median

0 100 200 300 400

1e+01

1e+03

1e+05

1e+09

1e+07

n

n

it
er
a
ti
o
n
s

µ =
⌊√

n
⌋

median

0 200 400 600 800 1000

1e+01

1e+03

1e+05

1e+09

1e+07

n

it
er
a
ti
o
n
s

µ = ⌊n/ log n⌋
median

0 200 400 600 800 1000

1e+01

1e+03

1e+05

1e+09

1e+07

+08

n

it
er
a
ti
o
n
s

µ = n
median

0 100 200 300

1e+01

1e+03

1e+05

1e+09

1e+07

n

it
er
a
ti
o
n
s

median µ = 2

median µ =
⌊√

n
⌋

median µ = ⌊n/ log n⌋
median µ = n

0

0

100 200 300 400 500 600 700 800 900 1000

1e+08

2e+08

3e+08

4e+08

39.43n3

104.51n2.5/ logn

14.87n2 logn

6.05n2 log2 n

Fig. 4 Experimental results for most frequent replacement and optimistic value-based aging
with different values for the size µ of the collection of search points.

32

n

it
er
a
ti
o
n
s

µ = 2
median

0 200 400 600 800 1000

1e+01

1e+03

1e+05

1e+09

1e+07

n

n

it
er
a
ti
o
n
s

µ =
⌊√

n
⌋

median

0 200 400 600 800 1000

1e+01

1e+03

1e+05

1e+09

1e+07

n

it
er
a
ti
o
n
s

µ = ⌊n/ log n⌋
median

0 200 400 600 800 1000

1e+01

1e+03

1e+05

1e+09

1e+07

+08

n

it
er
a
ti
o
n
s

µ = n
median

0 100 200 300

1e+01

1e+03

1e+05

1e+09

1e+07

n

it
er
a
ti
o
n
s

median µ = 2

median µ =
⌊√

n
⌋

median µ = ⌊n/ log n⌋
median µ = n

0

0

100 200 300 400 500 600 700 800 900 1000

1e+07

2e+07

3e+07

4e+07

5e+07

6e+07

7e+07

8e+07

77.89n2

17.40n2

4.05n2 logn

6.05n2 log2 n

Fig. 5 Experimental results for most frequent replacement and pessimistic value-based aging
with different values for the size µ of the collection of search points.

33

complete restarts occur during the optimization process and we succeed in performing

a suitable crossover operation when we reach the local optimum for the first time.

Moreover, we see that the variance is larger for optimistic value-based aging than for

the other two variants. This is due to the fact, that here crossover is not able to create

a search point with a different age in the local optimum whereas this is possible for

the other two aging variants. Additionally, the variance for age-based aging is slightly

larger than for pessimistic value-based aging. This can again be explained with the

effects of the crossover operator: in pessimistic value-based aging always the age of the

worse search point is inherited (if it is not an improvement). In case of a crossover

of a locally optimal search point x and a worse search point y that creates another

locally optimal search point z, this means that another age is introduced if y.age was

not already present in the local optimum. Since the first locally optimal search point

is always created by means of mutation, this is always the case as long as there is

only one age value in the local optimum. Thus, in this situation a suitable crossover

operation always introduces a second age. This is not true for the age-based variant

as additionally y.age > x.age must hold. We conclude that pessimistic value-based

aging is more robust than age-based aging with respect to introducing a second age

and hence allowing for a partial restart whereas optimistic value-based aging is least

robust in this respect.

We compare the effects of the size of the collection of search points (Figure 3-5,

bottom). First, note that not only the theoretical upper and lower bounds for age-based

and pessimistic value-based aging are identical but in fact there is hardly any difference

visible in the experimental results. This lack of empirical difference is also present in

the experimental results for µ = n in all three aging variants. For the optimistic value-

based variant, we see that the experimental results are in good accordance with the

theoretical results, namely µ = ⌊n/ log n⌋ being the fastest and µ = 2 being by far the

worst.

