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A novel method of asymptotic factorization of n × n
matrix functions is proposed. The considered class of
matrices is motivated by certain problems originated
from the elasticity theory. An example is constructed
to illustrate efficiency of the proposed procedure. The
quality of approximation and the role of the chosen
small parameter are discussed.

1. Introduction
We consider here the problem of factorization of
continuous matrix functions of the real variable. This
means the representation of a given invertible square
matrix G ∈ (C(R))n×n in the following form:

G(x) = G−(x)Λ(x)G+(x), (1.1)

where continuous invertible matrices G−(x) and G+(x)
possess an analytic continuation in the lower Π− =
{z = x + iy : Im < 0} and upper Π+ = {z = x + iy : Im > 0}
half-planes, respectively, and

Λ(x) = diag
((

x − i
x + i

)κ1

, . . . ,
(

x − i
x + i

)κn
)

, κ1, . . . , κn ∈ Z.

(1.2)

The representation (1.1) is called right (continuous or
standard) factorization and can be considered for any
oriented curve Γ of a certain classes which divides
the complex plane into two domain D− and D+
with a changing of diagonal entries in Λ(x) for
((x − t+)/(x − t−))κj , t∓ ∈ D∓, or for xκj (if 0 ∈ D+).
A similar representation

G(x) = G+(x)Λ(x)G−(x)

is called left (continuous or standard) factorization. If the
right- (left-) factorization exists, then the integer numbers

2014 The Author(s) Published by the Royal Society. All rights reserved.
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κ1, . . . , κn, called partial indices, are determined uniquely up to the order. In particular, there exist
constant transformations of factors, such that κ1 ≥ · · · ≥ κn. The factors G− and G+ are not unique.
Relations of pairs of factors are described, for example, in [1]. The right- (left-) factorization is
called canonical factorization if all partial indices are equal to 0, i.e. κ1 = · · · = κn = 0.

Factorization of matrix functions was first studied in relation to the vector–matrix Riemann
(or Riemann–Hilbert) boundary value problem [2]; this was formulated by Riemann in his work
on construction of complex differential equations with algebraic coefficients having a prescribed
monodromy group [3] (see also [4]). By using the method of the Cauchy type integral, the vector–
matrix Riemann boundary value problem was reduced in [5,6] to a system of the Fredholm
integral equations. A part of the theory of the factorization problem is based on the study of
such systems (see also [7]), though this approach does not answer, in particular, the questions of
when it is possible to get factorization, how to construct factors and how to determine partial
indices.

Among other sources of interest to the factorization problems, one can point out the vector-
valued Wiener–Hopf equations on a half-line [8–11] and their discrete analogies, namely the block
Toeplitz equations [12,13]. The developed technique found several applications in diffraction
theory, fracture mechanics, geophysics, financial mathematics, etc. (see a brief description given,
for example, in [14] and references therein).

Theoretical background for the study of the matrix factorization and its numerous
generalizations is presented in [1,3,6,15–17] (see also [18]).

The theory of the factorization is more or less complete [15], but the above-mentioned
constructive questions about existence, factors and partial indices (which are very important
for practical applications) have been answered only in a number of special cases. Among them,
one can mention rational matrix functions [7], functional commutative matrix functions (those
satisfying G(t)G(s) = G(s)G(t), ∀t, s ∈ Γ [19]), upper- (lower-) triangular matrices with factorizable
diagonal elements [20–23], certain classes of meromorphic matrix functions [24–26], special
cases of 2 × 2 Daniele–Khrapkov matrix functions (with a small degree of deviator polynomial)
[27–30], special cases of 2 × 2 matrix functions with three rationally independent entries (see
[28,31,32] and references therein), special cases of n × n generalization of the Daniele–Khrapkov
matrix functions [14,33–35] and special classes of matrices possessing certain symmetry property
(see [36] and references therein). Several approximate and asymptotic methods for matrix
factorization have been developed too [37–39]. In particular, in Abrahams [40], the method of
Padé approximation has been developed and applied (see also [18] and references therein).

In this paper, we propose a new asymptotic method of construction of factors for a special class
of n × n non-rational matrix functions. The essential property of the considered matrices is that
they become close (after suitable transformation) to a unit matrix (a similar assumption is used in
[31,41]). The idea to use such representation in factorization is similar to that in general operator
theory and has been exploited since the seminal work by Gohberg & Krein [8] (see also [1,42,43]).

To the best of authors’ knowledge, our class does not coincide with any of the above-mentioned
classes. This class contains matrix functions which appears in the study of certain problems in
fracture mechanics related to perturbation of the crack propagation [44–47]. Another motivation
is the use of such matrix functions in the study, the inverse scattering problem [41]. In [41], it is
considered the generalized factorization of 2 × 2 matrix functions which are similar to that in our
special case in §3b. An analysis of these authors is based on the equivalence theorem, relating the
studied matrices with a product of triangular matrices, followed by solution of the corresponding
Riemann boundary value problems. The conditions required to realize this method, as well
as the used techniques differ essentially from ours. The main idea of our study is to reduce
determination of factors at each step of approximation to the solution of a so-called vector–matrix
jump boundary value problem. The paper is organized as follows. In §2, we introduce necessary
notation and formulate the problem. A constructive algorithm is presented in §3. We also find it
interesting to present here the realization of the algorithm in a special case of matrices of practical
importance. The method is illustrated by an example given in §4. We conclude our study by
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showing the quality of the factorization approximation by restricting ourselves only to the first
asymptotic term and discuss the role of the chosen small parameter.

