
Aberystwyth University

Enriched ant colony optimization and its application in feature selection
Forsati, Rana; Moayedikia, Alireza; Jensen, Richard; Shamsfard, Mehrnoush; Meybodi, Mohammad Reza

Published in:
Neurocomputing

DOI:
10.1016/j.neucom.2014.03.053

Publication date:
2014

Citation for published version (APA):
Forsati, R., Moayedikia, A., Jensen, R., Shamsfard, M., & Meybodi, M. R. (2014). Enriched ant colony
optimization and its application in feature selection. Neurocomputing, 142, 354-371.
https://doi.org/10.1016/j.neucom.2014.03.053

General rights
Copyright and moral rights for the publications made accessible in the Aberystwyth Research Portal (the Institutional Repository) are
retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the Aberystwyth Research Portal for the purpose of private study or
research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the Aberystwyth Research Portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

tel: +44 1970 62 2400
email: is@aber.ac.uk

Download date: 09. Jul. 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aberystwyth Research Portal

https://core.ac.uk/display/326666371?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.neucom.2014.03.053
https://pure.aber.ac.uk/portal/en/persons/richard-jensen(123d07bc-e96d-4388-b8ae-634b216c2806).html
https://pure.aber.ac.uk/portal/en/publications/enriched-ant-colony-optimization-and-its-application-in-feature-selection(51bc3a67-5479-4c69-913b-3d6df25c6193).html
https://pure.aber.ac.uk/portal/en/publications/enriched-ant-colony-optimization-and-its-application-in-feature-selection(51bc3a67-5479-4c69-913b-3d6df25c6193).html
https://doi.org/10.1016/j.neucom.2014.03.053


Enriched ant colony optimization and its application in feature 

selection 

Rana Forsati, 
a, 1,2

 Alireza Moayedikia,
a,b 

Richard Jensen,
 c
 Mehrnoush Shamsfard,

a
 Mohammad Reza 

Meybodi
d
  

a
 Natural Language Processing Research Laboratory, Faculty of Electrical and Computer Engineering, Shahid 

Beheshti University, Tehran, Iran. 

b 
Department of computing, Asia Pacific University, Kuala Lumpur, Malaysia. 

c 
Department of Computer Science, Aberystwyth University, Ceredigion, Wales, UK. 

d 
Department of Computer Engineering and Information Technology, Soft Computing Laboratory, Amirkabir 

University of Technology, Tehran, Iran. 

 

Abstract 

This paper presents a new variant of ant colony optimization (ACO), called enRiched Ant Colony Optimization 

(RACO). This variation tries to consider the previously traversed edges in the earlier executions to adjust the 

pheromone values appropriately and prevent premature convergence. Feature selection (FS) is the task of selecting 

relevant features or disregarding irrelevant features from data. In order to show the efficacy of the proposed 

algorithm, RACO is then applied to the feature selection problem. In the RACO-based feature selection (RACOFS) 

algorithm, it might be assumed that the proposed algorithm considers later features with a higher priority. Hence in 

another variation, the algorithm is integrated with a capability local search procedure to demonstrate that this is not 

the case. The modified RACO algorithm is able to find globally optimal solutions but suffers from entrapment in 

local optima. Hence, in the third variation, the algorithm is integrated with a local search procedure to tackle this 

problem by searching the vicinity of the globally optimal solution. To demonstrate the effectiveness of the proposed 

algorithms, experiments were conducted using two measures, kappa statistics and classification accuracy, on several 

standard datasets. The comparisons were made with a wide variety of other swarm-based algorithms and other 

feature selection methods. The results indicate that the proposed algorithms have superiorities over competitors. 

Key Words: Ant colony optimization; Feature selection; Hybrid algorithms; Swarm intelligence. 

1. Introduction 
 

Data preprocessing is a vital step to reduce the effect of noise and improve the quality of data 

processing tasks, with the aim of increasing the final efficiency of the tasks. Nowadays, real 

world datasets may have many irrelevant and noisy features that mislead or impede pattern 

recognition resulting in the discovery of finding less meaningful or even useless patterns. 

Through the use of feature selection, such problematic descriptors can be automatically detected 

and removed, resulting in more reliable pattern discovery. In addition, the availability of 

irrelevant dimensions in the original dataset may slow the learning process. So the reduced 

processing time is another benefit of FS. For example in text categorization [1], feature selection 

is used to reduce the size of word-document matrices and accelerates the categorization process 
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as just the most important dimensions are considered. Feature selection also has applications in 

systems monitoring [2], where the most significant indices of the system are identified and only 

those selected indices are used to check the system performance, requiring less measurement and 

less computation. 

In recent years many evolutionary and swarm based algorithms such as ant colony 

optimization [3], harmony search [4], and particle  swarm optimization [5] have  been  utilized  

to tackle the feature selection problem. Ant colony optimization is a nature-inspired swarm-

based approach that relies on the method that ants use to identify valuable food resources. In 

nature, real ants aim to find the shortest route between a food source and their nest without the 

use of visual information and possess no global world model, adapting to changes in the 

environment. One factor that the ants benefit from is pheromone deposition which enables them 

to reach their goal gradually. Each ant probabilistically prefers to follow a direction. The 

pheromone decays over time, resulting in much less pheromone on less popular paths. Given that 

over time the shortest route will have the higher rate of ant traversal, this path will be reinforced 

and the others diminished until all the ants follow the same, shortest path. 

Ant colony optimization has been considered an effective approach for finding optimal 

subsets in feature selection problems. The first ant colony optimization approach was presented 

by Dorigo, and colleagues, [6], known as Ant System (AS), in which all the pheromones are 

updated by all the ants which build a solution within an iteration. Another ant algorithm is Max-

Min Ant System (MMAS) by Stutzle and Hoos [7] in which the pheromone values are restricted 

within a desired interval (e.g. [0, 1]) and only the global-best or iteration-best solutions are used 

to update the pheromone. The problems associated with these ant colony algorithms is their 

premature convergence after a certain number of iterations. To solve this problem, Ant Colony 

System (ACS), another variation, was proposed by Gambardella and Dorigo [8]. Its 

characteristic is that a local pheromone update is utilized to update the pheromone of the edge 

after an ant traversed it. The aim of local pheromone update is to diversify the exploration of the 

ants and make it possible for other parts of the solution space to be explored. 

In this paper, a new variant of ACO is introduced, called enRiched Ant Colony Optimization 

(RACO). In RACO, the ants are called enriched since they consider the traversals done in the 

previous and current iterations. In fact the information contained in the traversals of the previous 

iterations is modeled as a rich source that will guide the ants’ future path selections and 

pheromone updating stages. The purpose of considering previous traversals is to deal with the 

problem of premature convergence. To show the efficiency of the proposed algorithm, RACO is 

applied to the task of feature selection, resulting in RACO-based feature selection (RACOFS). It 

might be assumed that RACOFS suffers from the problem of inequality of selection in which 

later features have higher priorities of selection compared to earlier ones. Hence in order to show 

that this is not the case, RACOFS is integrated with a capability local procedure, capability 

RACOFS (C-RACOFS). This feature selection algorithm is a global search that is likely to 

become trapped in local optima. Although C-RACOFS performs a simple and superficial search 

in the vicinity of the globally optimal subset, it does not guarantee an appropriate improvement. 

Therefore it is required that the vicinity of the globally optimal solution to be searched deeply. 

To this end the RACOFS algorithm is integrated with an improved local procedure; this third 

variation is called Improver RACOFS (I-RACOFS). The main contributions of this paper is 

summarized below: 



 A new variation of ant colony optimization (ACO) that utilizes an intelligent method for 

selection of edges and updating the pheromone of solutions to better guide the search 

process. The proposed algorithm is referred to as RACO. 

 An application of the proposed RACO algorithm to the feature selection problem, as one 

of the most practical areas of data processing. 

 An integration of the RACOFS method with a local procedure to demonstrate the 

capabilities of RACO in exploiting the knowledge preserved in the previous iteration 

traversals. 

 A hybridization of RACO with an improver hybrid procedure to escape from local 

optima, as one of the most prevalent deficiencies of the algorithm. 

 A comprehensive set of experiments on real datasets to demonstrate the merits and 

advantages of the proposed method and its variations in application to the feature 

selection problem. 

 

Outline. The rest of the paper is organized as follows. Section 2 reviews some of the recent 

works on feature selection that utilizes swarm-based approaches. Also some of the applications 

of feature selection are reviewed. Section 3 describes the improved ant colony algorithm. In 

Section 4, the improved ant colony based feature selection algorithm is discussed.  Section  5  

presents  the  data  sets  used  in  our experiments,  an empirical  study  of  parameters  on  

convergence  on  the  behavior  of  proposed algorithms, and comparison of different algorithms. 

Finally section 6 concludes the paper. 