For the age-based and pessimistic value-based variant, surprisingly, the algorithm

with size µ = 2 is clearly outperformed by its counterparts with sizes µ = ⌊√n⌋ and

µ = ⌊n/ log n⌋. This shows that (at least for not too large values of n) the asymptotic

theoretical results are misleading from a practical point of view. This is due to the

large constants hidden in the derived asymptotic bounds and thus, these bounds do

not reflect the actual optimization times on the small input sizes considered in the

experimental study. However, it is not clear how large n needs to be chosen in order

to obtain results that are in correspondence with the asymptotic theoretical results.

We speculate that our upper bounds are not tight. We support this hypothesis

by plotting the fitted lower bounds together with the empirical mean in Figure 3-5

(bottom) and find a good fit in all cases. That larger sizes of the collection of search

points outperform the choice µ = 2 at least partially contradicts the theoretical results.

Thus, we take a closer look by comparing the quotients of the observed means.

The theoretical bounds predict the quotient for µ = 2 over µ = ⌊n/ log n⌋ to

converge to 0. For µ = 2 over µ = ⌊√n⌋ it should be bounded above by a positive

constant. Note that the theoretical bounds are asymptotic and predict this behavior

for n → ∞. For µ = 2 over µ = ⌊n/ log n⌋ (Figure 6(b) and Figure 6(d)) we see

that after an increase for small values of n the quotient does indeed decrease. We

fit the graph of the linear function a · x + b to the data and see that already for

n ≤ 1000 the results match the asymptotic bounds. Things are different for µ = 2

over µ = ⌊√n⌋ (Figure 6(a) and Figure 6(c)). Instead of being obviously bounded the

quotient increases. This impression is confirmed when fitting a · x + b to the data. It

34

n
0

0

2

4

6

8

200 400 600 800 1000

logn
q
u
o
ti
en

t

quotient
0.002229x + 1.96

(a) µ = 2 and µ =
⌊√

n
⌋

, age-based

n
0

0

2

4

6

8

200 400 600 800 1000

q
u
o
ti
en

t

quotient
−0.000274x + 2.29

(b) µ = 2 and µ = ⌊n/ logn⌋, age-based

n
0

0

2

4

6

8

200 400 600 800 1000

+08
q
u
o
ti
en

t

quotient
0.004185x + 1.51

(c) µ = 2 and µ =
⌊√

n
⌋

, pessimistic value-
based

n
0

0

2

4

6

8

200 400 600 800 1000

q
u
o
ti
en

t

quotient
−0.000153x + 2.29

(d) µ = 2 and µ = ⌊n/ logn⌋, pessimistic
value-based

Fig. 6 Quotient of the observed medians.

is impossible to say from these experiments if the values of n considered are still too

small or if the high variance is to blame.

4.2 Comparison of the Different Replacement Strategies

In order to compare the four replacement strategies from Definition 3 we perform

experiments with all four of them and the parameter settings from above. We fix the

maximal number of iterations executed to the corresponding upper quartile from the

first set of experiments. The results are given as a plot for each µ and aging variant

showing the number of successful runs within 100 independent runs for considered

values of n: Figure 7 for age-based aging, Figure 8 for optimistic value-based aging and

Figure 9 for pessimistic value-based aging.

In all settings considered it becomes apparent that the success rate of random re-

placement and fewest replacement starts decreasing for n ≈ 100 and then converges

to 0 very quickly. We can conclude that already for quite small values of n these two

strategies are ineffective since with high probability one single age takes over the popu-

lation in the local optimum, preventing the algorithm from performing a partial restart.

This can be observed for all three aging variants. Note, that we only derived bounds for

these two replacement strategies in the optimistic value-based variant. However, the

experimental results support our speculation that similar bounds hold for the other

two aging strategies.

35

n

su
cc
es
s
ra
te

most frequent
smallest age distance

fewest
random

75

0
0

20

40

60

80

100

200 400 600 800 1000

logn

(a) µ = 2

n

su
cc
es
s
ra
te

most frequent
smallest age distance

fewest
random

75

0
0

20

40

60

80

100

200 400 600 800 1000

(b) µ =
⌊√

n
⌋

n

su
cc
es
s
ra
te

most frequent
smallest age distance

fewest
random

75

0
0

20

40

60

80

100

200 400 600 800 1000

+08

(c) µ = ⌊n/ logn⌋
n

su
cc
es
s
ra
te

most frequent
smallest age distance

fewest
random

75

0
0

20

40

50

60

80

100

100

150 200 250 300

(d) µ = n

Fig. 7 Experimental results for the different replacement strategies and age-based aging.

