
Aberystwyth University

Transforming Evolutionary Search into Higher-Level Evolutionary Search by
Capturing Problem Structure
Mills, Rob; Jansen, Thomas; Watson, Richard

Published in:
IEEE Transactions on Evolutionary Computation

DOI:
10.1109/TEVC.2014.2347702

Publication date:
2014

Citation for published version (APA):
Mills, R., Jansen, T., & Watson, R. (2014). Transforming Evolutionary Search into Higher-Level Evolutionary
Search by Capturing Problem Structure. IEEE Transactions on Evolutionary Computation, 18(5), 628-642.
https://doi.org/10.1109/TEVC.2014.2347702

General rights
Copyright and moral rights for the publications made accessible in the Aberystwyth Research Portal (the Institutional Repository) are
retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the Aberystwyth Research Portal for the purpose of private study or
research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the Aberystwyth Research Portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

tel: +44 1970 62 2400
email: is@aber.ac.uk

Download date: 11. Dec. 2021

https://doi.org/10.1109/TEVC.2014.2347702
https://pure.aber.ac.uk/portal/en/persons/thomas-jansen(56fd5946-bf48-4241-8410-1f5be209c6f1).html
https://pure.aber.ac.uk/portal/en/publications/transforming-evolutionary-search-into-higherlevel-evolutionary-search-by-capturing-problem-structure(a001ea82-d731-449d-9209-ccab319daa8f).html
https://pure.aber.ac.uk/portal/en/publications/transforming-evolutionary-search-into-higherlevel-evolutionary-search-by-capturing-problem-structure(a001ea82-d731-449d-9209-ccab319daa8f).html
https://doi.org/10.1109/TEVC.2014.2347702

IEEE TRANSACTION ON EVOLUTIONARY COMPUTATION 1

Transforming Evolutionary Search Into
Higher-Level Evolutionary Search by Capturing

Problem Structure
Rob Mills, Thomas Jansen, Richard A. Watson

Abstract—The intuitive idea that good solutions to small
problems can be reassembled into good solutions to larger
problems is widely familiar in many fields including evolutionary
computation. This idea has motivated the building-block hy-
pothesis and model-building optimisation methods that aim to
identify and exploit problem structure automatically. Recently,
a small number of works make use of such ideas by learning
problem structure and using this information in a particular
manner: these works use the results of a simple search process
in primitive units to identify structural correlations (such as
modularity) in the problem that are then used to redefine
the variational operators of the search process. This process
is applied recursively such that search operates at successively
higher scales of organisation, hence multi-scale search. Here
we show for the first time that there is a simple class of
(modular) problems that a multi-scale search algorithm can solve
in polynomial time that requires super-polynomial time for other
methods. We discuss strengths and limitations of the multi-scale
search approach and point out how it can be developed further.

Index Terms—Evolutionary computation, automatic problem
decomposition, linkage-learning, modularity, scalability

I. INTRODUCTION

MULTI-SCALE search is an approach to evolutionary
optimisation that involves the repeated creation of

new variational units, each time transforming the search to
a higher, more refined scale. The basic evolutionary tenet
of selecting among high-fitness variants is maintained, but
unlike other conventional approaches, variation is repeatedly
re-scaled by canalising novel combinations of units discovered
at the previous scale. Here we focus on identifying a niche for
which multi-scale search is unique in scaling polynomially,
and via this result, elucidate conceptual differences between
this and existing approaches. We also point out limitations of
the approach and discuss ways to develop it further.

A. Divide-and-conquer, and multi-scale search

Solving a problem by dividing it into smaller more manage-
able problems, or in a bottom-up process, assembling good
solutions to small problems to find good solutions to large
problems, is a familiar concept in conventional engineering

R. Mills and R. A. Watson are members of ECS, University of Southampton,
SO17 1BJ, UK. email: rob.mills@soton.ac.uk.

T. Jansen is a member of Department of Computer Science, Aberystwyth
University, Aberystwyth SY23 3DB, UK

Copyright (c) 2014 IEEE. Personal use of this material is permitted. How-
ever, permission to use this material for any other purposes must be obtained
from the IEEE by sending a request to pubs-permissions@ieee.org

(problem decomposition and modular design [1], [2], [4]) and
artificial intelligence (e. g., dynamic programming, memoisa-
tion and chunking [5]–[7]) as well as evolutionary computation
[8]–[10]. The building-block hypothesis (BBH) [11], [12] in
particular, suggests that the reason the genetic algorithm (GA)
works well when it does is because crossover allows good low-
order (small) building blocks to be recombined to find good
building-blocks of higher order [13], [14]. The notion that this
process scales up the search from exploring combinations of
bits to exploring combinations of blocks, and so on, is quite
clear in the original motivation [11], [12].

Here we concentrate on a general class of algorithms that we
call multi-scale search. They have the property that the search
operators are (repeatedly) redefined, creating a new search
process at a higher scale of organisation. In particular, this re-
definition is achieved by identifying strongly correlated subsets
of variables from multiple results of local search in the current
search space, and consequently reducing the dimensionality
of subsequent search. Creating a macro-variation operator
exploits these correlations by enabling specific simultaneous
state changes in the problem variables i. e., modular vari-
ation. Thus, a multi-scale search method initially searches
combinations of the original problem variables, and as it
progresses, changes the search space so that it starts to search
in combinations of modules – and this transformation may
be repeated at several scales of organisation. Here, unlike the
action of crossover shown in [15], we are only interested
in methods that are applicable to random linkage problems
where there is no a priori information about the location or
even the size of modules at any scale of organisation. Aside
from our own work [16], [17] and Iclanzan and Dumitrescu’s
building-block hill climber (BBHC) [18], there are a small
number of earlier works that also exhibit features of multi-
scale search with different emphases including [19]–[21]. We
discuss related work in Section II.

Our recent work has developed a number of methods and
test cases that explore multi-scale search extensively. This
includes the MACRO algorithm [16] which has several variants:
MACRO-H (as used in most of this paper) makes explicit,
discrete and irreversible ‘joins’ between problem variables
(‘H’ for hard joins). MACRO-S, in contrast, makes probabilistic
joins and modules are never encapsulated explicitly (‘S’ for
soft joins). Using the latter we have shown that this type of
method can work effectively in problems where the modules
are not disjoint, which thus differ qualitatively from separable
test problems. We have also shown that the algorithm can

2 IEEE TRANSACTION ON EVOLUTIONARY COMPUTATION

be distributed such that the join between any given pair
of variables is the sole responsibility of the two variables
involved, rather than the mandate of a centralised model-
building process or a centralised data-structure [17]. This type
of distributed model then becomes a type of adaptive network
[22] where the correlation of variables affects the structure
of joins, and concurrently, the structure of joins affects the
correlation of variables.

Because there are several different approaches to the general
idea of multi-scale search, here we describe the main char-
acteristics of multi-scale search that are common to simple
versions of MACRO and the BBHC:

1) Evolutionary search with the current units. At the
core of multi-scale search is a simple process of variation
and selection. This is, in a sense, a ‘local’ search process
but crucially it must be able to operate in a search
neighbourhood that is defined by a set of variational
units that change over time – it searches in the space
of single-unit changes, not merely single-bit changes,
and these units become larger and larger as search pro-
gresses. To distinguish from non-rescaling local search,
we refer to this simple search process as unit-exploiting
search. In principle, unit-exploiting search does not have
to literally be a hill-climber – it may be any search
method that exploits the current level of units identified,
e. g., a population-based method. In MACRO-S higher-
level units are probabilistic entities (built on-the-fly
from linkage information as needed), but in BBHC and
MACRO-H they are simply sets (schemata) of units from
the previous level that are permanently joined together.

2) Redefining variational units. While the lowest scale
of search unit is defined by the problem variables given,
the higher scales of search units (which effect a lower-
dimensional search space) are automatically discovered
as the algorithm progresses. The lower-dimensional
spaces are created by defining new variational units,
which are based on structural linkage information that
is learned from a high-fitness set of genotypes provided
by search at the previous scale. This information may
be based on bijective mappings as in the BBHC or on
correlations [17], [23].

3) Separation of timescales. The set of configurations
from one scale of search, used to identify the structure
for the next scale of search, must reveal high-fitness
combinations of units. We can achieve this by searching
with the current units rapidly, and forming new units
relatively slowly. Specifically, with sufficient separation
in these timescales, each configuration used will be at or
near a local optimum in the neighbourhood defined by
the current units. Multi-scale search is thus produced by
repeatedly applying the two phases of: i) search with
the current variational units; and ii) identification of
linkage to form new variational units. Or more generally,
it can be produced by applying these two processes
continuously at different timescales [17], [24].

4) Diverse sampling. Lastly, the set of configurations used
to identify the structure for the next scale of search

must avoid being overly converged on one particular way
of achieving high-fitness. Accordingly, search with the
current variational units is applied repeatedly from many
different initial conditions. This search may either be
done in parallel, as in the version of MACRO used here,
or in series by regularly perturbing the state variables of
the search process [17], [23], [25], [26].

B. What is multi-scale search good for?

These characteristics accommodate a large space of possible
approaches to multi-scale search as explored in the algorithms
examined above. However, in this paper our aim is to return to
something very simple in order to assess whether the various
methods previously investigated have a sound algorithmic ba-
sis and to formally characterise exactly what multi-scale search
can do that other algorithms cannot. For this investigation we
consider MACRO-H, as defined in Section IV.

In this paper we consider separable and hierarchical prob-
lems. We start with separable problems and present a simple
test problem that is sufficient for our purposes: a two-scale
building-block style problem (i. e., bits into blocks, and blocks
into the problem as a whole, without any further hierarchical
levels), with separable and disjoint modules.

We previously used a tight-linkage problem of this type to
demonstrate building-block recombination in the GA [15] (see
also Section II), but here we use a random-linkage version of
this problem that has not previously been shown to be solvable
in polynomial time by any other algorithm. Our main result is
to show for the first time that multi-scale search, specifically
MACRO-H, solves random linkage problems of this class in
polynomial time, specifically, O(n log n), where n is the prob-
lem size. We do this by showing that, unlike other algorithms,
MACRO-H is polynomial in both the size and the number
of modules of a separable problem. Moreover, a hierarchical
version of this problem is not separable (it contains O(n)
dependencies). But because MACRO-H identifies modules at
each level explicitly and in polynomial time, it can thus solve
the next level in polynomial time, and so on.

The remainder of the paper is structured as follows. In the
following section we discuss previous work. In Section III we
define the class of problems we are interested in and define a
specific test problem. Section IV contains a formal definition
of MACRO-H. We analyse the performance of MACRO-H on
our test problem and explain why other approaches are much
less efficient in Section V. In Section VI we provide simulation
results to reinforce the analytic results. We consider a hierar-
chical variant of the test problem in Section VII. Afterwards,
in Section VIII, we discuss limitations and possible extensions
of the approach. Section IX concludes the paper.

