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Feynman, Wigner, and Hamiltonian Structures

Describing the Dynamics of Open Quantum

Systems

J. Gough∗, T.S. Ratiu†, O.G. Smolyanov‡

Abstract

This paper discusses several methods for describing the dynamics of

open quantum systems, where the environment of the open system is

infinite-dimensional. These are purifications, phase space forms, master

equation and liouville equation forms. The main contribution is in using

Feynman-Kac formalisms to describe the infinite-demsional components.

This paper discusses several approaches for describing the dynamics of open
quantum systems. Open quantum systems play an important role in mod-
elling physical systems coupled to their environment and, in particular, for the
emerging field of quantum feedback control theory (see [12]). Thus, in studying
coherent quantum feedback, models consisting of a quantum system related to
quantum control system, so that each of these systems turns out to be open,
are considered.

Generally the master equation is presented in the theoretical physics litera-
ture as the central description of an open quantum system. In practice, however,
it is these solutions that are important for potential applications, rather than the
master equations themselves. Our goal is to solve the exact master equations,
which describe the reduced dynamics of subsystems of certain large systems
generated by the dynamics of these large systems: these master equation arise
from a number of different approaches which we will consider.

In fact, we examine four approaches for describing subsystems dynamics,
and in each case we exploit Feynman type formulas (see [1, 2]). Moreover,
we assume that the quantum systems under consideration are obtained by the
Schrödinger quantization [3] of classical Hamiltonian systems.

1. Our first approach is based on a representation of mixed states as random
pure ones, where the dynamics of a subsystem of the isolated quantum
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system is described by a random process taking values in the Hilbert
space of the subsystem. The random process is then defined by using
the Feynman formula for the solution of the Schrödinger equation for the
united system.

2. The second approach uses the Wigner function [4] and also its infinite di-
mensional analogue, the Wigner measure, which was introduced in [5]. If
the phase space of the classical Hamiltonian system generating the quan-
tum system under consideration is finite dimensional, then the density of
the Wigner measure with respect to the standard Lebesgue measure co-
incides with the Wigner function. As shown in [5], the evolution of the
Wigner measure of a closed quantum system is described by a Liouville-
Moyal type equation; in order to obtain a solution of the master equation
for the dynamics of the Wigner measure (or function) of a subsystem of
the initial system from a solution of this equation represented by using a
Feynman type formula, it suffices to integrate this representation over the
coordinates of the phase space of the corresponding classical subsystem.
Another approach for describing the evolution of the Wigner function of
a subsystem is discussed in [6].

3. The third approach again uses the Feynman formulas for the Schrödinger
equation for a quantum system and its environment, but this time these
formulas are used to describe the evolution of the density operator of each
part; it is given by the corresponding partial trace of the evolving density
operator of the united system.

4. The final approach considered here is based on the representation of any
state of the quantum system by a probability measure on its Hilbert space.
In the case of a closed system, the evolution of this measure is described
by the Liouville equation generated by the Hamiltonian structure, and
here the Hamiltonian equation coincides with the Schrödinger equation
(see [7-9]). At the same time, the correlation operator of this measure
coincides with the density operator [10], so knowing the evolution of the
density operator of the subsystem allows us to obtain the evolution of the
probability measure on its Hilbert space and hence solve the master equa-
tion generated by the associated Liouville equation. It should perhaps be
emphasized that the technique for treating Wigner measures by employing
a suitable projection of the (pseudo)measure defined on the space of the
combined classical system, is not applicable in this situation because the
Hilbert space of the united system is the tensor product, rather than the
Cartesian product.

This paper focuses on the algebraic structures related to the problems under
consideration, and we do not explicitly state the analytical details.
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1 STATES OF OPEN QUANTUM SYSTEMS

Let H1 and H2 be the Hilbert spaces of states of two quantum systems. In
what follows, we refer to the first system (as well as to its classical counterpart)
as the open system and to the second as the environment, respectively. These
two systems form a composite system, whose Hilbert space is the Hilbert tensor
product [3] H = H1 ⊗ H2.