2. Literature review 
 

Feature selection algorithms are mainly divided into three types: wrapper, filter and hybrid 

approaches. The wrapper approach involves wrapping the feature selection method with a 

learning model. Wrapper methods often find good subsets for a particular learning model, but 

incur a high computational overhead as a result of the model construction and evaluation for 

every considered subset. The filter approach is simpler in the sense that no model is constructed; 

instead, an evaluation function is used to assess the subset quality. Hence, subsets found via this 

approach tend to be inferior in terms of quality to wrapper algorithms while the execution of 

filter algorithms is faster. The hybrid approach [9] [10] tries to benefit from the advantages of 

both methods. Hybrid methods are more time consuming than both wrapper and filter 

approaches, since they combine the benefits of the both algorithms. Provision of local search (i.e. 

helping the algorithm to escape from local optima, and tackling the entrapment problem) as a 

result of hybridization is one of the advantages of the hybridization. Feature selection algorithms 

are modeled using different sorts of optimization algorithms such as swarm intelligence (SI) [11] 

[12] [13] or evolutionary algorithms (EAs) [14] such as harmony search [15] [4] [16] or genetic 

algorithms [17] [10]. In this section, feature selection algorithms relying on SI such as ant colony 

optimization, bee colony optimization (BCO) and particle swarm optimization (PSO) are 

reviewed and outlined in Table 1. 

 

 



Table 1 – Outlining the reviewed papers 

Paper Swarm Intelligence approach Classifier 

 PSO BCO ACO  

Kabir and colleagues [3]   √ Artificial neural network 

Viera and colleagues [18]   √ Fuzzy 

Jensen and colleagues [12]   √ C4.5 

Ke and colleagues [19]   √ Rule-based 

Chen and colleagues [20]   √ Rule-based 

Forsati and colleagues [13]  √  k-nearest neighbor 

Wang and colleagues [21] √   Rule-based 

Chuang and colleagues [22] √   k-nearest neighbor 

Huang and Dun [23] √   Support vector machine 

Unler and colleagues [5] √   Support vector machine 

Swarm intelligence algorithms 

Monirol Kabir and colleagues [3] proposed a new ACO based feature selection method. The 

algorithm considers the heuristic information of each feature as filter information while neural 

networks are used in the wrapper step of the algorithm. Two types of heuristic information were 

used for each feature, namely random and probabilistic, which have different impacts on the 

execution of the algorithm. The experiments showed promising results. Vieira and colleagues 

[18] proposed a feature selection algorithm that divides the feature selection problem into two 

objectives: choosing an optimal number of features and finding the most relevant features. The 

experiments showed good results produced from the integration of a fuzzy model classifier and 

the ACO algorithm. Jensen and Shen [12] proposed another algorithm that addresses the results 

of conventional problems associated with hill-climbing for feature selection using ant colony 

optimization for fuzzy-rough dimensionality reduction. Ke and colleagues [19] proposed an 

algorithm that integrates ACO with rough sets. The main facets of the work were the updating 

procedure of the pheromone trails of the edges connecting each pair of different attributes of the 

best-so-far solution, and also limiting the pheromone values between the upper and lower trails. 

As a result of solution construction and pheromone update rules, the algorithm is able to find 

solutions with low cardinality quickly. 

Chen and colleagues [20] proposed another feature selection method that uses rough sets 

and ACO, which adopts mutual information as a heuristic for assessing the features’ 

significance. The method embarks from the core (i.e. essential features) and then uses mutual 

information as a heuristic for feature selection. The concept of the core was first utilized in ACO 

in [20] such that all the ants should start with the core at the beginning of their search, and in the 

selection process those solutions near the core will be selected. Also other swarm-based methods 

exist, such as bee colony optimization. Forsati and colleagues [13] utilize the bee colony 

approach as one of the most recent approaches for feature selection, such that each bee produces 

a partial solution randomly and then returns to the hive for subsets assessment. Ultimately, the 

purpose is to find the most promising bees in finding solutions at the end of each iteration. The 

algorithm uses k-nearest neighbor classification (k-NN) along with leave one out cross 

validation, and outperforms some algorithms in this area.  

Particle swarm optimization (PSO) [24] is an effective population-based method that has 

been used for many feature selection approaches in the last few years. A rough set-based binary 

PSO algorithm is proposed by Wang and colleagues [21] to perform attribute reduction. In the 

algorithm, each particle represents a potential solution, and these are evaluated using the rough 

set dependency degree. Chuang and colleagues [22], proposed a catfish approach that improves 



the binary PSO for feature selection. In this method, catfish particles start a new search when the 

global best value in PSO remains unchanged for three iterations. By directing PSO toward more 

promising regions better solutions were found. Huang and Dun [23] proposed a PSO-based 

feature selection method in combination with support vector machines (SVM) as the learning 

algorithm. Two types of PSO were combined, i.e. discrete and continuous PSO methods, for both 

performing the optimization of input feature subset selection and SVM kernel parameter setting 

concurrently. For the implementation, a distributed architecture was used using web service 

technology for the purpose of computational time complexity reduction. Unler and colleagues [5] 

proposed a new wrapper-filter method with PSO for feature selection in which PSO is used as a 

wrapper approach while mutual information is used as a filter approach. In fact, mutual 

information is used for measuring both feature redundancy and feature relevancy. Their 

experiments show that the algorithm is competitive in terms of computational time and 

classification accuracy. 

Feature selection applications 

Feature selection is a field of research with many applications ranging from fraud 

detection [25] and stock prediction [26] to advanced areas like knowledge-based authentication 

[27] and sentiment analysis [28]. A brief overview of some of the recent applications is given 

here. 

Tsai and Hsiao [26] proposed a system to predict the stock price through the combination 

of many feature selection methods to identify more representative variables for better prediction.  

Duric and Song [28]  proposed a new set of feature selection schemes, that rely on a 

content and syntax model to automatically learn a set of features. The learning process is 

achieved by separating the entities that are being reviewed from the subjective expressions, and 

describing those entities in terms of polarities. By focusing only on the subjective expressions 

and ignoring the entities, more salient features can be selected for document-level sentiment 

analysis. 

Chyzhyk and colleagues [29] proposed a FS algorithm that benefits from genetic 

algorithms and extreme learning machines for applications in bioinformatics. The primary 

feature set is extracted as a voxel selection from anatomical brain magnetic resonance imaging 

(MRI). Voxel selection is provided by voxel based morphometry which finds statistically 

significant clusters of voxels that have differences across MRI volumes on a paired dataset of 

Alzheimer disease and healthy controls. 

In another example of FS application, Chen and Liginlal [27] used a wrapper method for 

knowledge-based authentication. Here, the learning machine is a generative probabilistic model, 

with the objective of maximizing the Kullback–Leibler divergence between the true empirical 

distribution defined by the legitimate knowledge and the approximating distribution representing 

an attacking strategy that both reside in the same feature space. The experiments showed that the 

proposed adaptive methods performed better than the commonly used random selection method. 

Ravisankar and colleagues [25] used feature selection algorithms as a tool to identify 

firms prone to financial statement fraud. Many techniques such as Multilayer Feed Forward 

Neural Network (MLFF), Support Vector Machines, Genetic Programming (GP), Group Method 

of Data Handling (GMDH), Logistic Regression (LR), and Probabilistic Neural Networks (PNN) 

are used to perform this task. The experiments were conducted using Chinese companies and 

revealed that PNN can outperform all the techniques without feature selection, while GP and 

PNN did outperform other techniques with feature selection and with marginally equal 

accuracies. 



3. RACO: enRiched Ant Colony Optimization 

 

The ACO algorithm [30] is a nature-inspired algorithm that simulates the natural behavior of 

ants, including mechanisms of cooperation and adaptation. This algorithm has been shown to be 

both robust and versatile, in the sense that it has been applied successfully to a range of different 

combinatorial optimization problems. In this section we propose a new ant colony algorithm, 

known as enRiched Ant Colony Optimization (RACO).  

In the baseline ant colony optimization approaches, such as ant system, min-max ant system 

and ant colony system, the algorithms do not consider previously traversed edges and their 

pheromone values as a resource to guide future movements. In this paper, a new variation is 

proposed that considers the previous traversals as a rich source of information, to guide the 

explorations of the solution space to generate diverse solutions. Diversification of solutions can 

be achieved by increasing the exploration and exploitation abilities of the ants. To this end, 

during the local and final pheromone updates, the traversals of the current iterations are not only 

considered, but also previously traversed edges to adjust pheromones of the edges. This 

hypothesis is implemented through introducing the concentration rate that indicates the extent to 

which the algorithm should concentrate on the previously traversed edges or the traversals of the 

current iteration. 

Figure 1 shows the stages of the algorithm that benefit from the information from traversals. 