In contrast to that observation both most frequent replacement and smallest age

distance replacement are effective. Note, that for most frequent replacement we expect

a success rate of 75% since we use the upper quartile of the number of iterations

during 100 independent runs of this algorithmic variant. Our expectations are met

in all settings considered here. Surprisingly, the success rate of smallest age distance

replacement is larger for increasing size of the collection of search points µ for the

limited range of values inspected. This is in particular true for age-based and pessimistic

value-based aging where for µ = n a success rate of nearly 100% is realized. Note, that

the effect is already visible for µ = ⌊√n⌋ and µ = ⌊n/ log n⌋. For optimistic value-

based aging the superiority of smallest age distance replacement is not that obvious.

It appears that the success rate for µ = ⌊√n⌋ and µ = ⌊n/ log n⌋ is slightly higher but

surprisingly it is not for µ = n. Thus, it is not clear if these effects are only due to the

random fluctuation.

The observations can be explained as follows. Since in optimistic value-based aging

crossover does not help in creating different ages in the local optimum, we expect less

different ages in the local optimum in comparison to the other two aging variants. Ad-

ditionally, most frequent replacement tends to quickly equally distribute the quantities

of the different age values. Having more age values, decreases the proportion of a single

age value and decreases the probability to perform an appropriate crossover operation

in a single restart. In smallest age distance replacement, the initial proportions of the

different ages are not changed. It seems that for age-based and pessimistic value-based

aging partial restarts and the effects of several successive partial restarts are more ef-

36

n

su
cc
es
s
ra
te

most frequent
smallest age distance

fewest
random

75

0
0

20

40

50

60

80

100

100

150 200 250 300

logn

(a) µ = 2

n

su
cc
es
s
ra
te

most frequent
smallest age distance

fewest
random

75

0
0

20

40

60

80

100

200 400 600 800 1000

(b) µ =
⌊√

n
⌋

n

su
cc
es
s
ra
te

most frequent
smallest age distance

fewest
random

75

0
0

20

40

60

80

100

200 400 600 800 1000

+08

(c) µ = ⌊n/ logn⌋
n

su
cc
es
s
ra
te

most frequent
smallest age distance

fewest
random

75

0
0

20

40

50

60

80

100

100

150 200 250 300

(d) µ = n

Fig. 8 Experimental results for the different replacement strategies and optimistic value-based
aging.

fective if the quantities of different age values are not equally distributed whereas for

optimistic value-based aging both mechanisms yield very similar performance.

5 Conclusions

Aging is a nature-inspired mechanism that aims at maintaining some degree of diversity

within a collection of search points. It has been implemented and applied in different

general randomized search heuristics, most notably in artificial immune systems and

evolutionary algorithms. In the context of artificial immune systems, static pure aging

is the most important aging mechanism.

In static pure aging search points are rewarded for being an improvement by as-

signing them age 0. This lets them explore the search space for the complete maximal

lifespan τ . Search points that fail to excel over the search points they originate from

are punished by inheriting their age. While this general idea is clear, there are many

different concrete ways to implement it. We have investigated twelve different concrete

instantiations of static pure aging and analyzed their performance on one carefully

chosen example problem. The example problem is constructed in a way that the use of

aging is necessary to allow for efficient optimization. Theoretical and empirical analyses

allow for a more complete understanding of static pure aging.

The main finding is that static pure aging can be sub-divided into the aging strategy

and a replacement strategy. The aging strategy determines the way a new search point

is assigned its age. This is not entirely clear in the case the new search point fails to be

37

n

su
cc
es
s
ra
te

most frequent
smallest age distance

fewest
random

75

0
0

20

40

60

80

100

200 400 600 800 1000

logn

(a) µ = 2

n

su
cc
es
s
ra
te

most frequent
smallest age distance

fewest
random

75

0
0

20

40

60

80

100

200 400 600 800 1000

(b) µ =
⌊√

n
⌋

n

su
cc
es
s
ra
te

most frequent
smallest age distance

fewest
random

75

0
0

20

40

60

80

100

200 400 600 800 1000

+08

(c) µ = ⌊n/ logn⌋
n

su
cc
es
s
ra
te

most frequent
smallest age distance

fewest
random

75

0
0

20

40

50

60

80

100

100

150 200 250 300

(d) µ = n

Fig. 9 Experimental results for the different replacement strategies and pessimistic value-
based aging.