Let Q1 and Q2 be the configuration spaces of the corresponding classical
open system and the environment, respectively. We assume that Q1 and Q2

are real separable Hilbert spaces. In both cases we shall assume that we have
measures νj (j = 1, 2) defined on the σ-algebra of Borel subsets of the corre-
sponding spaces. We then set

H1 = L2(Q1, ν1), H2 = L2(Q2, ν2)

and in particular the composite Hilbert space is then

H = H1 ⊗ H2
∼= L2(Q1 × Q2, νL ⊗ ν2).

The open system we wish to describe will be quantum mechanical, so we
have dimQ1 < ∞, and fix ν1 to be standard Lebesgue measure on Q1 for
definiteness.

The dimension of Q2 will typically be infinite, in this case, according to the
well-known result of Weil, there does not exist a non-zero σ-finite countably
additive locally finite Borel measure on Q2. Instead, we fix a Gaussian measure
ν2 on Q2 (this is a matter of convenience, however, and non-Gaussian measures
may be used as well).

If ϕ ∈ L2(Q1 × Q2, ν1 ⊗ ν2) is normalized, that is,
∫

Q1×Q2

|ϕ (q1, q2)|
2
ν1(dq1)ν2(dq2) = 1,

then the marginal distributions ρk are defined by

ρ1(q1) ,

∫

Q2

|ϕ (q1, q2)|
2
ν2(dq2)

ρ2(q2) ,

∫

Q1

|ϕ (q1, q2)|
2 ν1(dq1)

A probability measure P2 on Q2 is then defined by

P2(dq2) = ρ2(q2) ν2(dq2),

so P2 is absolutely continuous with respect ν2 with Radon-Nikodym density ρ2,
and describes the results of measurements of the environment coordinates. The
pair (Q2,P2) is a Kolmogorov probability space.

Taking the fixed pure state ϕ, we may define a H1(= L2(Q1, ν1))-valued
random variable on (Q2,P2) by

Ψ1 : q2 7→ ϕ (·, q2) . (1)
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If we fix an operator Â1 on H1, then

E2

[

〈Ψ1|Â1|Ψ1〉H1

〈Ψ1|Ψ1〉H1

]

=

∫

Q2

〈Ψ1|Â1|Ψ1〉H1
(q2)

〈Ψ1|Ψ1〉H1
(q2)

P2(dq2)

=

∫

Q2

∫

Q1

ϕ(q1, q2)
∗(Â1 ⊗ I2 ϕ)(q1, q2)ν1(dq1)

∫

Q1

|ϕ(q′1, q2)|
2ν1(dq′1)

P2(dq2)

=

∫

Q1

∫

Q2

ϕ(q1, q2)
∗(Â1 ⊗ I2 ϕ)(q1, q2)ν1(dq1)ν2(dq2)

≡ 〈ϕ|Â1 ⊗ I2|ϕ〉H1⊗H2

≡ trH1
[ ˆ̺1Â1].

where ˆ̺1 is the von Neumann density operator corresponding the the marginal
state of the open system.

Proposition 1. The correlation operator of the probability measure on
L2(Q1, ν1), which is the distribution of results of measurements of the random
pure state Ψ1 given in (1), coincides with the von Neumann density operator.

In Dirac notation, we may write langleq1|Ψ〉 for the complex-valued random
variable 〈q1|Ψ : q2 7→ ϕ(q1, q2), then

E2

[

〈q1|Ψ1〉〈Ψ1|q
′
1〉

〈Ψ1|Ψ1〉H1

]

= ̺(q1, q
′

1),

where ̺(q1, q
′
1) is the kernel operator of ˆ̺1.

Remark 1. It is useful to compare the following two approaches for cal-
culating the probability distribution of the results of measurements of the co-
ordinate q1 of the first system, one of which directly uses the function ϕ ∈
L2(Q1 ×Q2, ν1 ⊗ ν2), which represents the pure state of the composite system,
and the other one uses the L2(Q1, ν1)-valued random variable Ψ1. In the for-
mer case, the marginal probability density ρ1 giving the results of measurements
of the coordinate q1. In the second approach, the density ρ1 can be obtained
by using the Chapman-Kolmogorov formula, the random variable F , and the
probability P2 as

ρ1(q1) =

∫

Q2

ρ1(q1|q2)P2(dq2)

=

∫

Q2

|ϕ (q1, q2)|
2

∫

Q1

|ϕ (q′1, q2)|
2
ν1(dq′1)

∫

Q1

|ϕ (q′′1 , q2)|
2
ν1(dq

′′

1 )ν2(dq2)

≡

∫

Q2

|ϕ (q1, q2)|
2
ν2(dq2),

where the conditional probability density ρ1(q1|q2) is defined by ρ1(q1|q2) =

|ϕ (q1, q2)|
2 /

∫

Q1

|ϕ (q′1, q2)|
2 ν1(dq

′
1).
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Remark 2. Of course, the Hilbert-valued random variable representing a
mixed state of the open system is not uniquely determined; e.g., instead of
the coordinate representation L2(Q1, ν1) of the Hilbert space H1, we can use a
momentum representation of this Hilbert space.