Here, the algorithm uses two datasets of current and previous traversals. Different stages of the 

algorithm benefit from these stored data. In the selection stage, the ants consider the previous 

tours taken by ants to select an appropriate edge. In the local pheromone update phase, the 

databases are used to lay an appropriate pheromone value on the edge and finally in the final 

pheromone stage the traversals information is used for the global update of the edges. The 

interactions with the previous traversal database is unidirectional in the sense that the ants are 

only allowed to use the previous traversals’ information without manipulating them, while the 

current database traversals can be either read from or manipulated by the ants, in the sense that 

the pheromone in the current database can be updated. After finishing the current iteration, the 

data that resides in the current traversal database will be added to the previous traversals’ 

database. 



 

Figure 1- The general process of the algorithm (doubled head dotted arrows shows the two way exchange of data, while one-

direction dotted arrows show one way exchange of data, and finally dashed arrows show the flow of the algorithm). 

ACO algorithms generally contain the following steps. 

 Step 1: Initialization. 

 Step 2: Solution creation. 

 Step 3: Solution evaluation. 

 Step 4: Pheromone update. 

RACO starts with the initialization step. In this step, the algorithm’s dynamic parameters 

are initialized. These parameters include the number of ants (AT), the number of generations (IT) 

and the initial pheromone values of each edge ( ). Also, each ant randomly selects its initial 

state. 

After successfully initializing the RACO algorithm, the process starts with creation of 

solutions. Each ant creates its own partial solution independently. During the solution creation 

phase, each ant selects an edge and then updates the pheromone of the same traversed edge. The 

ants choose a path according to the selection probability which helps them to identify worthwhile 

paths. The calculation of the selection probability is shown in Equation (1). 

                         
  
                                                  

  
                                                                         

                  (1)                                            

                 
                 
 
   

           
                                                                                    (2) 

where   
  , is the pheromone value laid on the edge (a, b) and                  is the rate of 

popularity of the edge (a, b) among the ants. Here, AT is the total number of ants, N is the total 

Previously iterations traversal data 

Current Iteration traversal data 

Selection Process 

 

Final Pheromone Update 

Local Pheromone Update 



number of ants that have traversed edge (a, b),                  
 
    is the total number of 

traversals that include edge (a, b), and finally             is the total number of traversals by 

the ants. We try to measure how many ants have traversed the edge (a, b) in proportion to the 

total traversals, within the current and previous traversals. The more the edge (a, b) is selected its 

selection probability increases. Merely considering popularity rate will not help to prevent 

premature convergence, and on the other hand will encourage ants to select edges that are 

selected frequently. Therefore the current pheromone   
   of the edge (a, b) should be 

considered to reflect the importance of the edge in comparison to its neighbors and generally in 

the solution space, to measure how useful an edge is. For example, in the calculation of the 

probability of selection of the edge (b, c), if in total the ants have traversed 183 edges so far and 

the edge (b, c) has appeared 27 times in their traversals, then the popularity rate will be 0.147. 

This value multiplied by the previously laid pheromone value of the edge will give the selection 

probability. Equation (2) requires the availability of previous traversals information, while in the 

first iteration (Iteration =1 as shown in Equation 1) this information is not available. Therefore 

in the first iteration, the ants choose the edges according to pheromone values only. 

Equation (1) would make the selection of the edges strongly dependent on the initial 

pheromone values, in the sense that an edge with initially high pheromone will have high 

probability of selection in future traversals, and consequently will lead to premature 

convergence. Hence a local pheromone update is required to increase the exploration ability of 

the ants and prevent premature convergence. Equation (3) is the local pheromone update policy: 

  
     

  
                                       

                            
    

  
                  

    

                                                                                      (3) 

where   
   and   

   is the current pheromone value and the new pheromone value of the edge (a, 

b) and    is defined according to Equation (4). The purpose is to decrease the probability of 

selection of the frequently traversed edges, and consequently increase the exploration ability. 

Hence the pheromone value of an edge with high rate of traversals should be reduced. 
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Here,        and      (or         and      ) are the number of traversals involving 

(a, b) and total traversals within the current iteration (or the number of traversals involving (a, b) 

and total traversals within the previous iterations), respectively. To analyze Equation (4), by 

increasing the difference between        and      (or         and      ) the logarithm 

parameter becomes larger, which indicates that the edge (a, b) has been visited less than other 

edges. Therefore the edge is prone to be visited more, and more pheromone should be laid on it. 

In contrast, if the difference becomes lower, the pheromone value should be decreased. This fact 

will increase the ability of the ants to explore the solution space. However an exceptional case 

occurs when  N(s) = Nab(s); for instance, when the first ant in the first iteration traverses the first 

edge, while by increasing the number of traversals, N(s) and Nab(s) will no longer be equal. In 

this case      since the logarithm’s input is one. Also in the first iteration the traversals of the 



current iteration and the previous traversals are the same (i.e. N                     
         ). 

The parameter         is the concentration rate which plays the role of the 

pheromone decay coefficient, and is a variable which identifies the extent to which the algorithm 

should focus on within-iteration traversals or total traversals of the previous iterations. The 

higher this value is, the more emphasis there will be on the current iteration’s traversals. As all 

the ants created their solutions, the quality of each solution should be checked. This assessment 

can be done using a given fitness function that satisfies the algorithm’s objective. 

The last step of the ant colony algorithm is the final pheromone update in which all the 

ants are allowed to update only the edges that they have traversed, but the effects of their updates 

on the same edge are not identical. In simpler terms, those ants with a higher value of fitness fx, 

can increase the pheromone of the edge (a, b) (if this edge is included in their traversal) more 

than those ants that have traversed this edge but their fitness is lower than fx. To implement this 

idea we propose a final pheromone equation which involves three main parts: 

                                                                                         (5) 

As shown in Equation (5) the final pheromone of an edge indicates its relative importance 

in the solution space. Hence, three factors can influence the pheromone value of an edge. The 

more an edge is popular, the more useful it is. Therefore the popularity rate of an edge should be 

measured as explained in Equation (2). In addition, the frequency of selection does not 

necessarily mean high importance, since frequent traversals of an edge might lead to poor results. 

Therefore the level of contribution of a given edge (a, b) towards the fitness function should be 

taken into account to accurately adjust the pheromone values. The                  is the 

average of the fitness values of those ants that have the edge (a, b) in their traversal, normalized 

by dividing by the total fitness. The aim is to measure the contribution of the edge (a, b) by 

looking at the fitness values of the ants. 

                   
   
 
   

   
  
   

                                                                                                   (6) 

Here, AT is the total number of ants and N is the total number of ants that have traversed edge 

(a, b).    is the fitness value of the ant that has edge (a, b) in its traversal, and     is the fitness 

value of the i-th ant. If the frequency of selection of an edge leads to poor results, then the ants 

having this edge in their traversals will mostly have low fitness values on average, and finally 

will lead to a lower contribution rate. 

To reflect the importance of an edge in comparison to other edges in the solution space, the 

average of the pheromone values assigned to an edge is considered. In fact, if an edge is 

significant in comparison to its neighborhood edges, its average is higher than the others, and 

consequently the pheromone value increases. In the local pheromone value update, the aim is to 

reduce the pheromone of the frequently visited edges, while increasing the pheromone value of 

the rarely visited edges, to increase the exploration ability. In the final pheromone update the aim 

is to increase the pheromone of the worthwhile edges to increase the exploitation ability of the 

ants.  



                 
           

 
      

   

   
                                                                             (7) 

Equation (7) calculates the average of the changes made in the pheromone values of the edge 

(a, b) during the g-th iteration. The higher the value of AverageWeights, the more pheromone 

will be laid on the edge (a, b). In Equation (7),           
 
      is the local pheromone value 

that was laid on edge (a, b) in the g-th generation when the u-th ant traversed it, and N is the 

number of ants that have edge (a, b) in their traversals. 

4. Feature selection with RACO 
 

In this section we propose a new RACO-based feature selection method, RACOFS.  In this 

algorithm, solutions are encoded as a string of serial bits of 0s and 1s, in which 1 indicates a 

selected feature and 0 an ignored feature. For instance, Figure 2 shows that the first, sixth and the 

seventh features are selected, and the other features are unselected. 

1 0 0 0 0 1 1 
Figure 2- Solution representation 

The first step is the initialization of the algorithm. In the initialization stage the number of 

ants and iterations are chosen by the user. Then each ant is randomly assigned to a number 

between 1 and F as its initially selected features, in which F is the total number of features. 

Additionally, the pheromone on each edge is initialized randomly. 

Algorithm 1: Selection probability rule 

Input: 

         Initially selected feature of an ant 

Output: 

        Created solution of an ant  

Algorithm: 

 

while true 
     Generate a probability number Pn using selection probability equation 

     Select the edge with smallest pheromone that is bigger than, Pn 

     if the selected edge leads to the last feature 
          Select the last feature; 

          break; 

    else 

           Select the feature; 

     end if  

     if the selected edge leads to feature F-1 

          Generate a probability number Pl using selection probability equation 

           if Pl is bigger than the pheromone of the edge leading to feature F 

               Select the last feature. 
               break; 

           end if 

      end if 

 end while 

 

Using the selection probability relation (Equation 1), the ants will select their next feature 

to select. In order to prevent from some common mistakes such as a non-stop loops of traversal 

and edge selection, in this algorithm if an ant chooses the i-th feature, it then cannot choose the j-

th feature if j<i. If the selected feature’s number does not make it possible for the ants to proceed 



further (i.e. one before the last feature is selected), then no further movement is allowed; that is 

the point the solution construction for the i-th ant is completed and the solution should be 

evaluated. 