an improvement. The replacement strategy determines the way the new search point

is introduced in the collection of search points. Both aspects can be implemented in

different ways and arbitrarily combined with each other. We considered three aging

strategies and four replacement strategies yielding twelve concrete variants of static

pure aging. These three main parameters of aging, the aging strategy, the replacement

strategy, and the maximal age allow for a rich, diverse, and interesting behavior of

static pure aging. We presented an in-depth analysis using theoretical analysis as well

as experimental investigation.

We summarize the results of the theoretical analysis in Table 2. We considered

twelve variants of static pure aging that result as a combination of three different

aging strategies with four different replacement strategies.

For the fewest and random replacement strategies we proved that optimistic value-

based aging leads to inefficient optimization of the example function. In other words,

actively destroying age diversity renders static pure aging in the optimistic value-based

variant useless. We conjecture that this holds for the other two aging variants, too.

Finding such a proof is an open problem. The other two replacement strategies both

aim at generating and preserving some age diversity and they both lead to efficient op-

timization of the example function for each aging strategy. The optimistic value-based

variant restricts the role crossover can play when optimizing the example function.

This facilitates the analysis and allows us to prove asymptotically tight bounds for the

most frequent replacement strategy. Finding tight bounds for the other five efficient

variants is still an open problem.

3
8

age-based pessimistic value-based optimistic value-based

most frequent O
(

µ ·
(

τ + n2 + µn logn
))

O
(

µ ·
(

τ + n2 + µn logn
))

Θ
((

1 + n
µ logµ

)

·
(

τ + n2 + µn logn
)

)

Corollary 1 Corollary 1 Theorem 3
Ω
(

τ + n2 + µn logn
)

Ω
(

τ + n2 + µn logn
)

Corollary 2 Corollary 2

smallest age distance O
(

µ ·
(

τ + n2 + µn logn
))

O
(

µ ·
(

τ + n2 + µn logn
))

O
((

µ+ n
log µ

)

·
(

τ + n2 + µn logn
)

)

Theorem 1 Theorem 1 Theorem 1

Ω
(

τ + n2 + µn logn
)

Ω
(

τ + n2 + µn logn
)

Ω
((

1 + n
µ logµ

)

·
(

τ + n2 + µn logn
)

)

Theorem 2 Theorem 2 Theorem 2

random 2O(n) 2O(n) 2Θ(n)

Theorem 5

fewest 2O(n) 2O(n) 2Θ(n)

Theorem 4

T
a
b
le

2
S
u
m
m
a
ry

o
f
th
e
b
o
u
n
d
s
o
n
th
e
ex

p
ected

o
p
tim

iza
tio

n
tim

e
fo
r
a
ll
tw

elv
e
va

ria
n
ts

o
f

A
lg
o
rith

m
1
.

39

The supplementary experimental study gives further insights into the algorithms

under consideration. On one hand, the role of the size of the collection of search points

for most frequent replacement is investigated. We see that just like in smallest age

distance replacement analyzed in [25,26], the variance is mostly dominated by the

number of restarts needed and this number decreases with increasing population size.

Thus, larger populations come with the benefit of greater reliability but at the cost

of increased optimization time if the population size becomes too large. For small and

reasonable problem sizes and rather small population sizes the theoretical bounds are

misleading. Increasing the population size under these circumstances actually increases

efficiency.

On the other hand, the different replacement strategies are compared. It becomes

obvious that fewest replacement as well as random replacement lead to inefficient opti-

mization even for small problem sizes. Moreover, for optimistic value-based aging most

frequent and smallest age distance replacement behave very similar. However, this is

not true for the other two aging variants. Here, it appears that smallest age distance

replacement is slightly more efficient than most frequent replacement. It is an open

problem to determine if the empirical differences actually corresponds to asymptotical

different bounds.