II. PREVIOUS WORK

A. On learning linkage and module sizing

Early work attempting to demonstrate building-block re-
combination on an idealised test problem famously failed to
show that a GA could solve something that a hill-climber could
not. This failure was mostly due to the use of test problems
that do not exhibit local optima that can trap a hill-climber.

MILLS, JANSEN, WATSON: TRANSFORMING LOCAL SEARCH INTO HIGHER-LEVEL SEARCH BY CAPTURING PROBLEM STRUCTURE 3

In other words, although the problem was easy for the GA, it
was also easy for the hill-climber [14], [27].

As a consequence of this failure, the idea that low-order fit-
ness contributions should be deceptive [28], thus leading a hill-
climber to become trapped on inferior local optima, became
common place in GA test problems/analytical treatments.
However, although the deception made problems sufficiently
difficult for a hill-climber, it also made it difficult for the
GA to find good building-blocks. Specifically, fully-deceptive
sub-problems have the property that all local fitness gradients
within the block lead search away from the best solutions.
Such problems can therefore only be solved by search that is
exponential in the size of the block – this is usually provided
by making the population size sufficiently large such that
solutions to building blocks are present in the initial population
[29]. For such an approach to retain an overall time complexity
that is a polynomial function of the total problem size, the size
of building-blocks must thus be limited to a constant – hence
the notion of ‘order-k delineable’ and ‘order-k separable’
functions [28], [30], [31]. But if building blocks are small,
and the bits of a block have tight linkage (i. e., the bits of a
block are close together on the genome) such that they will
survive together, and be selected together, through multiple
crossover events [11], then the solutions to blocks can be found
in polynomial time by macro-mutation hill-climbing [32].

There has been a great deal of research effort directed at
methods to discover and exploit problem structure in problems
with random linkage (i. e., where tight linkage cannot be as-
sumed). Estimation of distribution algorithms (EDAs) address
this issue by using sophisticated machine learning techniques
to model the epistatic dependencies in a problem [33]. These
algorithms, including in particular, the Bayesian Optimisation
Algorithm, BOA [34], have proved to be a very fruitful in-
tegration of population-based search and probabilistic model-
building, yielding strong results on a variety of problem classes
[35]–[37]. These works show strong performance of EDAs,
in many cases empirically outperforming or being competitive
with domain-specific techniques. However, theoretical work in
this area retains the assumption that the search required scales
exponentially with the size of the module (the number of bits
or sub-modules it contains at any given scale of organisation)
and therefore modules, at any level of hierarchy, must be
small (with respect to the number of units from the level
below). These methods also focus attention on the mechanisms
to detect and represent problem structure and somewhat de-
emphasise the idea of (recursively) scaling-up from searching
combinations of bits to searching combinations of blocks.

Meanwhile, some work [15], [38] has subsequently shown
that it is possible to defeat local search methods, including the
macro-mutation hill-climber, without randomising the linkage
of the problem. Rather, this work uses modules whose size
scales as a function of overall problem size, not a constant.
Each of these individual modules can, with reasonable proba-
bility, be solved in polynomial time because they are not fully
deceptive. But because each module does have multiple local
optima that may trap a hill-climber, a hill-climbing process
will not be able to solve a problem that has many such
modules in polynomial time [15]. This work is thus successful

in demonstrating that there is a type of problem that a type of
GA can solve in polynomial time that nonetheless requires
super-polynomial time for hill-climbing methods or a GA
without crossover. Specifically, a simple, tight-linkage, sepa-
rable modular problem can be solved by a GA with crossover
in polynomial time given sufficient population diversity. To
be exact, the time required by a hill-climber is exponential
in the size of the modules and exponential in the number
of modules – but since the size of modules and number of
modules are mutually constrained (i. e., the overall problem
size is the product of the two) the overall time complexity of
the hill-climber is not ‘strongly exponential’ in total problem
size, n, rather it is exponential in

√
n, or ‘weakly exponential’

in n [15], [39]. Note that [15] retains the idea of progressing
from searching combinations of bits (to find good blocks)
to searching combinations of blocks (to solve the complete
problem) as per the BBH. In fact, this type of problem defeats
the hill-climber precisely because it requires combinatorial
search at two different scales (see also [38]). However, in
demonstrating the original tight-linkage operation of crossover,
this work makes no attempt to solve random linkage problems.

B. Scaling up with new variational units
There have been a number of works that attempt to exploit

problem structure by explicitly grouping together multiple
components into meta-level components. Grouping mecha-
nisms are present in evolutionary algorithms (EAs) that em-
ploy chunking mechanisms hierarchically [40], including some
that use tree-based genetic programming substrates [41]–[43];
as well as symbiosis-inspired algorithms (e. g., [44]–[47]).

The BBHC [18] also embraces this idea but has some
additional features that have produced impressive results.
BBHC explicitly exploits the idea of scaling-up search from
searching combinations of bits to combinations of small blocks
to searching combinations of large blocks, and so on – and
it operates on random linkage problems by learning problem
structure bottom-up. It is therefore, in a sense, a type of
model-building algorithm – but it uses learned information
in a different manner from other model-building methods.
Specifically, it uses the results of a simple search process
(over combinations of the primitive units/problem variables)
to identify structural correlations in the problem that are then
used to redefine the variational operators of the search process.
These new operators create a new search process at a higher
scale of organisation. Clearly the basic intuition behind this
work is closely aligned with those of the other works we
have discussed, but the emphasis is different – specifically, the
way in which learned information is represented is somewhat
simple compared to BOA, for example, but the way in which
the learned information is exploited, i. e., by redefining the
variational operator, is an innovation not seen in BOA.

The linkage-tree GA is a further interesting development
that builds a model of linkage between variables, deferring
modelling of the variable assignments to a population; and
searches with a combination of steepest ascent hill-climbing
and model-informed crossover [21].

We can broadly classify the existing multi-scale search algo-
rithms over four dimensions: the frequency of model update;

4 IEEE TRANSACTION ON EVOLUTIONARY COMPUTATION

the type of join made between units; the unit representation;
and the use (or not) of centralised data structures. MACRO-H
(examined in this paper) learns new structure in a batch mode,
as do [18], [19] and MACRO-S [16]. Continuous learning
is used in [17], [23]. MACRO-H, [18], and [19] make hard,
irreversible joins between units; whereas [16], [17] reshape
future variation via soft associations between units. In [23]
hard joins are made once a soft threshold is exceeded. The
primitive units in MACRO-H and [16] represent values of each
variable, rather than whole variables as per [17]–[19], [23].
Finally, [17] provide a decentralised implementation in which
changes to joins between units are the sole responsibility of
the units involved; the rest use centralised processes and data.

Iclanzan and Dumitrescu [18] have already shown that this
type of algorithm can solve some problems faster than BOA.
For example, on the non-separable hierarchical problems
HIFF, HXOR [14] and hTrap [34] they empirically found
a time complexity of O(n log n) (where n is the problem
size) for the BBHC. In comparison, BOA scales empirically
as O

(
n1.62 log n

)
, closely matching the analytical prediction

O
(
n1.55 log n

)
[30]. However, it has not yet been shown

that there is any type of problem that can be solved by
the BBHC in polynomial time that requires super-polynomial
time for other methods. We argue here that the fundamental
reason that previous work fails to show such a distinction
is because it inherits out-dated assumptions from prior work
– specifically, the idea that modules (at each level of the
modular structure) have to be small because finding solutions
to them requires time exponential in their size. Our aim is not
to criticise this prior work: rather, we aim to emphasise the
potential of this type of algorithm. Specifically, by showing
that when we properly understand what it can do that other
algorithms cannot, we can demonstrate a polynomial versus
super-polynomial distinction from other algorithms.

Some of our early work [44] was the first to solve random-
linkage hierarchical building-block problems and, correspond-
ingly, the first to use an explicit redefinition of the search
space through multiple scales by ‘joining’ the original prob-
lem variables together into larger and larger groups. Later
work explored simplifications to the methods used to identify
modules [47] and, as we gained a better understanding of its
capabilities, we also simplified the type of test problem that
exemplified the capabilities of this method [48]. The BBHC
would later identify the same modules as those that were
found by these algorithms, and exploit the learned modules
in essentially the same way, i. e., redefining the variational
operator by joining variables together, but the BBHC achieved
this redefinition in a more elegant and much less computa-
tionally expensive manner. In hindsight, we now understand
that our earlier work [44], [47], like many EDAs, did not
properly exploit search at lower levels of organisation to more
effectively identify dependencies that guide the next level of
organisation – a feature which is very clear in the BBHC and
our later work [16], [17], [49] as analysed in this paper.

III. PROBLEM CLASSES AND A TEST PROBLEM

We concentrate on problems that have identifiable modules
that contribute additively to the function value. Such problems

have been considered in various contexts for different pur-
poses. Jansen and Wiegand [50] call them (m, k)-separable.1

We make use of their definition.

Definition 1. A function f : {0, 1}n → R is called (m, k)-
separable, where m, k ∈ {1, 2, . . . , n}, if there exists a
partition of {1, . . . , n} into m disjoint sets I1, . . . , Im, and
if there exist a matching number of pseudo-Boolean functions
g1, . . . , gm with gj : {0, 1}|Ij | → R such that

f(x) =

m∑
j=1

gj

(
xij,1xij,2 · · ·xij,|Ij |

)
holds for all x = x1 . . . xn ∈ {0, 1}n, Ij =

{
ij,1, . . . , ij,|Ij |

}
and |Ij | ≤ k for all j ∈ {1, . . . ,m}.

We say f is exactly (m, k)-separable if f is (m, k)-
separable but not (m′, k′)-separable for any m′ > m or
k′ < k.

Obviously, each function is (1, n)-separable. Here we ad-
dress exactly (n/k, k)-separable functions for k < n. The
modularity in such problems should, in principle, be ex-
ploitable if identified correctly and the strict separability better
enables rigorous analytical results to be obtained; accordingly,
this form of function has been used extensively in the literature
(e. g., [28], [30], [58]). One popular way of constructing such
functions is to take an inseparable function (technically speak-
ing, an exactly (1, n)-separable function) and concatenate n/k
copies of this function defined over k bits each. We follow
this approach and use TWOMAX as the inseparable function.
TWOMAX is an almost symmetrical function with one global
and one local optimum, one the all-ones bits string, the other
the all-zeros bit string. It was introduced by Pelikan and
Goldberg [51] and has been studied in different contexts (e. g.,
[52], [53]). We use scalable building-block problem (SBB) as
a name for the concatenated version of TWOMAX.