The problem occurring in this type of selection is that in most cases, the last feature can 

be selected if the feature F-1 is also selected. Therefore if the number of the currently selected 

features is equal to F-1 then the last feature is selected only if the selection probability value is 

bigger than the pheromone connecting the two last features to each other. Algorithm 1 shows the 

selection probability rule of the algorithm. After traversing an edge, the local pheromone value is 

updated according to the local pheromone update policy (Equation (3)). Finally after the 

generation of each solution by each ant, the solutions must be assessed to identify their goodness. 

The last stage is the local pheromone update in which the edges connecting features are updated 

based on the final pheromone rule discussed in Equation (5). Since the outcome of selection 

probability of each edge is a number within the interval [0,1] it is likely that the deposited 

pheromone will become greater than 1 during the pheromone update stages. To overcome this 

problem the pheromone value of each edge is normalized; the pheromone values on each edge 

that connects a parent to its children should sum to one. The algorithm iterates for IT number of 

iterations. The complete process of RACOFS is shown in Algorithm 2. 

Algorithm 2: RACOFS 

Input: 

           Number of iterations and ants 

           α  value 

Output: 

              The best ant in terms of fitness 

Algorithm: 

 

 while G number of iterations are not finished 

        Initialize the ants’ first movement. 

       foreach ant in the i-th iteration 

          Select the next feature according to selection probability rule 

             Update the pheromone laid on the last traversed edge using local pheromone update rule 
             Apply the pheromone normalization step 

             if further movement for the i-th ant is impossible 

                Assess the fitness for the generated solution. 

        end for 

       Apply final pheromone update 

       Apply the pheromone normalization 

 end while 

4.1. Hybrid algorithms 

 

It might be assumed that RACOFS suffers from an inequality of selection in the sense that 

the first features have a lower probability of selection while the later features will have higher 

priorities. Hence, a local procedure is integrated with RACOFS to: 

 Evaluate this assumption of inequality of selection.  

 Show that the reliance on previous traversals is effective to distinguish relevant and 

irrelevant features to improve the quality of the solutions. 

Since the primary aim of using this hybrid procedure is to show the capability of 

RACOFS this variation is called capability RACOFS (C-RACOFS).  According to Algorithm 3, 

in C-RACOFS after the generation of a solution all the features are tested to see if there is an 



improvement in subset quality by their removal or addition. A selected feature will be changed 

temporarily to an unselected one, while an unselected feature is changed temporarily to a 

selected one. If the fitness of this solution is better than the fitness of the older solution, then the 

new solution will replace the older one. The aim is to determine if RACOFS has included or 

excluded a feature mistakenly in the final subset. 

Algorithm 3: C-RACOFS 

Input: 

      A set of solutions created by the ants 

Output: 

       Improved set of solutions 

Algorithm: 

 

foreach solution created by each ant 

    foreach feature 

       if the feature is not selected 
           Change it to a selected one; 

           Assess the fitness of this new solution Sn; 

            if the Sn is better than the older solution Sd 
                Replace Sn with Sd; 

       else  

           Change it to a selected one; 
           Assess the fitness of this new solution Sn; 

            if the Sn is better than the older solution Sd 

                Replace Sn with Sd; 

       end if 

    end for 

end for 

 

 

Figure 3 - C-RACOFS graphical illustration 

The capability hybrid algorithm should not be considered as a greedy search algorithm. For 

greedy search algorithms, in a solution space with the size of n, there will be 2
n
 number of 

different combination of the features, and correspondingly 2
n
 number of different solutions, 

while in this hybrid algorithm for a solution with n number of features, n+1 number of different 

solutions is available (including original solution). As shown in Figure 3, each 

selected/unselected bit is changed to an unselected/selected one.  

Ant colony optimization is effective in performing global search and finding the approximate 

region of the globally optimal solution, but suffers from entrapment in local optima. Therefore its 

hybridization with a local search procedure is inevitable, to improve the final results. According 

to Figure 3, if the original solution is considered as globally optimal, then changing the bits 

iteratively to check further improvements would be a kind of superficial local search in the sense 

that a small vicinity of the globally optimal solution is searched for possible improvements. 



However this type of local search is superficial and does not guarantee to be applicable enough. 

Therefore RACOFS should be integrated with another local search procedure which not only 

searches deeper vicinities of the globally optimal solution, but also ensures superiority over 

RACOFS and C-RACOFS.  

The algorithm ImprovementProcedure, as shown in Algorithm 4, is another local search 

algorithm that is applied to RACOFS that ensures better search around a good solution. This 

local search procedure is also applied to GA-based feature selection [10] and showed good 

performance in improving solutions produced by simple genetic algorithms. Hence this local 

search is applied to RACOFS and named as Improver RACOFS (I-RACOFS) since it aims at 

improving RACOFS.  

I-RACOFS heavily depends on the atomic operations of ripple_rem(r) and ripple_add(r) and 

a prespecified subset size (d), for its execution. The ripple_rem(r) operation removes r number of 

least significant features and adds r-1 of the most significant features. On the other hand 

ripple_add(r) adds r of the most significant features while removing the r-1 least significant 

features. The procedure of adding and removing iterates until the condition |X| = d is met. In 

Algorithm 4, three scenarios might occur: 

 Scenario 1(|X|=d): Then ripple_add(r) and ripple_rem(r), will add r of the most 

significant features and remove r of the least significant features, respectively.  

 Scenario 2(|X|>d): ripple_rem removes r of the least significant features, while 

ripple_add removes r-1 of the most significant features.  

 Scenario 3(|X|<d): ripple_add adds r of the most significant features, while ripple_rem 

removes r-1 of the least significant features. 

A feature is least significant if the level of its contribution toward the quality of solution in 

comparison to other features is low (i.e. by removing the feature from the original subset the 

quality of the solution does not decrease much). A feature is most significant if the level of its 

contribution toward the quality of solution in comparison to other features is high (i.e. by 

removing the feature from the original subset the quality of the solution decreases). 

Algorithm4: ImprovementProcedure 

Input: 

          A solution, Gsol 
          Ripple factor: r.  

          Desired subset size, d. 

Output: 

          A locally improved solution. 

Algorithm: 

   

Put selected features of solution S in the set X  

Put unselected features of solution S in the set Y 

 
 if |X| = d 

             Select r of the most significant feature from the set Y 

             Remove r of the least significant features from the set X 
 if |X| > d 

       while |X| and d are not equal 
             Select r-1 of the most significant feature from the set Y 

             Remove r of the least significant features from the set X 

       end while  

 end if 

 if |X| < d 

       while |X| and d are not equal 
             Select r of the most significant feature from the set Y 



             Remove r-1 of the least significant features from the set X 

       end while  

 end if 

 

I-RACOFS is detailed in Algorithm 5. First, the ordinary RACOFS is performed and then 

the best solution is passed to the local search procedure. r and d are the ripple factor and the 

desired number of features, respectively. 

Algorithm 5: I-RACOFS 

Input: 

        A set of solutions created by the ants 

Output: 

        A set of solutions improved by the I-RACOFS 

Algorithm: 

 

while iterations are not finished  

     BestSolution = RACOFS() 
     ImprovedSolution = ImprovementProcedure(BestSolution, r, d) 

     Replace ImprovedSolution with the BestSolution 

end while 

 

In cases that the desired subset size (d) is equal to the size of the currently generated 

solution (i.e. |X| = d), then r of the least significant features are removed and r of the most 

important features will be added, while in the two other cases the difference between addition 

and subtraction is always one, and the algorithm iterates as long as the subset size becomes equal 

to d.  For further details regarding the performance of ripple factors (i.e. ripple_rem and 

ripple_add) interested readers can refer to [10]. Table 2 defines the parameters of the algorithm. 

Table 2 - Parameter definition of RACOFS and its variations 

Parameter Definitions 

Variations 

RACOFS 
Hybrid 

C- RACOFS I- RACOFS 

AT Number of ants √ √  

IT Number of generations √   

  Pheromone table √   

r Ripple factor   √ 

d Desired subset size   √ 

F or D Total number of features in the dataset √ √ √ 

N Number of ants have traversed a specific edge (e.g. (a, b)) √   

  
   Current pheromone value of the edge (a, b)  √   

  
   New pheromone value of the edge (a, b) √   

  Concentration rate √   

X Set of selected features   √ 

Y Set of unselected features   √ 

4.2. Timing analysis and memory consumption 
In this section we investigate the time complexity and memory consumption rates of the 

proposed methods. The required parameters and the symbols of the proposed algorithms are 

shown in Table 2. For RACOFS, each ant only evaluates one subset; therefore in the worst case 

where all ants select all features each ant will perform F evaluations. If there are AT ants, then 

timing complexity is O(AT×F). This is repeated over IT generations, giving a complexity of 

O(IT× AT ×F). For the C-RACOFS method, the fitness is calculated only for 0s. Its worst-case is 



O(IT× AT ×F+IT×F×F), for each feature 0 appearing in the solution (worst case F), then the 

subset is re-evaluated (taking F time).  