The combination of empirical and theoretical results together shed light on the

functioning of aging. It has become evident that the structure of aging involves not

only an important role for the maximal age but also for the specific aging and replace-

ment strategies. These aspects can all be studied in isolation and combined in almost

arbitrary ways. By means of the specific example function it has become evident that

aging can achieve beneficial effects that are difficult if not impossible to achieve oth-

erwise. These effects, however, are very sensitive with respect to the implementation

detail. It is therefore for any paper concerned with aging, theoretical as well as practi-

cal, a necessity to report every detail of the specific kind of aging involved. Only this

can lead to joint research that paves the way for a more informed and efficient use of

aging for solving important problems.

Acknowledgements The authors thank Nicola Beume for suggesting to consider different
replacement strategies. This material is based in part upon works supported by the Science
Foundation Ireland under Grant No. 07/SK/I1205.

References

1. D. A. Ackley. A Connectionist Machine for Genetic Hillclimbing. Kluwer Academic
Publishers, 1987.

2. M. Castrogiovanni, G. Nicosia, and R. Rascunà. Experimental analysis of the aging op-
erator for static and dynamic optimisation problems. In B. Apolloni, R. J. Howlett, and
L. C. Jain, editors, Proceedings of the 11th International Conference on Knowledge-Based
and Intelligent Information & Engineering Systems (KES 2007), volume 4694 of Lecture
Notes in Computer Science, pages 804–811. Springer, 2007.

3. D.-H. Choi. Cooperative mutation based evolutionary programming for continuous func-
tion optimization. Operations Research Letters, 30(3):195–201, 2002.

4. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms,
volume 2nd. MIT Press, 2001.

5. V. Cutello, D. Lee, S. Leone, G. Nicosia, and M. Pavone. Clonal selection algorithm with
dynamic population size for bimodal search spaces. In L. Jiao, L. Wang, X. Gao, J. Liu, and
F. Wu, editors, Proceedings of the 2nd International Conference on Advances in Natural
Computation (ICNC 2006), volume 4221 of Lecture Notes in Computer Science, pages
949–958. Springer, 2006.

40

6. V. Cutello, G. Morelli, G. Nicosia, and M. Pavone. Immune algorithms with aging oper-
ators for the string folding problem and the protein folding problem. In G. R. Raidl and
J. Gottlieb, editors, Proceedings of the 5th European Conference on Evolutionary Com-
putation in Combinatorial Optimization (EvoCOP 2005), volume 3448 of Lecture Notes
in Computer Science, pages 80–90. Springer, 2005.

7. V. Cutello and G. Nicosia. Multiple learning using immune algorithms. In Proceedings of
the 4th International Conference on Recent Advances in Soft Computing (RASC 2002),
pages 102–107, 2002.

8. V. Cutello, G. Nicosia, and M. Pavone. A hybrid immune algorithm with information
gain for the graph coloring problem. In Proceedings of the 5th Annual Conference on
Genetic and Evolutionary Computation (GECCO 2003), volume 2723 of Lecture Notes in
Computer Science, pages 171–182. Springer, 2003.

9. V. Cutello, G. Nicosia, and M. Pavone. Exploring the capability of immune algorithms: A
characterization of hypermutation operators. In G. Nicosia, V. Cutello, P. J. Bentley, and
J. Timmis, editors, Proceedings of the 3rd International Conference on Artificial Immune
Systems (ICARIS 2004), volume 3239 of Lecture Notes in Computer Science, pages 263–
276. Springer, 2004.

10. V. Cutello, G. Nicosia, and M. Pavone. An immune algorithm with hyper-macromutations
for the dill’s 2d hydrophobic-hydrophilic model. In Proceedings of the 6th IEEE Congress
on Evolutionary Computation (CEC 2004), pages 1074–1080. IEEE Press, 2004.

11. V. Cutello, G. Nicosia, and M. Pavone. An immune algorithm with stochastic aging and
Kullback entropy for the chromatic number problem. Journal of Combinatorial Optimiza-
tion, 14(1):9–33, 2007.

12. V. Cutello, G. Nicosia, M. Pavone, and J. Timmis. An immune algorithm for protein
structure prediction on lattice models. IEEE Transactions on Evolutionary Computation,
11(1):101–117, 2007.