Definition 2. The function TWOMAX : {0, 1}n → N is defined
as

TWOMAX(x) = max

{
n∑
i=1

x[i], n−
n∑
i=1

x[i]

}
+ c

n∏
i=1

x[i]

for all x ∈ {0, 1}n and c ≥ 0 ∈ N.
Let n, k ∈ N with k > 1 and (n/k) ∈ N. The function

SBB : {0, 1}n → N is defined as

SBB(x) =

n/k∑
i=1

TWOMAX
(
x(i)
)

for all x = x[1]x[2] · · ·x[n] ∈ {0, 1}n where x(i) is the ith part
of length k in x, x(i) = x[(i−1)k+1]x[(i−1)k+2] · · ·x[ik].

We refer to the variable at locus i as x[i] and variables
at multiple loci as the concatenation, e. g., x[i]x[j]x[z] for
loci i, j, z. We use the usual notation for the concatenation
of letters in a string, i. e., bk = bb · · · b︸ ︷︷ ︸

k times

. So, for example,

03102 = 000100. Note that b0 represents the empty string.

1 [50] originally used the symbols r and s but here we use m and k as
common in literature concerning building-block problems.

MILLS, JANSEN, WATSON: TRANSFORMING LOCAL SEARCH INTO HIGHER-LEVEL SEARCH BY CAPTURING PROBLEM STRUCTURE 5

Definition 2 includes a parameterised bonus, c, for finding
the 1n solution. The primary focus of this paper uses nonzero
c (c= 1 where a numerical value is required), but in a later
section we consider a hierarchical problem with TWOMAX as
a basis function which does not distinguish between the two
optima (i. e., c= 0). The specific value of the bonus is not
critical, but it is important that c > 0 for the SBB, otherwise
all local optima would in fact be globally optimal.

Since our aim is to compare the performance of MACRO-
H with other randomised search heuristics we do not only
consider SBB but a class of SBB-like functions where MACRO-
H has the same performance. This perspective is adopted from
black-box complexity [54] and we also consider the worst case
performance taken over the whole class of problems as the
measure of performance. We adopt the notions of Droste et
al. [55] that coincide with the notions of unbiased black-box
complexity [56].

Definition 3. Let f : {0, 1}n → R. For any a ∈ {0, 1}n
we define fa : {0, 1}n → R by fa(x) = f(x ⊕ a). For any
permutation π over {1, 2, . . . , n} we define fπ : {0, 1}n → R
by fπ(x) = f (x[π(1)]x[π(2)] · · ·x[π(n)]). Moreover, we
define fa,π = (fa)π .

Let F = {f : {0, 1}n → R} be a class of functions.
We define F∗ =

{
fa,π | f ∈ F , a ∈ {0, 1}n,

π permutation over {1, 2, . . . , n}
}

.
For f : {0, 1}n → R we define f∗ := {f}∗.

It is easy to see that any search heuristic that treats 0-bits
and 1-bits completely symmetrically as well as all bit positions
completely symmetrically will have identical performance on
each function g ∈ f∗ for any function f . Such search heuristics
are called unbiased [56] and they are more reasonable than
biased search heuristics as long as a specific search bias is
not justified by problem-specific knowledge. Most randomised
search heuristics are unbiased in this sense: this includes
all mutation-based evolutionary algorithms and evolutionary
algorithms with uniform crossover. A counterexample are evo-
lutionary algorithms with 1-point or 2-point crossover because
they are sensitive with respect to reordering of bits, i. e., with
respect to going from f to fπ .

Many search heuristic are also invariant with respect to arbi-
trary rescaling of function values (and MACRO-H is, too). This
includes all rank-based evolutionary algorithms but excludes,
for instance, evolutionary algorithms with fitness-proportional
selection. While it would not change our results we will not
consider this kind of unbiasedness here. Thus, in the following
we concentrate on SBB∗, the general class of SBB problems
under Definition 3.

IV. MACRO-H

In this section we define a basic multi-scale search algorithm
called MACRO-H. First we provide an informal sketch of the
algorithm, which is followed by a description of notation, and
then formal definitions in Algorithms 1 and 2.

Informally, the main action of MACRO-H occurs in two re-
peating phases: a search phase that exploits the current search
units to find good solutions, and a structural identification

phase that identifies new search units from these solutions.
The next search phase uses these new search units to find
better solutions, which then enables the discovery of better
search units in the next structure identification phase, and so
on. We can summarise the process as follows:

Initialise unit set V with all primitive units (i. e., one unit
for each value of each problem variable);

While computational budget remains, repeat:
1) Perform unit-exploiting search multiple times using

the current variational units, V , to find several differ-
ent local optima (‘locally optimal’ with respect to the
current variational units);

2) Update co-occurrence measure, A, based on correla-
tions between units present in these optima;

3) Update unit set V by combining the most strongly
correlated units into composite units.

MACRO-H is defined for optimising a function f : {0, 1}n →
R. One crucial notation for the algorithm’s search process is
that of a unit. A unit can be described as a partial assignment of
values to the n bits of a search point x = x[1]x[2] · · ·x[n] ∈
{0, 1}n. We use the following notation for units. A unit is
given as a pair (l, a) where l ∈ {0, 1}n and a ∈ {0, 1}n.
We use l[i] = 1 to indicate that the ith variable is a member
of this unit. If it is not we have l[i] = 0. The other part,
a, is an assignment of the variables of the unit. The values
a[j] for those j with l[j] = 0 are not important and can be
set arbitrarily. We say that y ∈ {0, 1}n agrees with (l, a) if
l[i] = 1⇒ (y[i] = a[i]) for all i ∈ {1, 2, . . . , n}.

One important element of MACRO-H is the unit-exploiting
search that can operate with both rescaled and primitive units.
We define MACRO-H in the following as Algorithm 1 and
define the unit-exploiting search separately as Algorithm 2.

The following examples illustrate the (membership, assign-
ment) representation for an 8-bit problem, assigning between
one and three values. Here we write a[i] = ∗ where the unit
does not specify the value for a locus i (i. e., l[i] = 0).

u1 = (00100000, **0*****)

u2 = (00010100, ***1*0**)

u3 = (01000000, *1******)

u4 = (11000010, 00****1*)

u5 = (00101000, **1*1***)

u6 = (00000001, *******1)

The group construction process creates non-trivial units (Algo-
rithm 1, lines 17–23). This process makes use of the pairwise
associations between units recorded in the association matrix,
A. These association strengths are computed as a function
of the co-occurrence of the current units among the optima
found in each round (lines 7–12). MACRO-H makes hard joins
between units and thus uses Au,v ∈ {0, 1} ∀u, v. If we
seed this process with u1 and u4, and A1,2 = 1, A1,3 = 1,
A1,v = 0, ∀v 6= [2, 3] and A4,6 = 1, A4,v = 0, ∀v 6= 6, it will
produce the following composite units:

u+
1 = (01110100, *101*0**)

u+
4 = (11000011, 00****11)

6 IEEE TRANSACTION ON EVOLUTIONARY COMPUTATION

Algorithm 1: Algorithm MACRO-H

Input : Objective function f : {0, 1}n → R; total budget
b ∈ N; local search budget bsearch ∈ N; number
of ‘parallel’ local searches d ∈ N

Output: Best search point found
// Initialise unit set V with all

primitive units
1 V :=

{ (
0i−110n−i, 0n

)
,
(
0i−110n−i, 1n

)
2 | i ∈ {1, . . . , n}

}
;

3 while computational budget b > 0 :
// Perform ‘local’ search d times;

can be done in parallel
4 for all i ∈ {1, . . . , d} :
5 yi := UE-SEARCH(f, bsearch, V); // Returns

yi ∈ {0, 1}n
6 b := b− bsearch;

// Update co-occurrence measure Au,v
7 for all u, v ∈ V :
8 if {i ∈ {1, . . . , d} | yi agrees with u or v} 6= ∅ :
9 c := |{i∈{1,...,d}|yi agrees with u and v}|

|{i∈{1,...,d}|yi agrees with u or v}| ;

10 else:
11 c := undefined;

12 Au,v :=

{
1 if c = 1,
0 otherwise;

// Update unit set V
13 V ′ := ∅;
14 for all u ∈ V :
15 Remove u from V ;
16 if ∃y ∈ {y1, y2, . . . , yd} : y agrees with u :

// construct group (l, a)
17 (l, a) := i;
18 for all v = (l′, a′) ∈ V in random order :
19 if Au,v = 1 :
20 for all i ∈ {1, . . . , n} with l′[i] = 1

and l[i] = 0 :
21 l[i] := 1;
22 a[i] := a′[i];

23 Remove v from V ;

24 V ′ := V ′ ∪ {(l, a)};

25 V := V ′;

26 return some yi with i ∈ {1, . . . , d} and
f(yi) = max {f(y1), f(y2), . . . , f(yd)}

each specifying values at four loci in this case. Different units
participate in different groupings; and it may be the case that
not all units are used at all. Note that although the association
matrix entries are all pairwise, any number of constituent units
can form a new group; and that there is no requirement for
the constituent units to be contiguous, nor of the same order.

The capacity to recurse is integral to MACRO-H, and later
in the paper we will illustrate this ability with a hierarchical
test problem (Section VII). However, we start by analysing the

Algorithm 2: Algorithm UE-SEARCH

Input : Objective function f : {0, 1}n → R; local search
budget bsearch ∈ N; set of search units V

Output: Best search point y found after bsearch steps of
local search

// Construct initial point x randomly
based on V

1 y := 0n;
2 while ∃i ∈ {1, . . . , n} : y[i] = 0 :
3 for all (l, a) ∈ V in random order :
4 for all i ∈ {1, . . . , n} :
5 if y[i] = 0 and l[i] = 1 :
6 y[i] := 1;
7 x[i] := a[i];

8 t := 1;
9 Fix a random order, ρ, on V ;

10 while t < bsearch :
11 t := t+ 1;

// Create y as random ‘neighbour’ of
x

12 y := x;
13 while y = x :
14 Let (l, a) ∈ V be next element in order ρ; if ρ is

exhausted then set ρ to a new random order on V ;
15 for all i ∈ {1, . . . , n} :
16 if l[i] = 1 :
17 y[i] := a[i];

// Select better search point
18 if f(y) ≥ f(x) :
19 x := y

20 return x

runtime scaling on separable (non-hierarchical) problems.