The general timing analysis for I-RACOFS operator is difficult, as it is unknown how 

many 0s will appear in any given subset. The worst case is where all bits are 0. We know that for 

a subset of size s, (F-s) bits will be zero, so the fitness is evaluated (F-s) times. Also, for I-

RACOFS, the local search only considers the addition of single features, by considering feature 

elimination the worst-case complexity would be the same, though it would take a bit more time 

on average. But I-RACOFS differs from the others. In Algorithm 3 the subset size should be 

known prior to timing analysis. Some papers [10] have used big-O or number of subset 

evaluations, but they are not helpful because subsets with different sizes may produce different 

amounts of time computation.  

 Since the proposed algorithms rely on the previous traversals in the previous iterations, 

some discussions regarding the memory consumption rates might be necessary. Considering a 

solution space with the size of F, there will be 
      

 
 number of edges connecting each node to 

all other nodes in the space. If preservation of each pheromone value consumes M bytes of 

memory, then the total memory consumption that preserves the information of a given iteration 

will be    
      

 
  bytes. Consequently for IT number of generations the memory consumption 

rate will be      
      

 
 . IT and M are constant values hence the memory consumption will 

be highly dependent on F, the number of features in a dataset. 

5. Experimental results and discussions 

 

In this section the proposed algorithms are evaluated and compared with a wide range of 

the other state-of-the-art algorithms. We compare our work with a wide range of other related 

works, such as swarm intelligence algorithms including ant colony optimization algorithms 

implemented as feature selection such as [6] [7] [8] [31], and other swarm-based feature 

selection algorithms including bee colony [13], PSO [5] and ant colony [3]. In [3] the authors 

have proposed two variations, random and probabilistic, and these two variations in this paper 

are named as ACOFS-R, and ACOFS-P, respectively. Also comparisons with other non-swarm 

algorithms are made, such as genetic [10] and the baseline FS algorithms. 

Two well-known measures of classification accuracy (CA) and kappa statistics (KS) are 

used to show the inferiorities and superiorities of the proposed works. CA is introduced in 

Equation 8, where TotalSamples is the number of instances in the dataset and, correctly 

classified samples are the number of samples whose class was predicted correctly. 

                        
                            

             
                                                    (8) 

The other measure used is the kappa statistic [32], which is a prevalent statistical measure 

that models the performance and allows for input sampling bias. This measure has been used in 

many feature selection methods e.g. [33], [5], [34], etc. The aim of using this measure is to 

assess the level of agreement between the classifier’s output and the actual classes of the dataset. 

The kappa statistic can be calculated as follows: 
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where N is the total number of samples and Ni is the number of samples in a data set which are 

correctly classified by the classifier. In Equation (10), Ni* is the number of instances recognized 

as class i, by the classifier and N*i is the number of instances belonging to class i in the dataset. 

The purpose is to maximize this measure. Finally kappa can be measure as Equation (11) in 

which             , kappa = 0 and kappa = 1, means there is not agreement between classifier 

and the actual classes, and perfect agreement on every example, respectively. In the rest of this 

section the datasets are introduced then some experiments are done which justifies the selection 

of the classifier. The hybridization parameters of ripple factor (r) and the desired subset size (d) 

are tested to investigate the effects of these parameters on searching the solution space and 

generally on the behavior of the proposed variations. Comparisons and the timing analysis of the 

proposed algorithms constitute the last two subsections. 

5.1. Datasets 

The used datasets are shown in Table 3. All of the datasets were downloaded from the 

UCI Machine Learning Repository
3
. Based on the categorization by UCI, datasets are divided 

into three categories of small (dimension equal to or smaller than 10), medium (dimension 

between 10 and 100) and large (dimension equal to or greater than 100). The first three columns 

are related to the datasets description, while the last three columns outline the size and 

dimensions of the datasets. The middle column, concentration rate, indicates the extent to which 

the proposed algorithms relied on the traversals of the current iteration. This parameter is fine-

tuned for each dataset separately. 

Table 3- UCI datasets 

Category type Dataset Symbols 
Concentration 

rate (α) 
# samples # features # classes 

# features ≤10 

(Small) 

Monk1 MK1 0.15 124 6 2 

Monk2 MK2 0.05 169 6 2 

Post-Operative PO 0.05 90 8 2 

BreastCancer BC 0.2 699 9 2 

Glass GL 0.5 214 10 7 

Vowel VW 0.1 990 10 11 

10 < # features< 100 

(Medium) 

Wine WI 0.95 178 13 2 

Zoo ZO 0.25 101 17 10 

Horse HR 0.85 368 27 2 

Ionosphere IO 0.25 351 34 2 

Soybean-Small SS 0.05 35 47 4 

Sonar SO 0.55 208 60 2 

# features ≥100 
(Large) 

Arrhythmia ARR 0.02 452 279 16 

Hill-Valley HV 0.02 606 101 2 

 

                                                           
3
 http://archive.ics.uci.edu/ml/datasets.html. 



5.2. Classifier performances 

 

In this section some experiments are carried out using RACOFS variations to show the 

effectiveness of k-NN for our algorithms. One of the reasons behind the utilization of k-NN is the 

type of datasets that have been used. As we have conducted our experiments on datasets having 

more than two class labels, k-NN in such cases would be reasonable, easier and of higher utility 

compared to other classifiers such as support vector machine, as SVM classifiers utilization for 

samples having more than two class labels is intractably difficult. The use of other types of 

classifier (e.g. CART) does not seem reasonable, as these rely on a training process to construct 

the classifier, to then be able to classify test samples. In this example, some datasets that are 

intrinsically divided into two disjoint groups of train-test (e.g. MK1, MK2 and HV) might 

benefit from CART. The naïve Bayesian classifier (or simply Bayesian) can be seen as another 

suitable classifier. Hence its performance is tested against k-NN in three datasets of BC, HR and 

HV; each representing a category of small, medium and large datasets, respectively. The 

performance comparisons are made in terms of accuracy and timing execution, under similar 

conditions as outlined in Table 4. 

Figure 4 compares the k-NN and Bayesian classifiers in terms of classification accuracy. 

The testing conditions, in terms of the number of ants and iterations are the same for both 

classifiers, while in the Bayesian classifier we used the equiprobable partitioning technique [3] 

[35] for data partitioning. According to the experiments illustrated in Figure 4, k-NN classifies 

the samples better than the Bayesian classifier in all three categories. The inferiority of the 

Bayesian approach could be as a result of the data partitioning stage, as partitioning makes the 

data more general, resulting in a loss of useful information, while k-NN considers the actual, 

unchanged, data during classification. 

 

Figure 4 – k-NN and naïve Bayesian comparisons on three representative datasets in terms of accuracy 

The other comparison criterion is the execution time. In Figure 5, the aim is to show the 

execution time of k-NN and naïve Bayesian classifiers for different subset sizes, using a 2-class 

dataset. Theoretically, by increasing the number of instances of a dataset, the k-NN execution 

time increases. Also, k-NN relies on the distances between samples (e.g. Euclidean distance) for 

classification. Hence increasing the number of available dimensions (features) of the dataset 

prolongs the distance measurement calculation time. Therefore, the k-NN execution time 
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depends on the subset size and the number of instances. Bayesian classifiers also can be affected 

by the number of instances of the dataset, but do not use any distance measure in the 

classification process. Hence the use of a distance function prolongs the execution of k-NN 

compared to naïve Bayesian, but assures better results. 

 

Figure 5 – Timing analysis of k-NN and Bayesian classifiers in a 2-class dataset for different subset sizes 

Hence k-NN is used as the main classifier. However fine-tuning of the parameter k, is 

necessary. In Figure 6, some experiments are carried out to study the effects of this parameter. 

As expected, by increasing the number of neighbors the accuracy of classification increases. This 

behavior stems from the fact that increasing the value of k would prevent over-fitting to a certain 

extent. 

 In this paper the value of k has been set to 1 in order to have a fair and consistent 

comparison with the literature [13] [10]. In datasets that are intrinsically divided into two sets of 

training and testing such as MK1, MK2 and HV the experiments were carried out in this form 

with 1-NN as classifier, instead of LOOCV and k-NN, in which k=1. 

 

Figure 6 - Studying the effects of parameter k in k-NN classifier on three representative datasets 
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5.3. Effects of hybridization parameters 

In Figures 7 to 9, the effects of the ripple factor (r) and the desired subset size (d) are 

tested. The proposed hybrid algorithm of I-RACOFS relies heavily on these two parameters. 