Remark 3. It also follows from the above considerations that the evolution
of the open system can be described by a random process taking value in the
same Hilbert space. However, this process is not uniquely determined either;
thus, the corresponding master equation (which is an equation with a time
dependent random coefficient) is not uniquely determined.

2 RANDOM PROCESSES DESCRIBING

THE EVOLUTION OF OPEN SYSTEMS

We recall that the Feynman formulas are representations of Schrödinger groups
or semigroups as limits of integrals over finite Cartesian products of some space
X , (see, e.g., [1, 2]). If X coincides with the domain Ω of functions from the
space on which these groups or semigroups act and Ω ⊂ Q = Q1 × Q2 then
the corresponding Feynman formula is said to be Lagrangian; if X = Ω × P,
where P = P1 × P2 is the momentum space of the classical version of the
quantum system under consideration, then the Feynman formula is said to be
Hamiltonian (not all Feynman formulas belong to one of these two classes)1.

We identify (see [4, 10]) Pj with Q∗
j and Qj with P∗

j (j = 1, 2). These
identifications generate isomorphisms (cf. [4])

J : Qj × Pj ∋ (q, p) 7→ (p, q) ∈ (Qj × Pj)
∗ (2)

and a similar isomorphism between the spaces

Q × P , (Q1 × Q2)× (P1 × P2) (3)

and (Q × P)
∗
.

Let ψ1 ∈ H1

(

= L2(Q1, ν1
)

be the initial state of the open system, and let ψ2

be the initial state of the environment, which is called the reference state. We
have (ψ1 ⊗ ψ2) (q1, q2) = ψ1(q1)ψ2(q2). Suppose that a classical Hamiltonian
function H : Q × P 7→ R is defined by

H (q1, p1, q2, p2) , H1 (q1, p1) +H2 (q2, p2) +H12 (q1, p1, q2, p2) (4)

1The Feynman-Kac formulas are representations of the same groups and semigroups as
integrals over the space consisting of functions of a real variable taking values in the same space
X . The multiple integrals in the Feynman formulas approximate the (infinite dimensional)
integrals in the Feynman-Kac formulas. In the case of the Schrödinger semigroups generated
by Hamiltonians quadratic in momenta, the infinite dimensional integrals in the Feynman-
Kac formulas turn out to be integrals with respect to probability measures; however, in the
case of Schrödinger groups, there appear integrals with respect to the so-called Feynman
pseudo-measures or their analogues in the Feynman-Kac formulas (in many realistic situations,
integrals with respect to pseudo-measures are defined as the limits of appropriate sequences
of finitely many integrals).
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The Hamiltonian observable Ĥ governing the evolution of the composite
system may be written as

Ĥ = Ĥ1 ⊗ I2 + I1 ⊗ Ĥ2 + Ĥ12, (5)

where Ĥj is the pseudo-differential operator on Hj with Weyl symbol Hj for

j = 1, 2 and Ĥ12 is the pseudo-differential operator on with Weyl symbol H12

(for the definition of pseudo-differential operators on spaces of functions square
integrable with respect to a measure different from the Lebesgue measure, see
[2, 10]). It is useful to assume that Ĥ1 governs the internal dynamics of the
open system, Ĥ2 governs the internal dynamics of the environment, and Ĥ12

describes the interaction.

Theorem 1. Suppose that, for each t = 0, ϕ(t) ∈ H1⊗H2 denotes the state
of the composite system at the moment t. Then, for all (q1, q2) ∈ Q1 × Q2,

ϕ(t) (q1, q2) =
(

eitĤ ψ1 ⊗ ψ2

)

(q1, q2) = lim
n→∞

(

̂ei
t

n
H

)n

ψ1 ⊗ ψ2 (q1, q2)

= lim
n→∞

(

̂ei
t

n
H1⊗I2 ◦ ̂ei

t

n
I1⊗H ◦ ̂ei

t

n
H12

)n

ψ1 ⊗ ψ2 (q1, q2) .