V. ANALYSIS ON THE TEST PROBLEM

We analyse the performance of MACRO-H on SBB∗ and
follow the common practice of using the number of function
evaluations as a measure of time. Since a crucial component of
MACRO-H is local search (at least in the first iteration) there is
always a chance that MACRO-H gets stuck in a local optimum
if the objective function is not unimodal. This implies that
the most frequently used performance measure, the expected
optimisation time, is not useful. One possible alternative is
to analyse the time until an optimum is found with high
probability. Another alternative would be to consider some
kind of restart strategy. However, restarts add another layer
of complexity, and results about restarts are easy to obtain
from the first kind of results. Thus, we concentrate on the
time that is sufficient to find a global optimum with high
probability. Wegener [57] uses this fact to formally define
efficiency measures in this spirit.

Theorem 1. Let n, k ∈ N be given with k > 1 and (n/k) ∈ N.
Let SBB∗ be defined over n bits with n/k parts of equal length

MILLS, JANSEN, WATSON: TRANSFORMING LOCAL SEARCH INTO HIGHER-LEVEL SEARCH BY CAPTURING PROBLEM STRUCTURE 7

k. MACRO-H finds a global optimum on any function f ∈ SBB∗

in O(n+ n log(n/k)) function evaluations with probability
1 − O(1/n) if the individual search budgets are Θ(n) and
large enough and d = Θ(log n) and d ≥ 10.43 ln(n) holds.

Proof. The specific local search implementation in UE-Search
(Algorithm 2) guarantees that the time needed to find a local
optimum in each of the components is O(n). Since we assume
the individual search budgets to be large enough the local
optima are correctly located. This is due to the fact that all f ∈
SBB∗ are linearly separable and the specific implementation of
local search guarantees that all units are considered before any
unit is considered a second time. This implies that the total
number of improving steps (i. e., the sum of improving steps
over all parts) is bounded by O(n). We assume that the search
budget is sufficiently large to allow for this to happen. Thus,
at the end of the local search we have either the local or the
global optimum in each of the n/k parts. Note that the two
optima in each part each are found with equal probability 1/2.

If for each pair of parts we have at least one run of UE-
Search where in both parts the global optimum is found we
know that (1) in each part the global optimum is identified as
a component (not necessarily on its own) and (2) that if the
global optimum appears only as part of a larger component all
parts of this larger component correspond to global optima.
This implies that the next round of MACRO-H that operates on
these components will identify the global optimum of SBB∗.

For a fixed pair of parts the global optima are found in
both parts by one run of UE-Search with probability 1/4. The
probability that this does not happen in all d runs is bounded
above by (3/4)d. Thus, the probability to have one of the

(
n
2

)
pairs where this is the case is bounded above by

(
n
2

)
·(3/4)d <

n2 · (3/4)d. With d ≥ 10.43 ln(n) we have n2 · (3/4)d < 1/n
so that the probability is bounded by O(1/n).

The proof of Theorem 1 can easily be generalised to similar
classes of functions. We state the more general result as a
corollary.

Corollary 1. Let n, k ∈ N be given with (n/k) ∈ N. Let
f : {0, 1}n → R be a (n/k, k)-separable function such that
the following conditions hold.

1) Each sub-function has at most two local optima (at least
one of which is a global optimum, of course).

2) In each sub-function local search as implemented in
Algorithm 2 finds the global optimum with probability
at least p(n) if the search budget is sufficiently large.

3) In the first round of MACRO-H, Algorithm 2 finds a local
or global optimum in each sub-function in at most t(n)
steps.

MACRO-H finds a global optimum of f within
O
(
p(n)−2t(n) lnn

)
function evaluations with probability

1 − O(1/n) if the local search budgets are O(t(n))
and are sufficiently large and d = Θ

(
ln(n)/p(n)2

)
and

d ≥ 3 ln(n)/p(n)2 holds.

Proof. In comparison with the proof of Theorem 1 the local
search budget and d are changed. Moreover we do not assume
that the local optima for one sub-function are necessarily bit-
wise complements of each other. This generalisation may lead

to incorrect recognition of larger units including bits from two
different local optima that coincide. Since the number of local
optima is restricted to 2 this generalisation cannot cause any
problems and the global optimum will still be found no later
than in the second round of local search.

We consider a pair of components, and see that the global
optima are found in both components within one run of UE-
Search with probability at least p(n)2. Thus, the probability
that this is not the case in all of at least 3 ln(n)/p(n)2 runs is
bounded above by (1− p(n)2)3 ln(n)/p(n)2 ≤ e−3 lnn = 1/n3.
The probability to have this in at least one of

(
n
2

)
pairs is

bounded above by
(
n
2

)
· (1/n3) = O(1/n).

One extreme application of Corollary 1 is using the well
known trap function (see, e. g., [28], [58]) as the sub-function
to create an exactly (n/k, k)-separable function. Since the
probability to find the global optimum for a trap function as
sub-function is Θ

(
2−k

)
we obtain O

(
22kn log n

)
as upper

bound on the optimisation time of an appropriately parame-
terised MACRO-H. Note that this bound is polynomial in n as
long as k = O(log n) holds.

Theorem 1 states that MACRO-H is efficient on every in-
stance of SBB∗ for any combination of n and k (given that
the parameters are set appropriately). We now compare this
performance with other randomised search heuristics to clarify
the specific strength of MACRO-H. In order to do this we
concentrate on the case k =

√
n (and assume that

√
n ∈ N

for convenience). Note that since we discuss large classes of
algorithms in the following we provide key ideas for rigorous
proofs and not proofs themselves. It is not too difficult to
create concrete proofs for concrete search heuristics.

Local search with restarts cannot find the optimum of any
SBB problem of this kind in o

(
2
√
n
)

steps. Local search finds
either a local or a global optimum in each of the

√
n parts

with equal probability, independently in each part. Thus, the
probability to find the global optimum simultaneously in all
parts is 2−

√
n.

Mutation-based evolutionary algorithms are in a situation
similar to local search but can escape local optima with large
mutations. Since such a mutation requires the flipping of
Ω(
√
n) bits simultaneously such a mutation has probability

2−Ω(
√
n).

Evolutionary algorithms with crossover are also not better
off. Uniform crossover also allows the exchange of parts which
are only locally optimal with probability 2−

√
n. The use of k-

point crossover cannot help since in SBB∗ we have functions
where the bits of the parts are not contiguous but distributed
over the whole bit string.

Estimation of distribution algorithms have the problem
of requiring a population size Ω

(
2
√
n
)

and will therefore also
be very inefficient [29], [59], [60].

A proof for polynomial time complexity of the BBHC on
this problem class has not been provided by the literature on
building-block hill-climbing, but we suspect that it could yield
a similar complexity to that for MACRO, since we consider
both to be instances of multi-scale search.

For MACRO-H measuring the number of fitness evaluations
neglects the cost of updating the unit test set V . However, for

8 IEEE TRANSACTION ON EVOLUTIONARY COMPUTATION

most objective functions this is not a significant contribution
(at least in asymptotic notation). The update of the unit test set
(see lines 13–25 in Algorithm 1) has run time O

(
n2d
)

which
can be seen as follows. The outer loop over V is carried out
O(n) times. The test in line 16 can be carried out in time
O(nd) so it contributes a total of O

(
n2d
)

to the run time.
The more costly inner loop (lines 18–24) has cost O

(
n2
)
.

Since it is only carried out if the test in line 16 is positive this
can happen at most d times so that this loop also contributes
O
(
n2d
)

summing up to O
(
n2d
)
. To obtain the cost for the

function evaluations it is safe to assume that most objective
functions require time Ω(n) to be evaluated since in order to
compute the function value it is often necessary to consider
every bit or at least a constant fraction of them. In each UE-
SEARCH we usually perform Θ(n) function evaluations. The
number of times we call UE-SEARCH is d so that we have
in total a computational effort of Ω

(
n2d
)

due to function
evaluations. This cost is not smaller than the computational
effort for updating the unit test set V .

EDAs also incur a comparable level of computational costs
beyond function evaluations. For instance, the search for
Bayesian network structure and parameters in BOA costs
O
(
n2N + n3k

)
, and sampling costs O(nkN), for a popula-

tion size of N [62]. MK-EDA [37] only fits parameters to a
dependency structure that is given a priori (rather than learning
the problem structure), which costs O((n− k)N), and Gibbs
sampling costs O

(
n2kN

)
. The tree EDA model in [37] costs

O
(
n2N

)
to train and O(nN) to sample.

VI. SIMULATED EXPERIMENTS

In this section we confirm the analytic results from above
empirically, by applying MACRO-H to three exactly (n/k, k)-
separable functions: 1) SBB; 2) concatenated trap functions;
and 3) a generalisation of SBB that relaxes some properties.

A. Simulation on the SBB∗ problem class

As discussed above, the SBB problem causes difficulty for
local search when it has many sub-problems, and is difficult
for mutation-based escape from a local optimum when the sub-
problems are large. Here we set k =

√
n to balance these two

factors; although Theorem 1 holds for any setting of k. We
use Theorem 1 to define the value for the one free parameter
in MACRO-H, d. Specifically, d = d10.43 ln(n)e, which gives
d ∈ [34, 68] for the problem sizes n ∈ [25, 625] tested. In
addition, we report the performance of MACRO-H with the
unit transformation mechanism disabled (by skipping lines 7–
25 of Algorithm 1). This variant algorithm behaves indistinctly
from a restart hill-climber, and is predicted to scale as o

(
2
√
n
)

as noted above. While empirical data can support successful
results by example, demonstrating a negative result cannot
support the general case since such results are susceptible
to poor parameter tuning. Thus to provide some intuition for
the scalability of EDAs, we also plot curves corresponding
to the theoretical population sizing requirements based on the
gambler’s ruin model [59], [62] and the refined theory for
entropy-based models [60]. Figure 1 shows the mean number
of evaluations needed to reach the global optimum, which

102 103

problem size

103

104

105

106

107

108

109

me
an

 ev
alu

ati
on

s t
o

glo
ba

l o
pti

mu
m

empirical: MACRO
analytical: MACRO (O(n log(n)))
empirical: MACRO without unit transformation
prediction: without unit transformation (o(2

√
n))

Ω(2k): EDA population sizing theory; uniform crossover
Ω(22k): entropy-based EDA poplulation sizing theory

Fig. 1: Scaling for various algorithms on the SBB problem.
The dashed and dotted lines illustrate theoretical lower bounds
reflecting a factor that is exponential in the size of blocks.
Circles are empirical results for MACRO; we also test a variant
algorithm with unit transformation disallowed (squares), indi-
cating how crucial transformation is for efficient operation.
Error bars are shown but for MACRO are negligible with
respect to the size of markers. Both algorithms find the global
optimum in all 100 independent repeats. Solid and dot-dashed
lines are analytic predictions of runtimes for these algorithms.
These results show that MACRO-H solves the SBB problem in
polynomial time, in very close agreement with analysis.

confirms that the runtime of MACRO-H scales as expected,
namely, O(n log (n/k)) = O(n log

√
n) = O(n log n).