Therefore in this section, some experimentation is given to show the effects of increasing or 

decreasing the ripple factor and the desired subset size on the algorithms behavior, using three 

deliberate datasets of SO, HR and HV. The appropriate values of r in all the datasets are 1, 2, 3 

and 4, and for d = D/5, 2D/5, 3D/5 and 4D/5, as used in [10]. Ripple factors cannot be applied 

when r>d [10].  

 

Figure 7 - The effect of ripple factor for the HR dataset 

 

Figure 8 - The effect of ripple factor for the SO dataset 
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Figure 9 - The effects of ripple factor for the HV dataset 

 

 Ripple factor affects the fitness value of a solution. 

This point indicates that the ripple factor makes the search in the local optima stronger 

that would lead to improved fitness value. However this may not be the case for all datasets and 

depends on the dataset characteristics like number of dimensions or instances. For instance in 

Figure 8, when d=24 the fitness for r=3 is around 94% while the same rate of accuracy was 

preserved for higher amounts of ripple factor (e.g. r=2, 3 and 4).  

 Always increasing/decreasing the subset size and ripple factor is not effective. 

For example, in Figure 7, the best result is obtained when d=12 and r=4. But when the 

value of d is too small (e.g. d=6) or too large (e.g. d=24), the ignored or added features have 

negative effects on the classification accuracy, in the sense that the newly added or ignored 

features will decrease the accuracy. The solution space size can affect the selection of ripple 

factor as well. The selection of the value of the ripple factor is critical in the sense that choosing 

low rates for this would decrease the searching ability of the hybrid procedure while very high 

values of the ripple factor results in a time-consuming algorithm. Therefore it is likely that in 

solution spaces with low dimensions, small values of r lead to an algorithm with satisfactory 

results, while by increasing the size of the solution space, it is less likely to reach an optimal 

solution when r is small. Similarly for datasets with high numbers of features like datasets with 

size greater than 100 (Figure 9), it is needed to define larger subset sizes (e.g. 3D/5 or 4D/5), 

while in small or medium-sized datasets, the selection of a low subset size (e.g. D/5 or 2D/5) 

would help to attain to an optimal solution. 

 Effects on convergence criterion.  

The higher the ripple value is, the sooner the algorithm converges. The convergence of an 

ordinary global search algorithm would take place after many iterations, while in this hybrid 

algorithm the convergence to the optimal result would be faster with a suitable ripple factor.  

5.4. Comparisons 
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In this section of the experimental results, the performance of the proposed algorithms is 

compared to some of the most recent swarm intelligence algorithms, proposed either for FS or 

non-FS tasks. The comparisons are divided into two sections. In the first subsection, swarm-

based algorithms are compared, and the second section contains some comparisons with genetic 

and baseline feature selection algorithms. Parameters of the implemented algorithms are set 

according to Table 4. 

In all algorithms the number of ants and iterations are set to the ones used in this 

algorithm (RACOFS). The algorithms were tested in ten independent executions for justifiable 

comparisons. In BCOFS [13], the number of constructive steps (NC) has different values based 

on the dimensions of the dataset. NC for small datasets is D/3, and for medium and large datasets 

NC is equal to D/5 and D/10, respectively. 

Table 4- Parameter setting of the implemented algorithms4 

Algorithms Parameter settings 

Proposed 

Algorithms 

RACOFS 
IT = 10, AT = 100,   = randomly between 0 and 1. 

C-RACOFS 

I-RACOFS IT = 10, AT = 100,  d=based on the dataset size, r [1-4] 

Baseline ACO 

Algorithms 

AS 

Iterations = 10, ants = 100, pheromone decay coefficient = 0.1, evaporation_Rate = 0.3, q =3, ῤ = 0.7, 

α=1 , β=3. 

MMAS 
Iterations = 10, ants = 100, pheromone decay coefficient = 0.1, evaporation_Rate = 0.3, min_pheromone 

= 0.5, max_pheromone = 1, q =1, ῤ = 0.9, α=1 , β=3. 

ACS 

Iterations = 10, ants = 100, pheromone decay coefficient = 0.1, evaporation_Rate = 0.3, q =1, ῤ = 0.9, 

α=1 , β=3. 

Recent ACO 

Algorithms 

TSIACO1 α=1 , β=6 , r=5,      = 0.999,     =0.001 , m1 = 0.15, m2=1, ῤ1 = 0.01, ῤ2=0.03. 

TSIACO2 α=1 , β=6 , r=5,      = 0.999,     =0.001 , m1 = 0.15, m2=0.5, c1=0.9, ῤ1 = 0.002, ῤ2=0.03. 

ACOFS-R 
α=1,                                                 

ACOFS-P 

BCO BCOFS Bees = 100, iterations= 10, NC = depends on the dataset size 

 

5.4.1. Swarm-based comparisons 

 

In this section we compare the proposed RACOFS algorithms with the ant and bee 

colony algorithms proposed in [31] and [13] respectively. The comparisons reveal significant 

superiorities over competitors. In Tables 5, 6 and 7, the results are shown in the form of x-y(z), 

where x, y and z are the average of CA, KS values and the subset size of the best solution, 

respectively. 

In Table 5, the comparisons are made for small datasets. Ant colony comparisons are 

divided into two types of baseline [6], [7], [8] and recently proposed variations [31] [3] in which 

the algorithms are implemented as feature selection algorithms while the other ant-based feature 

selection method [3] was implemented and tested in more datasets, using LOOCV and 1-NN. 

BCOFS [13] is our previously proposed algorithm. 

For the MK1 and MK2 datasets I-RACOFS compared to two other variations of 

RACOFS and C-RACOFS could not show satisfactory results, as it ignored an optimal subset 

                                                           
4
 For the implemented algorithms the parameter settings were done based on the settings proposed in the reference papers (except number of ants 

and iterations), while baseline algorithms were fine-tuned to the most optimal results. 



size gained by RACOFS and C-RACOFS. In the MK 1 and MK2 datasets, the optimal subset 

sizes are three and six, respectively. For these datasets RACOFS is also superior to other 

algorithms of ant colony and bee colony as compared in Table 5. 

For the PO dataset, the performances of I-RACOFS and RACOFS are the same for d=2, 

while by increasing the desired subset size in I-RACOFS the performance deteriorates. Also 

RACOFS could outperform other variations of ant colony but was inferior to BCOFS. For the 

BC dataset, the best result in terms of CA was gained by RACOFS with the size of four, while I-

RACOFS could outperform other variations when d=4, in terms of the KS measure. For the GL 

dataset the proposed variations did outperform the competitors. For the VW dataset, in the 

proposed variation the best result was gained by RACOFS with the size of eight. However this 

algorithm did not outperform baseline ant algorithms. In I-RACOFS other variations, except 

baseline ACOs, are outperformed in terms of the KS measure only. 

Determination of the desired subset size would be one of the most important factors of 

inferiorities of I-RACOFS over the other variation, while in some datasets for specified values of 

d and r, I-RACOFS outperformed the competitors. Also, the partial reliance of RACOFS on 

previous traversals would be the most prominent factor leading to the algorithm’s superiority 

over its competitors. 

In Table 6, the proposed variations are compared with other swarm-based algorithms for 

medium-sized datasets. In RACOFS experiments in the WI dataset, RACOFS and its variations 

could not show any superiority over other algorithms and it is likely that the variations in this 

dataset suffer from the classifier settings of the proposed algorithm, as RACOFS uses k-NN with 

k=1, while this dataset may require k>1. In the ZO dataset, RACOFS is superior over the 

competitors in terms of both CA and KS measures. 

In the HR dataset, I-RACOFS outperformed all other algorithms, including RACOFS and 

C-RACOFS, when d=12 and r>2. In the SS dataset, the results of the algorithms are the same 

while the differences are in the subset sizes, in which RACOFS is better. In two other datasets, 

IO and SO, the hybridization is more significant. I-RACOFS could improve both variations of 

RACOFS and C-RACOFS in the SO and IO datasets. The competitors were outperformed by 

either RACOFS or I-RACOFS in terms of CA and KS measures. 

The proposed variations in general have a significant superiority over the competitors, 

including ant colony and bee colony based algorithms. This superiority was gained as a result of 

the proportional reliance of the algorithms on the previous traversals of the ants that increases 

their abilities in exploring and exploiting the solution space. Also, the hybridization of RACOFS 

with the local improver procedure becomes more significant as the dataset size (i.e. number of 

features) grows and additionally, poor results for the WI dataset requires that the experiments to 

be carried out on this dataset with k>1.  



Table 5- Ant and bee colony comparisons on small datasets using CA and KS measures (all the units are in %). 
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Table 6 - Ant and bee colony comparisons on medium datasets using CA and KS measures (all the units are in %). 
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Table 7 - Comparisons with other swarm based algorithms in large datasets using KS and CA measures (all the units are in %). 