13. V. Cutello, G. Nicosia, M. Romeo, and P. S. Oliveto. On the convergence of immune
algorithms. In Proceedings of the IEEE Symposium on Foundations of Computational
Intelligence (FOCI 2007), pages 409–415. IEEE Press, 2007.

14. D. Dasgupta and L. F. Niño. Immunological Computation: Theory and Applications.
Auerbach, 2008.

15. W. Feller. An Introduction to Probability Theory and Its Applications. Volume I. Wiley,
1968.

16. T. Friedrich, P. S. Oliveto, D. Sudholt, and C. Witt. Analysis of diversity-preserving
mechanisms for global exploration. Evolutionary Computation, 17(4):455–476, 2009.

17. A. Ghosh, S. Tsutsui, and H. Tanaka. Individual aging in genetic algorithms. In Australian
New Zealand Conference on Intelligent Information Systems, pages 276–279. IEEE Press,
1996.

18. G. Harik, E. Cantú-Paz, D. Goldberg, and B. Miller. The gambler’s ruin problem, genetic
algorithms, and the sizing of populations. Evolutionary Computation, 7(3):231–253, 1999.

19. G. S. Hornby. ALPS: the age-layered population structure for reducing the problem of
premature convergence. In Proceedings of the 8th Annual Conference on Genetic and
Evolutionary Computation (GECCO 2006), pages 815–822. ACM Press, 2006.

20. G. S. Hornby. Steady-state ALPS for real-valued problems. In Proceedings of the 11th
Annual Conference on Genetic and Evolutionary Computation (GECCO 2009), pages
795–802. ACM, 2009.

21. G. S. Hornby. A steady-state version of the age-layered population structure EA. In D. E.
Goldberg, J. R. Koza, R. Riolo, U.-M. O’Reilly, and T. McConaghy, editors, Genetic
Programming Theory and Practice VII, Genetic and Evolutionary Computation, pages
87–102. Springer, 2010.

22. C. Horoba, T. Jansen, and C. Zarges. Maximal age in randomized search heuristics with
aging. In Proceedings of the 11th Annual Conference on Genetic and Evolutionary Com-
putation (GECCO 2009), pages 803–810. ACM Press, 2009.

23. T. Jansen and I. Wegener. On the analysis of evolutionary algorithms – a proof that
crossover really can help. Algorithmica, 34(1):47–66, 2002.

24. T. Jansen and C. Zarges. Comparing different aging operators. In Proceedings of the 8th
International Conference on Artificial Immune Systems (ICARIS 2009), volume 5666 of
Lecture Notes in Computer Science, pages 95–108. Springer, 2009.

25. T. Jansen and C. Zarges. Aging beyond restarts. In Proceedings of the 12th Annual
Conference on Genetic and Evolutionary Computation (GECCO 2010), pages 705–712.
ACM Press, 2010.

41

26. T. Jansen and C. Zarges. On the benefits of aging and the importance of details. In
Proceedings of the 9th International Conference on Artificial Immune Systems (ICARIS
2010), volume 6209 of Lecture Notes in Computer Science, pages 61–74. Springer, 2010.

27. K. A. D. Jong. Evolutionary Computation. A Unified Approach. MIT Press, 2006.
28. S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing.

Science, 220:671–680, 1983.
29. N. Kubota and T. Fukuda. Genetic algorithms with age structure. Soft Computing,

1(4):155–161, 1997.
30. R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press, 1995.
31. H.-P. Schwefel and G. Rudolph. Contemporary evolution strategies. In F. Morán,

A. Moreno, J. J. M. Guervós, and P. Chacón, editors, Proceedings of the 3rd European
Conference on Artificial Life (ECAL 1995), volume 929 of Lecture Notes in Computer
Science, pages 893–907. Springer, 1995.

32. G. Stracquadanio, C. Drago, V. Romano, and G. Nicosia. An immunological algorithm for
doping profile optimization in semiconductors design. In Proceedings of the 9th Interna-
tional Conference on Artificial Immune Systems (ICARIS 2010), volume 6209 of Lecture
Notes in Computer Science, pages 213–222. Springer, 2010.

33. C. Witt. Runtime analysis of the (µ+1) EA on simple pseudo-Boolean functions. Evolu-
tionary Computation, 14(1):65–86, 2006.