B. Concatenated trap functions

Following the application of Corollary 1, we empirically
validate MACRO-H on the concatenated trap function. Here we
set k= 5, and thus Figure 2 shows the runtime of MACRO-
H to scale as O

(
22kn lnn

)
=O(n log n) as expected. We

set d= d64 ln(n)e which has the asymptotic complexity as
predicted by theory but is numerically smaller; empirically,
MACRO-H succeeds in 100 of 100 repeats with this value for
d, providing some indication of how tight the upper bound is
(for reference, Figure 2 shows the analytical upper bound). We
also plot results from the literature on this problem: BOA taken
from [61]; hBOA from [62]; MOA from [63]. To our knowl-
edge, these are the only published runtime results of EDAs
on concatenated 5-traps. The results collected in this figure
confirm that MACRO-H is able to solve the problem in sub-
quadratic time, along with several other methods that learn the
structure. The exact performance of these different algorithms
varies somewhat, but all scale sub-quadratically in the problem
size. Hence, this problem does not qualitatively discriminate
between EDAs and multi-scale search approaches.

MILLS, JANSEN, WATSON: TRANSFORMING LOCAL SEARCH INTO HIGHER-LEVEL SEARCH BY CAPTURING PROBLEM STRUCTURE 9

102

problem size

104

105

106

me
an

 ev
alu

ati
on

s t
o

glo
ba

l o
pti

mu
m

MACRO, empirical
analytical upper bound: MACRO (corollary 1)
BOA, empirical
hBOA, empirical
MOA, empirical
O(n2) trend line

Fig. 2: Runtimes on the concatenated trap-5 problem. Dot-
dashed line: MACRO upper bound of O(n log n), from theory
in Section V. Circles and dashed line are empirical results
using d= log(n)/4p(n)2, successful in all 100 independent
repeats. Grey lines: empirical results for various other algo-
rithms, taken from literature (see text for data sources). The
solid black line indicates an O

(
n2
)

trend. MACRO-H grows
sub-quadratically in n, but trap-5 problems are not sufficiently
difficult to distinguish MACRO-H from other algorithms.

C. Relaxing complementarity in the SBB∗ problem class

Above we showed that MACRO-H is capable of efficiently
solving the SBB∗ problem class in Theorem 1. Here we
examine how MACRO-H performs on a variant of the SBB
problem that does not use complementary optima in each
block, confirming the expanded result from Corollary 1.

Definition 4. The function ARBMAX : {0, 1}n → N is defined
as

ARBMAX(x) =

max {n− ‖t1 − x‖, n− ‖t2 − x‖}+

n∏
i=1

(t1[i]⇔ x[i])

for all x ∈ {0, 1}n, where ‖a − b‖ is the Hamming distance
between patterns a and b, and where t1, t2 ∈ {0, 1}n are
target bitstrings with arbitrary positions, s.t. ‖t1 − t2‖ > 1.

We create SBBA by concatenating n/k k-bit ARBMAX
subfunctions (just as Definition 2 uses TWOMAX subfunctions
in SBB). SBBA is very similar to SBB, except that the targets
are no longer required to be at 0n and 1n; and crucially, are
not necessarily full bit-complements of one another.

For this set of experiments, each variable is set uniformly
at random in t1 and t2, independently for each block (and
different in each repeat). Figure 3 reports the mean time to
find the global optimum, showing that MACRO-H scales just

102 103

problem size

103

104

105

106

107

108

me
an

 ev
alu

ati
on

s t
o

glo
ba

l o
pti

mu
m

MACRO empirical, random targets (ArbMax)
MACRO empirical, complementary targets (TwoMax)
analytical: MACRO (O(n log(n)))
MACRO without unit transformation, (ArbMax)
MACRO without unit transformation, (TwoMax)
prediction: no unit transformation (o(2

√
n))

Fig. 3: Runtime scaling results on the SBBA problem, for
MACRO-H and for the variant with unit transformation disabled
(filled symbols). Both algorithms find the global optimum in
all 30 independent repeats. For comparison we also replicate
the data for the SBB problem from Fig. 1 (open symbols, error
bars omitted), showing a strong agreement with the analytical
expectations. Importantly, MACRO-H is able to discover which
units should associate without the assumption that the com-
plementary units should also associate to scale as O(n log n).

as efficiently on this problem with random targets as it does
in the more special case of complementary targets.

Why does this problem not affect the performance? MACRO-
H learns which bit-values co-occur rather than which bits
are co-extensive. Accordingly, MACRO-H can form useful
associations between bit-values without assuming that the
complementary bit-values are associated, or more generally,
without making any assumption that the complement of fit
schema will also be fit.

Figure 4 shows some example targets and the variational
units that MACRO-H finds after the first iteration. The com-
posite units created in response to target set a) match ex-
actly those targets – and thus in subsequent unit-exploiting
search, introducing one unit will replace variables for an
entire module as described. In b) and c), the composite
units created correspond not to an entire module, but to the
variables at which the two targets mismatch, as expected. Any
other variables necessarily match in both targets, and thus
are not joined to either one of the two composites for that
module (or indeed beyond that module). However, for these
loci where targets match, subsequent unit-exploiting search
trivially discovers the correct value. Because the composite
units correspond to all mismatching variables across targets
in a module, introducing a composite is sufficient to move
between optima. This behaviour is exactly what we see when
all variables in a module mismatch across targets. Therefore,
MACRO-H discovers associations in the first iteration that are
entirely sufficient to solve SBBA in the second iteration.

Figure 5 further supports these examples by showing that
the number of blocks solved by MACRO-H is not affected by

10 IEEE TRANSACTION ON EVOLUTIONARY COMPUTATION

0 5 10 15 20
variable

t11
t12
t21
t22tar

ge
t

0 5 10 15 20
variable

0
2un

it

0 5 10 15 20
variable

t11
t12
t21
t22tar

ge
t

0 5 10 15 20
variable

0
2
4
6

un
it

0 5 10 15 20
variable

t11
t12
t21
t22tar

ge
t

0 5 10 15 20
variable

0
2
4
6
8

10
12

un
it

(a)

(b)

(c)

Fig. 4: Targets (left), and variational units that MACRO forms
after one iteration (right), for different forms of the SBB/SBBA
problem. Data is from a single run with k= 12, m= 2;
other repeats are characteristically similar. (a) complementary
optima, here chosen as ti1 = 1k, ti2 = 0k for straightforward
visualisation; (b) non-complementary targets, using a specific
case where ti1 = 1k, ti2 is two random bits away from 0k; (c)
two random targets. Black/white corresponds to 0/1, while any
undefined values are in grey. Targets specify a value for all
variables in one module. The units that are formed, ranging in
order from 1 to 12, are sufficient for subsequent iteration of
unit-exploiting search to find the global optimum in all cases.

0 2 4 6 8 10
| t1−t2 |, Hamming distance between targets

5

6

7

8

9

10

me
an

 b
loc

ks
 so

lve
d

RMHC
MACRO

Fig. 5: Blocks solved in the SBBA problem as a function of
distance between targets h= |t1 − t2|, for k= 10, n= 100.
We tested MACRO-H and a random-mutation hill climber,
allowing the former 4,000 evaluations and the latter 400,000
evaluations, and report data for the most successful mutation
rate from 1/n to k/n. Data from 30 different SBBA instances
for each value of h ∈ [0, k]. MACRO-H solves the problem in
all instances, finding the solution to all blocks regardless of
the distance between targets. Conversely, RMHC is unable to
escape local optima except for small h.

the specific location of the targets. In contrast, hill-climbing
can solve all blocks when the targets are close together, but as
the distance increases the difficulty of moving between local
optima causes performance to degrade substantially.

Considering these results together, we see that various
model-building methods, are able to solve concatenated trap
functions efficiently; and that MACRO-H is efficient on both
problem classes. The blocks of the SBB∗ problem class are
a discriminating factor; implying that the manner by which

multi-scale search exploits discovered structural information
is distinct from existing methods.

While TWOMAX and Trap are clearly closely related,
the difficulty that they present comes from different factors.
Specifically, the sub-problems in SBB are of fixed difficulty
with increasing problem size; the challenge arises instead from
the increasing distance (k=ω(log n)) between local optima
that requires specific k-bit changes to escape. Conversely,
when the sub-problems are small (i. e., k=O(log n), e. g.,
constant k), guessing the change required to escape a local
optimum is feasible (or alternatively, to have the correct
solution in an initial population). This latter case applies to the
trap, which is difficult instead because the chance of finding
the global optimum decreases with sub-problem size.

Two other logical extremes exist in this space of two-max-
like problems. 1) Small sub-problems (k=O(log n), growing
at most logarithmically with n, including constant k) that have
a fixed probability of finding the global optimum. 2) Large
sub-problems (k=ω(log n), growing faster than logarithmi-
cally with n – such as

√
n) that have a diminishing probability

of finding the global optimum with increasing problem size.
Scenario 1) is easier than a trap because there is no

deception; any method that can solve a trap function will also
be sufficient in this scenario. The sub-functions are small and
so guessing the changes required to jump between local optima
(in an unbiased/bitwise random manner) is sufficient.

Conversely, under scenario 2) the separation between local
optima grows with problem size which rules out guessing
the changes required; and yet, as the blocks get larger, the
probability of finding the solution diminishes. By exhibiting
more and more deception this parameterisation does not yield
useful information to identify the global optimum, and yet
guessing the answer through sampling would be inefficient.

In summary, the two features that make the trap and
TWOMAX difficult sub-problems are distinct. MACRO-H is not
efficient on a problem that exhibits both difficulties (scenario
2), although we do not know of a method that is capable of
finding needles in (deceptive) haystacks efficiently. Problems
with neither difficulty (scenario 1) can be solved efficiently
by many algorithms, including MACRO-H. Section V proves
that MACRO-H is efficient when one of the two difficulties is
present – as for SBB or concatenated trap functions.

VII. HIERARCHICAL DIFFICULTY AND MULTI-SCALE
SEARCH

The problems examined above have a transparent, one-layer
structure that nonetheless presents substantial difficulties for
various algorithmic approaches. When MACRO-H solves these
problems it encapsulates the problem structure into composite
units that are sufficient to solve the overall problem, when
appropriately exploited. However, the two phases in each iter-
ation of MACRO-H can operate on one another’s outputs: the
algorithm has the capacity to recurse. This ability is important
because whereas the one-layer problems are separable, the
hierarchical problems are not since higher-level interactions
introduce dependencies between lower-level modules.