Dataset d Proposed ACO Recent ACO Baseline ACO BCO 

HV 

 
I- 

RACOFS(1) 

I- 

RACOFS(2) 

I- 

RACOFS(3) 

I- 

RACOFS(4) 
RACOFS 

C-

RACOFS 
TSIACO1 TSIACO2 

ACOFS-

P 

ACOFS-

R 
AS MMAS ACS BCOFS 

20 
56.56 -59.3 56.56-59.3 56.73-59.35 56.73-59.35 

35 

- 

35.4 

(10) 

48.7 

- 

48 

(52) 

50.62 

- 

50.27 

(18) 

 

52.4 

- 

52.03 

(40) 

57.1 

- 

58.5 

(48) 

58.75 
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59.6 

(36) 

 

61.45 

- 

59.08 

(29) 

 

60.46 

- 

59.08 

(39) 

 

 

59.14 

- 

59.06 

(58) 

54.6 

- 

50.6 

(62) 

40 52.77-59.2 52.77-59.2 54.91-59.27 54.91-59.27 

60 60.06-58.64 60.06-58.64 60.7-58.62 60.7-58.62 

80 57.92-52.39 57.92-52.39 57.92-52.39 57.92-52.39 

ARR 

56 62.83-64.85 62.83-64.85 62.38-64.85 62.38-64.85 

54.86 

- 

55.7 

(273) 

55.03 

- 

56.1 

(275) 

 

57.74 

- 

56.11 

(241) 

 

55.5 

- 

56.23 

(170) 

55.97 

- 
56.51 

(138) 

 

55.7 

- 

56.43 

(130) 

60.95 

- 

56.08 

(28) 

62.27 

- 

56.09 

(22) 

60.62 

- 

56.08 

(23) 

 

52.4 

- 

56.2 

(139) 

112 63.05-64.8 63.05-64.8 63.05-64.8 63.05-64.8 

168 61.5-62.5 61.5-62.5 61.5-62.5 61.5-62.5 

224 57.3-59.92 57.3-59.92 57.3-59.92 57.3-59.92 

 

In Table 7, the comparisons are made for large datasets, HV and LR, in terms of CA and 

KS. In the HV dataset, the proposed algorithms RACOFS and C-RACOFS have the least 

significant results, while the integration of RACOFS with the capability hybrid procedure is 

necessary to enhance the final results. I-RACOFS could improve the solutions with a specific 

subset size to outperform other algorithms of TSIACO variations and BCOFS. In the ARR 

dataset, the variations of RACOFS and C-RACOFS were only superior to BCOFS, while 

showing almost similar performances in comparisons to other algorithms. 

The proposed variations use the 1-NN classifier. Although in general satisfactory results 

were gained in comparison to other algorithms, some of the inferiorities can be alleviated if the 

proposed algorithms are tested with k>1. For example as shown in Figure 6 (the experiments on 

the HV dataset), by increasing the number of neighbors, the classifier’s accuracy improves. 

Hence in large datasets it is likely that RACOFS with k=1 suffers from the problem of over-

fitting even in cross validation rounds and degrade the performance significantly. The 

significance of hybridization (I-RACOFS) increases as the dataset grows. According to Tables 6 

and 7, for D> 30, I-RACOFS showed better results compared to other variations, in datasets with 

sizes of D<30, in a few cases, improvements were made by I-RACOFS. 

In Table 8, the comparisons are only made between datasets that were in common with 

the PSO algorithm proposed in [5]. In this table, the results are shown in the form of x(y), where 

x is the result for CA and y is the best subset size. The limited and unlimited expressions of PSO-

based algorithms refer to whether the subset sizes are restricted or unrestricted. 

Considering the CA measure, superiorities in either of the proposed variations were 

gained over the PSO-based algorithms, for the SO and GL datasets. Similarly for the KS 

measure, the proposed variations outperform PSO-based algorithms in the GL and SO datasets. 

mr
2
PSO-based variations could outperform RACOFS-based algorithms only in IO dataset. 

Although PSO and RACOFS are both swarm-based algorithms, but they have quite different 

underlying procedures. Furthermore PSO considered here rely on SVM for classification while 

RACOFS uses k-NN. Hence, the superiorities gained over PSO, in most datasets not only 

demonstrate the ability of RACOFS and its variations in exploring and exploiting the solution 

space, but also that k-NN performs better than SVM in this case. 



Table 8 - Comparisons with PSO algorithms proposed in [5] (all units are in %). 

   Proposed ant colony feature selection algorithms PSO-based algorithms 

Measure Dataset d I-RACOFS(1) I-RACOFS(2) I-RACOFS(3) I-RACOFS(4) RACOFS C-RACOFS 
Mr2PSOAcc 

(Limited) 

Mr2PSOAcc 

(Unlimited) 

Mr2PSOMI 

(Unlimited) 

C
la

ss
if

ic
at

io
n
 A

cc
u

ra
cy

 (
C

A
) 

SO 

12 93.26 93.26 93.75 93.75 

 
87.5 

(11) 

 
89.42 

(11) 

 

88.15±1.3 

(15) 
 

85.67±1.7 

(15) 
84.28±1.3 

24 93.26 94.71 95.2 93.26 

36 92.31 94.23 94.7 94.7 

48 92.31 93.26 93.26 93.26 

IO 

7 95.15 95.15 95.15 95.15 

 

94.01 

(15) 

 

94.01 

(15) 

94.92± 0.4 
(6) 

95.44±0.4 
(6) 

95.44±0.4 
14 94.01 94.87 94.87 94.87 

20 94.01 91.16 91.45 93.73 

27 83.47 83.19 91.45 91.45 

WI 

3 78.08 78.08 78.08 N/A 

79.21 
(6) 

79.21 
(6) 

 

99.72±0.3 
(6) 

 

99.72±0.3 
(6) 

99.19±0.4 
5 79.21 79.21 79.21 79.21 

8 79.21 79.21 79.21 79.21 

10 79.21 79.21 79.21 79.21 

GL 

2 99.5 99.5 N/A N/A 

 

100 

(4) 

 

100 

(4) 

 

79.77±2.0 
(5) 

 

80.28±1.9 
(5) 

78.5±3.9 
4 100 100 100 100 

6 100 100 100 100 

8 100 100 100 100 

K
ap

p
a 

S
ta

ti
st

ic
s 

(K
S

) 

SO 

12 96.8 96.8 96.8 96.8 
 

91.45 
 

91.45 84.35±1.7 
81.17±2.3 

 
79.36±1.9 

24 96.8 97.6 97.6 97.6 

36 95.6 95.6 95.6 95.6 

48 95.4 96.1 96.1 96.1 

IO 

7 93.7 94.6 95.7 95.7 
 

93.14 

 

93.14 93.47±0.6 94.27±0.5 94.13±0. 6 
14 93.4 93.4 94.8 94.8 

20 91.7 91.4 91.8 91.8 

27 87.5 87.5 87.8 87.8 

WI 

3 76.8 76.8 76.8 N/A 

76.8 76.8 99.64±2.4 99.64±0.5 
98.96±0. 5 

 

5 76.6 76.6 76.6 76.6 

8 76.45 76.45 76.45 76.45 

10 76 76 76 76 

GL 

2 99.5 99.6 N/A N/A 

99.9 99.9 74.33±2.4 74.83±2.3 72.87±4.8 
4 99.7 99.86 100 N/A 

6 99.7 99.93 100 100 

8 99.7 99.8 99.8 99.8 

 

5.4.2. Other comparisons 

In this section the proposed algorithms are compared with other feature selection algorithms such 

as classical and genetic algorithms. Since RACOFS is mainly superior over or similar to C-

RACOFS, in this set of experiments C-RACOFS is not included. To make justified comparisons 

only datasets that are in common were selected. Also the proposed algorithms’ settings such as 

number of iterations and independent executions were set based on what was reported in [10]. 

In Table 9, the comparisons are made with classical approaches like sequential forward 

selection (SFS), plus-l take away-r (PTA) and sequential floating forward selection (SFFS). In 

PTA r is not the ripple factor but is the number of features that should be removed. The results 

are extracted from [10]. In the GL dataset, there is not much difference in the performance. In the 



VW dataset, I-RACOFS could not outperform the classical algorithms, while RACOFS had 

similar performances to the classical algorithms with subset size of eight. For the SO dataset 

RACOFS could only outperform SFS with d=12, while the hybrid procedure has superiorities 

overall. 

Table 9- Comparisons with some other baseline feature selection algorithms (classical) using CA (all units are in %). 