The proof is based on Chernoff’s theorem [11].

Remark 4. The substitution of the explicit expressions for the pseudo-
differential operators on the right-hand side of the last relation turns this relation
into a Feynman type formula.

We now define two random processes describing the dynamics of the open
quantum system. Suppose that, for each t ≥ 0, Pt is a probability measure on
a copy Qt

2 of the space Q2 whose density ρt (·) with respect to ν2 is defined as

ρt(q2) ,

∫

Q1

∣

∣

∣

∣

lim
n→∞

(

̂ei
t

n
H

)n

ψ1 ⊗ ψ2 (q1, q2)

∣

∣

∣

∣

2

ν1(dq1), (6)

P is the probability measure on the product space X of the family of spaces
{Qt

2 : t ≥ 0} defined as the product of the measures Pt, and ψP : [0,∞) ×
(X ,P) 7→ L2(Q1) is the L

2(Q1)-valued random process defined by

ψP (t, q) = ψP

t (q) , ϕ (t) (·, q(t)) (7)

where q(= q(·)) ∈ X and ϕ is the pure state function appearing in Theorem
1. Suppose also that, for the same t, γ(t) is a bijection between Q2 and Qt

2,
which determines an isomorphism between the measure space (Q2, ν2) and the
measure space (Qt

2,Pt), and ψv : [0,∞)× (Q2, ν2) 7→ L2(Q1, ν1) is the random
process defined by

ψν(t, q) , ϕ (t) (·, γ(t) (q)) . (8)

Theorem 2. Under the above assumptions, the state of the open quantum
system at a moment of time t is described by the L2(Q1, ν1)-valued random
variables ψP(t, ·) (on (X ,P) ) and ψν2(t, q) (on (Q2, ν2) ).
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3 THE WIGNER EVOLUTION FUNCTIONS

OF THE OPEN QUANTUM SYSTEM

Given a density operator T on H, the Weyl function generated by T is the
function WT : Q × P 7→ R defined by

WT (H) , tr
{

Te−iĤ
}

, (9)

where Ĥ is the pseudo-differential operator on H = L2(Q, ν1 ⊗ ν2) with symbol
JH ∈ Q∗ × P∗ [5]. The Wigner measure on Q × P generated by the density
operator T is defined by

∫

Q×P

ei(p1q2−q1p2)WM
T (dq1, dp1) =WT (q1, p2) , (10)

with (q, p) ∈ Q × P, cf. [5].
The Wigner measure WM

T1
on Q1 × P1 generated by a density operator T1

on H1 is defined in a similar way. The density of the measure WM
T1

with respect
to ν1 coincides with the classical Wigner function (see [5]).

Theorem 3. If T is a density operator on H and T1 is the corresponding
reduced density operator on H1, then

WM
T1

(·) =

∫

Q2×P2

WM
T (·, dq2, dp2) .

Using this theorem and the Feynman formula for the solution of the Moyal
type equation which describes the evolution of the Wigner measure on Q ×P,
we can obtain a formula describing the evolution of the Wigner measure (and,
thereby, the Wigner function) on Q1 × P1.

4 HAMILTONIAN STRUCTURES

This section considers the third and the fourth approach for describing the
dynamics of open quantum systems, which are closely related to each other.
We assume that ψ1, ψ2, and H are the same as above and T (·) is a function
describing the dynamics of the open system, whose values are density operators
on H1.

Theorem 4. If, for each t > 0, kT (t) is the integral kernel of a trace-class
operator T (t) on H1, then

kT (t, q1, q2) =

∫

Q2

[

lim
n→∞

(

̂ei
t

n
H

)n

ψ1 ⊗ ψ2 (q1, q)

]

×

[

lim
n→∞

(

̂ei
t

n
H

)n

ψ1 ⊗ ψ2 (q2, q)

]

ν2(dq).
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Theorem 5. Let ν2(·) be a function of a real variable such that, for each
t, ν2,t is a Gaussian measure on H1 with correlation operator T (t). Then the
function ν2,t satisfies the master (Liouville) equation.
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