As noted, the ability to solve problems such as HXOR and
hTrap in polynomial time has been shown both for multi-

MILLS, JANSEN, WATSON: TRANSFORMING LOCAL SEARCH INTO HIGHER-LEVEL SEARCH BY CAPTURING PROBLEM STRUCTURE 11

0 500 1000 1500 2000 2500 3000 3500 4000 4500
timestep

0

200

400

600

800

1000

1200

fit
ne

ss

minimum fitness with
any layer 1 contribs

minimum fitness with
any layer 2 contribs

minimum fitness with
any layer 3 contribs

minimum fitness with
any layer 4 contribs

Global optimum

units automatically
 rescaled
units automatically
 rescaled
units automatically
 rescaled
units automatically
 rescaled
units automatically
 rescaled

(b)
0 2000 4000 6000 8000 10000 12000 14000

0

200

400

600

800

1000

1200

fit
ne

ss

minimum fitness with
any layer 1 contribs

minimum fitness with
any layer 2 contribs

minimum fitness with
any layer 3 contribs

minimum fitness with
any layer 4 contribs

Global optimum(a)

Fig. 6: Illustration of a ‘two-scale’ algorithm and a multi-scale search algorithm, on the H-SBB problem (n = 243, λ = 5).
Conceptually, the operation of a single-scale algorithm is also illustrated by the first iteration of MACRO-H before the first
rescaling (around timestep 750). We show the fitness over time, and each timestep corresponds to the advance of all members
of the population (these are plotted simultaneously, and one arbitrary trajectory is highlighted). Data is from a single run that is
representative of how each algorithm behaves. (a) a hybridised GA/hill-climber: After each round of crossover, a hill-climber
is used to repair each solution (see [64]). This algorithm cannot exchange well-optimised building blocks from one individual
to another and is therefore unable to search at higher levels of organisation, but the repeated restart of the hill-climber, focused
on blocks that are not converged in the population, is useful in providing multiple chances at solving the bottom level. (b)
MACRO-H; for the purposes of this figure, the final states of the UE-searchers from one round are retained as initial conditions
in the subsequent round. In the first iteration of MACRO-H, the search phase uses primitive units, obtaining a distribution
of different fitness values that correspond to various different local optima. These patterns are analysed to form composite
units that correspond to the structure of the problem (see Algorithm 1). In subsequent iterations, the search phase uses these
composite units and is able to escape what were local optima in the lower-scale problem (see Algorithm 2). Correctly exploiting
these transformed units means that the search repeatedly rescales the space and reliably finds the global optimum.

scale search and for some EDAs. These problems do not
discriminate between the abilities of these two approaches
therefore. Like the results we showed for the concatenated trap
problems, this is because these problems have small blocks.

Here, we define a hierarchical version of the SBB problem,
the H-SBB, which brings together the hierarchical difficulty of
HIFF (and derivatives) and the block scaling difficulty of SBB.

Definition 5. Variables at one level are transformed before
participating in the contribution function at the next level:

TRANSFORM(x) =

1 if x = 1|x|,

0 if x = 0|x|,

NULL otherwise,

The contribution function makes use of TWOMAX, and only
provides a non-zero value if all symbols are defined:

F(x) =

{
0 if ∃x[i] = NULL,
TWOMAX(x) otherwise,

The overall hierarchically consistent problem is controlled
by λ, the number of layers, and n, and is defined as

HSBB(x) =

λ∑
l=1

kl−1

n/kl∑
i=1

F(TRANSFORM(x(ikl−1))),

where x(i) = x[(i − 1)k + 1] . . . x[ik], and x(ik) = x[(i −
1)k2 + 1] . . . x[ik2], and so on. We define the size of blocks
at the bottom level, k, as k = n1/λ. The fitness contribution
of a block increases with the level to maintain the overall
contribution of each level.

Note that this definition differs from HIFF [14], hTrap [34]
and related derivatives, which use blocks comprising a fixed
number of symbols, and a number of layers that scales as λ =
logk n. In contrast, here we use blocks that scale as ω(log n),
and since λ and k are mutually constrained, a fixed number
of layers λ allows k = n1/λ and is suitable for our purposes.

12 IEEE TRANSACTION ON EVOLUTIONARY COMPUTATION

0 1000 2000 3000 4000 5000
timestep

39
27

81

243

ord
er

of
blo

ck
/un

it

mean unit order in V
maximum block solved

Fig. 7: The order (bits specified) of blocks discovered, and
order of units in V , for MACRO on the H-SBB problem with
k= 3, λ= 5, n= 243. Block solutions are measured for every
step of UE-SEARCH, and unit sizes are measured once per
iteration. Data averaged over 30 repeats. We observe that
MACRO solves the problem layer by layer: It uses blocks at
one scale to discover solutions to blocks at the next scale.
The co-occurrences among these solutions are used to form
higher-order units, which then enables traversal of the next
hierarchical scale. Note that the strict unit rescaling process
results in homogeneous unit sizes within each iteration (and
across all repeats). There is variance in the order of blocks,
since occasionally a block more than one layer above is solved
without using the gradient information at the current level.

A. Traversing hierarchy with repeated unit transformations

Here we briefly illustrate how MACRO-H behaves on the
H-SBB problem. Figure 6 (b) shows the fitness progressing
over time. The initial phase searches with the primitive units
of the problem, which quickly becomes exhausted, finding
several different optima. Once the units are rescaled (around
timestep 750), search again rapidly improves in fitness. Each of
the layers in this multi-layer problem is traversed successively
through several recursive applications of the unit transforma-
tion (and subsequent exploitation). Figure 7 provides further
insight into this dynamic, by examining the blocks that have
been discovered, and how these become reflected in the unit
set V . The units start out specifying a single bit, and as
solutions to blocks at a given layer are discovered by UE-
SEARCH, these are incorporated into larger units. These units
are used in subsequent search, which enables discovery of
module solutions at the next level, and so on.

Above we highlighted how the theoretical population sizing
requirements for EDAs cause them to be inefficient on the SBB
problem. Since the first layer of H-SBB tightly corresponds to
SBB, we do not expect any algorithm that was inefficient on
SBB to be efficient on this hierarchical variant. We do consider
a particular kind of hybridised GA, which exemplifies what
two-scale search can do that one-scale search does not achieve,
thus providing a useful comparison for multi-scale search.

The algorithm uses uniform crossover, and applies a hill-
climber to repair each of the children [64]. The crossover
randomises the bits in blocks that disagree between the par-

0 200 400 600 800 1000 1200 1400 1600 1800
problem size

0

50000

100000

150000

200000

me
an

 ev
alu

ati
on

s t
o

glo
ba

l o
pti

mu
m

prediction (O(n log(n)))
MACRO empirical

Fig. 8: MACRO finds the global optimum in the H-SBB problem
with k = n1/λ, λ = 3, in all 30 independent repeats. The solid
line is a predicted runtime of (λ − 1)td + t = O(n log (n))
function evaluations. The algorithm successively collapses the
problem dimensionality into new units and exploits these new
units to reliably obtain the global optimum in polynomial time.

ents, and the disruption is repaired by the hill-climbing phase,
effectively providing another chance to solve the block. Inter-
estingly, this hybrid can solve the flat SBB∗ problem efficiently
without any explicit model-building mechanisms, unlike EDAs
(or multi-scale search). However, while it achieves ‘two-scale
search’, Figure 6 (a) shows it is unable to recurse to higher
levels as multi-scale search does. This algorithm does not
create new units of variation that would enable it to increase
the order of search over time, and the benefits would not be
obtained when there are multiple layers to the problem.

On a related note, an EDA could also be hybridised,
for instance by applying local search to the configurations
drawn from the model, before selecting and subsequent model-
building. This hybridisation may alleviate the theoretical re-
quirements for population sizing, and thus more efficiently
solve the first layer of the SBB problem. A univariate EDA
such as UMDA can solve OneMax in polynomial time [65] (al-
though a simple hill-climber compares favourably to univariate
EDAs [66]). By analogy, we expect an EDA with a good model
to be able to solve this module-max task. Superficially, such
hybridisation may appear to approximate multi-scale search,
but once again, without mechanisms to scale up the variational
units or exploit those new units, once a model reflects the
lowest level block structure, such an algorithm would not
behave qualitatively differently from an unhybridised EDA.

B. Scalability
For the following experiment we use λ= 3 and n ∈

[27, 1728] (with k=n1/3 ∈ [3, 12]). The H-SBB problem has
the same number of blocks at the bottom level as an equally
sized SBB instance, meaning that Theorem 1 provides a
sufficient value for d=O(log n). This value is also sufficient
for higher levels which have fewer blocks, and a constant
setting is used throughout each experiment.

If we have units that represent block solutions of a given
layer l, there are 2k optima per l + 2 block (and 2 per l + 1

MILLS, JANSEN, WATSON: TRANSFORMING LOCAL SEARCH INTO HIGHER-LEVEL SEARCH BY CAPTURING PROBLEM STRUCTURE 13

block). Learning units that represent block solutions to layer
l+1, which are revealed by fitness gradients with layer l units,
transforms the space such that only two optima remain. Since
the problem is hierarchically consistent, each time the units
are transformed, the space appears to be the same but in lower
dimensionality. Thus, if the algorithm is able to transform the
space from one layer to the next in polynomial time, it should
be able to solve each of the layers in turn to find a global
optimum in time that is polynomial overall. In Section V
we proved that MACRO-H can transform one layer to solve
the SBB problem. Provided that this analysis transfers to this
multi-level problem, we should expect the overall cost to scale
as O(λt(n) log(n)) =O(n log(n)) since t(n) =O(n) and λ is
constant. The data shown in Figure 8 confirms this trend.

Hierarchical landscapes emphasise the capability of
MACRO-H to recursively transform the space into lower-
dimensional problems through multiple scales of organisation.

VIII. DISCUSSION

A. Extensions of MACRO, and other problem classes

While Corollary 1 guarantees excellent performance on
a wide range of problems it also defines clear limits. All
subfunctions of the (n/k, k)-separable objective functions can
have at most two local optima. Problems consisting of sub-
problems with more than two optima are not necessarily solv-
able by MACRO-H, but Section VII demonstrates that MACRO-
H can solve these also in the particular case where large multi-
peaked sub-problems can be decomposed hierarchically.

In general the limitations of MACRO-H include cases where
false dependencies are inferred and cases where true de-
pendencies are missed. The latter can be alleviated by the
soft joins version, MACRO-S, where a join is formed with
a probability that is proportional to the number of times
search units have been found jointly in the underlying UE-
Search. MACRO-S is able to recover the structure and form
probabilistic associations even with lower-quality information
[16]. While this work speaks to the robustness of the general
approach to dependency identification, it does not tightly
define the scope of problems for which multi-scale search is
well suited. It is clear that our investigation using a single
family of problems cannot support arguments for or against
generality (although see Section II, which describes a broader
set of multi-scale search results). This area deserves significant
further effort, but is beyond the scope of the present paper.