Datasets d SFS PTA SFFS I-RACOFS(1) I-RACOFS(2) I-RACOFS(3) I-RACOFS(4) RACOFS 

 

GL 

2 99.07 99.07 99.07 99.5 99.5 N/A N/A 
 

100 

(4) 

4 100 100 100 100 100 100 100 

6 100 100 100 100 100 100 100 

8 100 100 100 100 100 100 100 

 

VW 

2 62.02 62.02 62.02 48.3 48.3 N/A N/A 
 

99.7 

(8) 

4 92.63 92.83 92.83 88.9 88.9 88.9 88.9 

6 98.28 98.79 98.79 94.2 94.7 94.7 94.7 

8 99.70 99.70 99.70 95.7 95.7 95.7 95.7 

 

SO 

12 87.02 89.42 92.31 93.26 93.26 93.75 93.75 
 

87.5 
(11) 

24 89.90 90.87 93.75 93.26 94.71 95.2 93.26 

36 88.46 91.83 93.27 92.31 94.23 94.7 94.7 

48 91.82 92.31 91.35 92.31 93.26 93.26 93.26 

 

IO 

7 93.45 93.45 93.45 95.15 95.15 95.15 95.15 
 

94.01 

(15) 

14 90.8 92.59 93.73 94.01 94.87 94.87 94.87 

20 90.03 92.02 92.88 94.01 91.16 91.45 93.73 

27 89.17 91.17 90.88 83.47 83.19 91.45 91.45 

WI 

3 93.82 93.82 93.82 78.08 78.08 78.08 N/A 

79.21 

(6) 

5 94.38 94.38 94.94 79.21 79.21 79.21 79.21 

8 95.51 95.51 95.51 79.21 79.21 79.21 79.21 

10 92.13 92.13 92.7 79.21 79.21 79.21 79.21 

 

In the IO dataset RACOFS outperformed all other competitors, and also in the hybrid 

procedures superiorities are gained over the competitors. Comparing RACO-based feature 

selection algorithm to the classical algorithms, the proposed algorithm has been mostly superior 

over the competitors due to the retention of the knowledge of the previously traversed edges, as a 

rich source of information that is available for the ants to adjust the pheromone appropriately. In 

Table 10, comparisons are made between hybrid genetic algorithms and the proposed ant-based 

algorithms, with the same hybridization procedures. The testing conditions are the same and the 

selected datasets are divided into two disjoint sets of testing and training according to [10] to 

have justifiable comparisons.  

According to the results in Table 10, the overall performance of I-RACOFS algorithms is 

not better than HGAs. In the SO dataset, for d=48, I-RACOFS is superior to HGA only for r with 

values of 2, 3 and 4. In the IO dataset, for d=27 and r=3 and r=4, the outcomes of the I-RACOFS 

is similar to those of HGAs, while in the other settings of r and d variables the proposed 

algorithms are inferior. In the VW dataset, RACOFS has superiority over HGA for d with values 

of 2, 4 and 6. Hybridization is not effective in this dataset to improve the results. Lastly the 

proposed algorithms in WI dataset are not better than HGAs. Genetic algorithm is an 

evolutionary based algorithm, while ant colony relies on a different framework (swarm 

intelligence). Hence, based on the comparisons the genetic algorithm compared here is in general 

superior over the proposed swarm-based techniques. 

  



Table 10- Comparisons with hybrid genetic algorithms using CA (all units are in %). 

Dataset d HGA(1) HGA (2) HGA(3) HGA(4) I-RACOFS(1) I-RACOFS(2) I-RACOFS(3) I-RACOFS(4) RACOFS 

 

GL 

2 99.07 99.07 N/A N/A 99.5 99.5 N/A N/A 

100 

(4) 

4 100 100 100 100 100 100 100 100 

6 100 100 100 100 100 100 100 100 

8 100 100 100 100 100 100 100 100 

 

SO 

12 93.65 94.71 94.61 94.81 93.26 93.26 93.75 93.75 

87.5 
(11) 

24 95.86 95.96 96.34 96.15 93.26 94.71 95.2 93.26 

36 95.67 95.82 95.67 95.67 92.31 94.23 94.7 94.7 

48 92.6 93.17 93.17 93.08 92.31 93.26 93.26 93.26 

 

IO 

7 95.38 95.5 95.56 95.56 95.15 95.15 95.15 95.15 

94.01 

(15) 

14 94.93 95.56 95.21 95.21 94.01 94.87 94.87 94.87 

20 93.9 94.19 93.73 94.13 94.01 91.16 91.45 93.73 

27 91.45 91.45 91.45 91.45 83.47 83.19 91.45 91.45 

 

VW 

2 62.02 62.02 N/A N/A 48.3 48.3 N/A N/A 

99.7 

(10) 

4 92.83 92.83 92.83 92.83 88.9 88.9 88.9 88.9 

6 98.79 98.79 98.79 98.79 94.2 94.7 94.7 94.7 

8 99.7 99.7 99.7 99.7 95.7 95.7 95.7 95.7 

WI 

3 93.82 93.82 93.82 N/A 78.08 78.08 78.08 N/A 

79.21 
(6) 

5 95.51 95.51 95.51 95.51 79.21 79.21 79.21 79.21 

8 95.51 95.51 95.51 95.51 79.21 79.21 79.21 79.21 

10 92.7 92.7 92.7 92.7 79.21 79.21 79.21 79.21 

 

5.5. Timing discussions 

In this section we investigate the amount of required running time for the proposed 

feature selection algorithms. In order to show the execution time differences between the 

proposed variations, a medium-sized dataset such as WI is suitable. According to Figure 10 

RACOFS is a faster algorithm in comparison to C-RACOFS. As the number of ants increase the 

algorithms need more execution time. Figure 10 indicates that for a low number of ants (e.g. 50), 

the execution time differs between RACOFS and C-RACOFS while by increasing the number of 

ants this difference increases greatly. Hence within a given iteration the execution time of C-

RACOFS is more dependent on the number of ants compared to RACOFS. 

In Figures 11 to 14, timing analysis of the hybrid algorithm of I-RACOFS is shown. 

Comparisons are made based on the dependencies that the hybrid algorithm has on the desired 

subset size and ripple factors. By increasing the desired subset size, d, and ripple factor, r, the 

running time grows, as the ripple factor values intensify the search around local optima stronger. 

Hence the algorithm requires longer execution time. However the desired subset size, d, has 

more impact on the execution time. For instance, in Figure 11 where d= 3, the required time for 

the algorithms to converge are similar. On the other hand as the required subset size increased to 

5, according to Figure 12, the timing complexity between r = 3 and 4 increase significantly. Also 

in Figures 13 and 14 it can be seen that the required execution time for the algorithm is affected 

greatly as the desired subset size increases. Therefore the timing complexity is more dependent 

on subset size rather than ripple factor and for datasets with large numbers of features the 

algorithm requires a large running time. For further analysis of the timing analysis of improver 

hybrid procedure interested readers can refer to [10]. 



 

Figure 10 - Comparisons of RACOFS and C-RACOFS 

 

 

Figure 11 - I-RACOFS timing results for d=3 

 

Figure 12 - I-RACOFS timing results for d=5 
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Figure 13 - I-RACOFS timing results for d=8 

 

Figure 14 - I-RACOFS timing results for d=10 

6. Conclusion and future works 

 

In this paper we introduced a new ant colony algorithm, RACO, that benefits from the 

traversals of the previously traversed edges. The previous traversals are seen as a rich source of 

information helping to adjust the pheromone values laid on the edges as accurately as possible. 

The aim of using previously traversed edges is to provide a new methodology to increase the 

exploration and exploitation abilities of the ants and correspondingly prevent the algorithm 

converging prematurely.  

Then, RACO is applied to the task of feature selection (RACOFS) to show the 

effectiveness of the algorithm in its application. It was assumed that RACOFS suffers from the 

problem of inequality of selection. Hence C-RACOFS, a second variation, was introduced to test 

this assumption. RACOFS is capable of finding globally optimal solutions, but is prone to be 

entrapped in local optimal. Therefore the third variation, I-RACOFS, was introduced that 

integrates a local search procedure with RACOFS and investigates further possible 

improvements by searching the vicinity of the globally optimal solution.  
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RACOFS, compared to other ant-based feature selection algorithms, showed significant 

superiority in both the KS and CA measures. This superiority is gained as a result of reliance on 

the previous iterations’ traversals. RACOFS is capable of using the rich sources of previously 

traversed edges and finding globally optimal solutions, in small and medium datasets, while in 

large datasets hybrid algorithms are better to reach an optimal solution. In order to reach an 

optimal solution in large datasets, RACOFS is required to be executed with k-NN where k>1. 

The timing analysis results indicate RACOFS as the fastest variation in comparison to two other 

variations, and I-RACOFS is the slowest variation. The execution time of I-RACOFS heavily 

depends on the hybridization parameters of ripple factor and the desired subset size, while as the 

experiments indicated the execution time is more dependent on the desired subset size, rather 

than ripple factor. 

As some suggestions for future work, although the proposed algorithm showed 

significant performances using k-NN with k=1, the proposed algorithms can be extended by 

testing for different values of k (e.g. k>1), especially for the WI dataset, to investigate further 

improvements for this dataset. The hybridization is applied to the outcome of RACOFS while it 

also can be applied to C-RACOFS or to each solution created by the ants. 
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