Multi-scale search emphasises learning structure from local
optima (at each scale). Accordingly, to successfully recover
structural information, the local optima must contain informa-
tion about the global optimum. It is clear that this is the case
in the SBB, since the modules are separable. However, the
extent to which sub-patterns that are common across many
local optima are also common to the global optimum is likely
to be pivotal in determining the applicability of a multi-scale
search approach. Our work elsewhere has investigated this
question more formally [17].

The most basic unit in MACRO, the primitive, specifies a
single value for a given variable. The two primitives corre-
sponding to a particular variable have no special properties

that represent an explicit awareness that they directly compete
for a specific variable. This representation enables MACRO
to discard unnecessary values from the set of units it learns.
Such representation may be important for domains in which
the alternative primitives do not obviously compete directly
for specific variables (e. g., subfunctions in genetic program-
ming [43] or edges in permutations spaces like the travelling
salesman problem). In some such problem domains, partial
evaluations may be feasible. This may yield valuable infor-
mation about credit assignment, enabling greater efficiency
in identifying interdependency structures. Note, however, that
MACRO-H successfully learns problem structures without ac-
cess to partial evaluations. However, representing variables
as the basic unit may be more appropriate for the binary
combinatorial optimisation domain. Elsewhere, we have used
variables as the basic unit [17].

There are many variant algorithms incorporating the general
principles of multi-scale search yet to explore. For instance, we
could replace UE-SEARCH with a more sophisticated protocol,
provided it is able to exploit composite variation. Alternatives
include: a GA; simulated annealing; or even an instance of
MACRO itself as each of the unit-exploiting searchers. Our
results have shown that because other model-building do not
use learned problem structure to define new variational units,
they are not exploiting learned structure in the same manner
as multi-scale search. Interestingly, our approach of higher-
order search is entirely compatible with the advanced model-
building techniques used by state-of-the-art EDAs. Where we
have used elementary dependency detection, there is scope for
incorporating something more akin to a Bayesian network as
used in BOA [34] and EBNA [67], or to employ a probing
method, which can efficiently discover the linkage structure
even when building blocks overlap (provided the interactions
are of low order) [68]. Likewise, these or other EDAs could
use their model to inform trajectories of higher-order variation
steps, before any further model-building is applied.

B. Hierarchical transitions in biological evolution

The mechanisms detailed in this paper may appear to be
quite far removed from biological processes, but (as with
all good ideas, it seems) biological evolution did it first.
MACRO employs global procedures and data structures to
identify and utilise problem structure. However, the essence
of multi-scale search is really very simple: entities that were
accidentally correlated (due to fitness dependencies in the
problem) become canalised or deliberately correlated (due
to learned associations). This is actually what one would
expect to happen if associations were optimised to maximise
robustness (see also [?], [26]). We have been investigating
fully-distributed individual-based versions of these processes,
i. e., an ecosystem in which natural selection evolves symbiotic
associations between species, and we find that the associations
that evolve match those learned by MACRO [49], [69]. This
means that when natural selection can act on individual traits
that affect social relationships [70] to, in effect, create new
units of selection, they will implement multi-scale search
in a bottom-up emergent manner [17], [69]. The hard joins

14 IEEE TRANSACTION ON EVOLUTIONARY COMPUTATION

version of MACRO is analogous to the formation of explicit
higher-level selective units (as per the major evolutionary
transitions [71]), but the soft-joins version of MACRO shows
that reforming specific (symbiotic) groups on-the-fly is suffi-
cient and algorithmically equivalent. Thus, in identifying what
multi-scale search can solve that single-scale search cannot in
this paper, we also show that such biological processes are
fundamentally a different class of algorithm from micro-scale
evolutionary processes.

IX. CONCLUSIONS

Multi-scale search is an evolutionary process based on vari-
ation and selection where the units of variation are re-scaled
by canalising combinations of existing variational units. In this
paper we have analysed the runtime performance of a multi-
scale search algorithm, MACRO-H, on an exactly separable
class of problem, the SBB, which has not previously been
shown to be solvable in polynomial time. With this work we
are the first to show that multi-scale search has an algorithmic
niche that is not occupied by other approaches. Moreover,
by capturing the modular structure of a separable problem
explicitly, MACRO-H, is able to recurse through successive
levels of organisation. Accordingly, MACRO-H, is also apt at
solving hierarchically modular problems, even though these
problems are not separable and exhibit fitness dependencies at
many scales up to and including n bits.

The basic intuition of the BBH, that good combinations
of bits can be found and exploited to identify modules,
and then good combinations of modules can be found and
exploited to identify solutions to the next level of problem
structure, has been difficult to demonstrate. EDAs have been
successful in identifying problem structure in random-linkage
building block problems and using this information to bias
the distribution of samples explored. But multi-scale search
uses discovered structure in a different way – to explicitly
search combinations of discovered modules, and can apply this
approach through multiple levels of hierarchical organisation.
This approach demonstrates that the intuition behind the
BBH, developed for GAs with tight-linkage, can be exploited
successfully even in problems with random linkage structure.

This paper has focused on proving that multi-scale search
is qualitatively and quantitatively different from existing ap-
proaches because of the way in which a simple search process
is explicitly re-instantiated at successively higher levels of or-
ganisation. This provides a formal basis for extensions that can
be applied to other problem classes and for investigating their
implications for hierarchical processes in biological evolution.

REFERENCES

[1] W. T. McCormick, Jr., P. J. Schweitzer, and T. W. White, “Problem
decomposition and data reorganization by a clustering technique,” Oper
Res, vol. 20, no. 5, pp. 993–1009, 1982.

[2] D. Smith, “Top-down synthesis of divide-and-conquer algorithms,” Artif
Intell, vol. 27, no. 1, pp. 43–96, 1985.

[3] C. Y. Baldwin and K. B. Clark, Design rules, Vol 1: The power of
modularity. MIT Press, 2000.

[4] H. A. Simon, The Sciences of the Artificial. MIT Press, 1969.
[5] D. Michie, “Memo functions and machine learning,” Nature, vol. 218,

pp. 19–22, 1968.

[6] J. E. Laird, P. S. Rosenbloom, and A. Newell, “Chunking in soar: The
anatomy of a general learning mechanism,” Mach Learn, vol. 1, no. 1,
pp. 11–46, 1986.

[7] R. Bellman, Dynamic programming. Princeton University Press, 1957.
[8] J. A. Walker and J. F. Miller, “The automatic acquisition, evolution and

reuse of modules in cartesian genetic programming,” IEEE T Evolut
Comput, vol. 12, no. 4, pp. 397–417, 2008.

[9] M. A. Potter and K. A. De Jong, “Cooperative coevolution: An archi-
tecture for evolving coadapted subcomponents,” Evol Comput, vol. 8,
no. 1, pp. 1–29, 2000.

[10] Q. Zhang and H. Li, “MOEA/D: A multiobjective evolutionary algorithm
based on decomposition,” IEEE T Evolut Comput, vol. 11, no. 6,
pp. 712–731, 2007.

[11] J. H. Holland, Adaptation in Natural and Artificial Systems. University
of Michigan Press, 1975.

[12] D. Goldberg, Genetic Algorithm in Search, Optimization and Machine
Learning. Addison-Wesley, 1989.

[13] M. Mitchell, S. Forrest, and J. H. Holland, “The royal road for genetic
algorithms: Fitness landscapes and GA performance,” in Procs. ECAL,
pp. 245–254, 1992.

[14] R. A. Watson, G. S. Hornby, and J. B. Pollack, “Modelling building-
block interdependency,” in PPSN V, pp. 97–106, 1998.

[15] R. A. Watson and T. Jansen, “A building-block royal road where
crossover is provably essential,” in Procs. GECCO, pp. 1452–1459,
2007.

[16] R. Mills, How Micro-Evolution Can Guide Macro-Evolution: Multi-
Scale Search via Evolved Modular Variation. PhD thesis, University
of Southampton, 2010.

[17] R. A. Watson, R. Mills, and C. Buckley, “Transformations in the scale
of behaviour and the global optimisation of constraints in adaptive
networks,” Adap Beh, vol. 19, no. 4, pp. 227–249, 2011.

[18] D. Iclanzan and D. Dumitrescu, “Overcoming hierarchical difficulty by
hill-climbing the building block structure,” in Procs. GECCO, pp. 1256–
1263, 2007.

[19] J. Houdayer and O. C. Martin, “A hierarchical approach for computing
spin glass ground states,” Phys. Rev. E, vol. 64, no. 5, p. 056704, 2001.

[20] K. Mahdavi, M. Harman, and R. M. Hierons, “A multiple hill climbing
approach to software module clustering,” in Procs. IEEE Conference on
Software Maintenance, pp. 315–324, 2003.

[21] D. Thierens, “The linkage tree genetic algorithm,” in Procs. PPSN XI,
pp. 264–273, 2010.

[22] T. Gross and B. Blasius, “Adaptive coevolutionary networks: a review,”
J R Soc Interface, vol. 5, no. 20, pp. 259–271, 2008.

[23] D. Iclanzan and D. Dumitrescu, “Towards memoryless model building,”
in Procs. GECCO, pp. 2147–2152, 2008.

[24] R. Mills, R. A. Watson, and C. Buckley, “Emergent associative memory
as a local organising principle for global adaptation in adaptive net-
works,” in Procs. ICCS, pp. 417–430, 2011.

[25] R. A. Watson, C. Buckley, and R. Mills, “Optimisation in ‘self-
modelling’ complex adaptive systems,” Complexity, vol. 16, no. 5,
pp. 17–26, 2010.

[26] R. A. Watson, R. Mills, and C. Buckley, “Global adaptation in networks
of selfish components: emergent associative memory at the system
scale,” Artif Life, vol. 17, no. 3, pp. 147–166, 2011.

[27] R. A. Watson, Compositional Evolution: Interdisciplinary Investigations
in Evolvability, Modularity, and Symbiosis. PhD thesis, Brandeis
University, Waltham, MA, 2002.

[28] K. Deb and D. E. Goldberg, “Analyzing deception in trap functions,” in
Foundations of Genetic Algorithms 2 (L. D. Whitley, ed.), pp. 93–108,
Morgan Kaufmann, 1993.

[29] D. Goldberg, K. Sastry, and T. Latoza, “On the supply of building
blocks,” in Procs. GECCO, pp. 336–342, 2001.

[30] M. Pelikan, Bayesian optimisation algorithm: from single level to
hierarchy. PhD thesis, University of Illinois at Urbana-Champaign,
2002.

[31] D. Whitley, K. Mathias, S. Rana, and J. Dzubera, “Building better test
functions,” in Procs. ICGA, pp. 239–246, 1995.

[32] T. Jones, “Crossover, macromutation, and population-based search,” in
Procs. ICGA, pp. 73–80, 1995.

[33] P. Larrañaga and J. A. Lozano, eds., Estimation of distribution algo-
rithms. A new tool for evolutionary computation. Boston: Kluwer, 2002.

[34] M. Pelikan and D. E. Goldberg, “Hierarchical problem solving and
the Bayesian optimization algorithm,” in Procs. GECCO, pp. 267–274,
2000.

[35] U. Aickelin, E. K. Burke, and J. Li, “An estimation of distribution
algorithm with intelligent local search for rule-based nurse rostering,” J
Oper Res Soc, vol. 58, pp. 1574–1585, 2007.

MILLS, JANSEN, WATSON: TRANSFORMING LOCAL SEARCH INTO HIGHER-LEVEL SEARCH BY CAPTURING PROBLEM STRUCTURE 15

[36] M. Pelikan and D. E. Goldberg, “Hierarchical BOA solves Ising spin
glasses and MAXSAT,” in Procs. GECCO, pp. 1271–1282, 2003.

[37] R. Santana, P. Larrañaga, and J. Lozano, “Protein folding in simplified
models with estimation of distribution algorithms,” IEEE T Evolut
Comput, vol. 12, pp. 418–438, 2008.

[38] R. A. Watson, D. Weinrich, and J. Wakerley, “Genome structure and the
benefit of sex,” Evolution, vol. 65, pp. 523–536, 2011.

[39] R. Impagliazzo, R. Paturi, and F. Zane, “Which problems have strongly
exponential complexity?,” J. Comput Syst Sci, vol. 63, pp. 512–530,
2001.

[40] T.-L. Yu and D. E. Goldberg, “Conquering hierarchical difficulty by
explicit chunking: Substructural chromosome compression.,” in Procs.
GECCO, pp. 1385–1392, 2006.

[41] J. P. Rosca, Hierarchical Learning with Procedural Abstraction Mech-
anisms. PhD thesis, University of Rochester, 1997.

[42] P. Angeline and J. B. Pollack, “Coevolving high-level representations,”
in Artificial Life III (C. G. Langton, ed.), pp. 55–71, Addison-Wesley,
1994.

[43] J. R. Koza, Genetic programming: On the programming of computers
by means of natural selection. MIT Press, 1992.

[44] R. A. Watson and J. B. Pollack, “A computational model of symbiotic
composition in evolutionary transitions,” Biosystems, vol. 69, no. 2–3,
pp. 187–209, 2003.

[45] E. D. de Jong, R. A. Watson, and D. Thierens, “On the complexity of
hierarchical problem solving,” in Procs. GECCO, pp. 1201–1208, 2005.

[46] A. Defaweux, Evolutionary transitions as a metaphor for compositional
search. PhD thesis, Vrije Universiteit Brussel, 2006.

[47] R. Mills and R. A. Watson, “Symbiosis, synergy and modularity: In-
troducing the reciprocal synergy symbiosis algorithm,” in Procs. ECAL,
pp. 1192–1201, 2007.

[48] R. Mills and R. A. Watson, “Variable discrimination of crossover versus
mutation using parameterized modular structure,” in Procs. GECCO,
pp. 1312–1319, 2007.

[49] R. A. Watson, N. Palmius, R. Mills, S. Powers, and A. Penn, “Can selfish
symbioses effect higher-level selection?,” in Procs. ECAL, pp. 27–36,
2009.

[50] T. Jansen and R. P. Wiegand, “The cooperative coevolutionary (1+1)
EA,” Evol Comput, vol. 12, no. 4, pp. 405–434, 2004.

[51] M. Pelikan and D. E. Goldberg, “Genetic algorithms, clustering, and the
breaking of symmetry,” in Procs PPSN VI, pp. 385–394, 2000.

[52] T. Friedrich, P. S. Oliveto, D. Sudholt, and C. Witt, “Analysis of
diversity-perserving mechanisms for global optimisation,” Evol Comput,
vol. 17, no. 4, pp. 455–476, 2009.

[53] D. E. Goldberg, C. Van Hoyweghen, and B. Naudts, “From TwoMax
to the Ising model: Easy and hard symmetrical problems,” in Procs.
GECCO, pp. 626–633, 2002.

[54] S. Droste, T. Jansen, and I. Wegener, “Upper and lower bounds for
randomized search heuristics in black-box optimization,” Theory of
Computing Systems, vol. 39, no. 4, pp. 525–544, 2006.

[55] S. Droste, T. Jansen, K. Tinnefeld, and I. Wegener, “A new framework
for the valuation of algorithms for black-box optimization,” in Founda-
tions of Genetic Algorithms 7 (FOGA), pp. 253–270, Morgan Kaufmann,
2003.

[56] P. K. Lehre and C. Witt, “Black-box search by unbiased variation,”
Algorithmica, vol. 64, pp. 623–642, 2012.

[57] I. Wegener, “Simulated annealing beats metropolis in combinatorial
optimization,” in Proceedings of the 32nd International Colloquium on
Automata, Languages and Programming (ICALP), pp. 589–601, 2005.

[58] S. Nijssen and T. Back, “An analysis of the behavior of simplified
evolutionary algorithms on trap functions,” IEEE T Evol Comput, vol. 7,
no. 1, pp. 11–22, 2003.

[59] G. R. Harik, E. Cantú-Paz, D. E. Goldberg, and B. L. Miller, “The gam-
bler’s ruin problem, genetic algorithms, and the sizing of populations,”
Evol Comput, vol. 7, no. 3, pp. 231–253, 1999.

[60] T.-L. Yu, K. Sastry, D. E. Goldberg, and M. Pelikan, “Population
sizing for entropy-based model building in estimation of distribution
algorithms,” in Procs. GECCO, pp. 601–608, 2007.

[61] M. Pelikan, D. E. Goldberg, and E. Cantú-Paz, “BOA: The bayesian
optimization algorithm,” in Procs. GECCO, pp. 525–532, 1999.

[62] M. Pelikan, K. Sastry, and D. E. Goldberg, “Sporadic model building for
efficiency enhancement of the hierarchical BOA,” Genetic Programming
and Evolvable Machines, vol. 9, pp. 53–84, 2008.

[63] S. Shakya, R. Santana, and J. A. Lozano, “A markovianity based
optimisation algorithm,” Genetic Programming and Evolvable Machines,
vol. 13, no. 2, pp. 159–195, 2012.

[64] A. Prügel-Bennett, “Benefits of a population: five mechanisms that
advantage population-based algorithms,” IEEE T Evolut Comput, vol. 14,
no. 4, pp. 500–517, 2010.

[65] C. González, Contributions on Theoretical Aspects of Estimation of
Distribution Algorithms. PhD thesis, University of the Basque Country,
San Sebastián, Spain, 2005.

[66] T. Chen, P. K. Lehre, T. Ke, and X. Yao, “When is an estimation of
distribution algorithm better than an evolutionary algorithm?,” in Procs.
IEEE CEC, pp. 1470–1477, 2009.

[67] R. Etxeberria and P. Larrañaga, “Global optimization using Bayesian
networks,” in Procs. 2nd Symposium on Artificial Intelligence (CIMAF
99), pp. 332–339, 1999.

[68] R. Heckendorn and A. H. Wright, “Efficient linkage discovery by limited
probing,” Evol Comput, pp. 517–545, 2004.

[69] R. A. Watson, A. Jackson, N. Palmius, R. Mills, and S. T. Powers, “The
evolution of symbiotic partnerships and their adaptive consequences,”
submitted.

[70] S. T. Powers, A. S. Penn, and R. A. Watson, “The concurrent evolution
of cooperation and the population structures that support it,” Evolution,
pp. 1527–1543, 2011.

[71] J. Maynard Smith and E. Szathmáry, The Major Transitions in Evolution.
Oxford University Press, 1995.

PLACE
PHOTO
HERE

Rob Mills received the M. Eng (2005) and Ph. D.
(2010) degrees from University of Southampton,
UK, where he is presently Postdoctoral Fellow. He
has previously held research posts at University of
Oxford and ARM ltd. He has published 6 journal
articles and 12 conference papers, and holds two
patents. His research interests, bridging evolutionary
computing and theoretical biology, focus on the
organisation of interactions in evolving systems, and
information processing in natural systems.

PLACE
PHOTO
HERE

Thomas Jansen received the Diploma and Ph. D.
degrees in Computer Science from the Technical
University Dortmund, Germany, in 1996 and 2000,
respectively. His Ph. D. thesis on the theoretical
analysis of evolutionary algorithms was awarded the
University Best Dissertation Award.

He was Post-doc researcher at the George Mason
University 2001–2002, Juniorprofessor for Compu-
tational Intelligence at the Technical University of
Dortmund 2002–2009, Stokes Lecturer at the Uni-
versity College Cork, Ireland, 2009–2012 and is

Senior Lecturer at Aberystwyth University, UK, since 2013. He has authored
20 journal papers, 41 conference articles, 6 book chapters and one text book
on Analyzing Evolutionary Algorithms. He is Senior Member of the ACM
and associate editor of Evolutionary Computation and Artificial Intelligence.

PLACE
PHOTO
HERE

Richard A. Watson was awarded his Ph.D. in
Computer Science from Brandeis University (USA)
in 2002. His background in computational models
of evolution was complemented by a fellowship
at Harvard University in the Dept. of Organismic
and Evolutionary Biology. Since 2004 he has been
Senior Lecturer at University of Southampton (UK).
In 2006 he received the IEEE international award
“Ten to Watch in Artificial Intelligence”. His publi-
cations span topics including artificial life, robotics,
evolutionary modelling, evolutionary computation,

and computational biology; and he is author of “Compositional Evolution: The
Impact of Sex, Symbiosis, and Modularity on the Gradualist Framework of
Evolution” with MIT Press. His current research focuses on understanding the
algorithmic principles of natural processes that create adaptive biocomplexity.

	Introduction
	Divide-and-conquer, and multi-scale search
	What is multi-scale search good for?

	Previous Work
	On learning linkage and module sizing
	Scaling up with new variational units

	Problem Classes and a Test Problem
	macro-h
	Analysis on the Test Problem
	Simulated Experiments
	Simulation on the sbb * problem class
	Concatenated trap functions
	Relaxing complementarity in the sbb * problem class

	Hierarchical difficulty and multi-scale search
	Traversing hierarchy with repeated unit transformations
	Scalability

	Discussion
	Extensions of macro, and other problem classes
	Hierarchical transitions in biological evolution

	Conclusions
	References
	Biographies
	Rob Mills
	Thomas Jansen
	Richard A. Watson