2. A class of matrices: problem formulation
Let us introduce the following class of invertible continuous n × n, n ≥ 2, matrix functions GKn

depending on a real parameter ϕ ∈ R, satisfying the following conditions:

(1) Gϕ ∈ (C(R))n×n belongs to GKn if it can be represented in the form

Gϕ = RϕFR−1
ϕ , (2.1)

where bounded locally Hölder-continuous on R (in general non-rational) invertible
matrix Rϕ is such that

(2)
R0 = Rϕ |ϕ=0 = I, (2.2)

(3) matrix function F does not depend on parameter ϕ, has Hölder-continuous entries fkl on
the extended real line R̄, i.e. ∀k, l = 1, . . . , n,

|fkl(x1) − fkl(x2)| ≤ C
∣∣∣∣ 1
x1 + i

− 1
x2 + i

∣∣∣∣μ , ∀x1, x2 ∈ R̄, 0 < μ < 1, (2.3)

satisfies the following asymptotic estimate at infinity
(4)

F(x) → I and |x| → ∞, (2.4)

(5) F admits a right canonical factorization, i.e.

F(x) = F−(x)F+(x), (2.5)

where Hölder-continuous on R̄ matrix functions F−(x) and F+(x) possess an analytic
continuation in the lower Π− and the upper Π+ half-plane, respectively.

The matrices of the following form constitute a simple subclass of class GK2:

Gϕ(x) =
(

p(x) q(x) eiϕx

q(x) e−iϕx p(x)

)
. (2.6)

This function appears after Fourier transforms of the Wiener–Hopf equation, describing a
problem in fracture mechanics.

We note that the matrix functions of this type do not belongs to any known class of matrix
functions which admit explicit factorization.

It can be seen below that in our algorithm, the factors retain one of the properties of the matrix
function Gϕ , namely,

G−
ϕ (z), G+

ϕ (z) → I, as z → ∞, ∓Im z > 0. (2.7)

3. An algorithm

(a) General construction
By assumption, any matrix Gϕ(x) ∈ GKn can be written in the form

Gϕ(x) = F−(x)(F−(x))−1Gϕ(F+(x))−1F+(x) = F−(x)G1,ϕF+(x), (3.1)

where F−(x) and F+(x) are components of the canonical factorization of the corresponding matrix
F, and (see (2.2) and (2.4)) the matrix G1,ϕ(x) is represented in the form

G1,ϕ(x) = (F−(x))−1Gϕ(F+(x))−1 = (F−(x))−1RϕFR−1
ϕ (F+(x))−1.

In addition to (1)–(5), we assume that
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(6) There exist a small parameter ε = ε(ϕ) (more exactly its value will be described later),
such that for all x ∈ R and any finite ϕ

G1,ϕ(x) = I + εNϕ(x), (3.2)

and matrix Nϕ(x) is bounded and locally Hölder continuous on R.

Note that by assumption, each entry of the matrix Nϕ(x) has a limit as |x| → +∞, i.e. there exists
the value Nϕ(∞). Note also that the commutativity of the involved matrices is not assumed.

Let us look for the first-order factorization of the matrix G1,ϕ(x) in the form

G1,ϕ(x) = I + εNϕ(x) = (I + εN−
1,ϕ(x))(I + εN+

1,ϕ(x)). (3.3)

Comparing terms for different powers of ε we get, in particular, the following relation for
determination of factors N−

1,ϕ and N+
1,ϕ :

N−
1,ϕ(x) + N+

1,ϕ(x) = Nϕ(x), x ∈ R. (3.4)

It is customary to denote

M0,ϕ(x) ≡ Nϕ(x).

The jump boundary value problem (3.4) has a solution represented in terms of a slight
modification of the matrix-valued Cauchy type integral [1,5]

N∓
1,ϕ(z) = 1

2
M0,ϕ(∞) ∓ 1

2π i

∫+∞

−∞
M0,ϕ(t) − M0,ϕ(∞)

t − z
dt ≡ 1

2
M0,ϕ(∞) ∓ (C0M0,ϕ)(z). (3.5)

The above modification is proposed in order to avoid extra discussion of the convergence of the
above integrals. In this form, the integrals are convergent automatically. Moreover, its boundary
values

(C0M0,ϕ)∓(x) = lim
Im z→∓0

(C0M0,ϕ)(z)

satisfy Sokhotsky–Plemelj formulae, i.e.

(C0M0,ϕ)∓(x) = 1
2

M0,ϕ(x) − 1
2

M0,ϕ(∞) ∓ 1
2π i

∫+∞

−∞
M0,ϕ(t) − M0,ϕ(∞)

t − x
dt

= 1
2

M0,ϕ(x) − 1
2

M0,ϕ(∞) ∓ 1
2

(S0M0,ϕ)(x) (3.6)

or

N∓
1,ϕ(x) = 1

2 M0,ϕ(x) ∓ 1
2 (S0M0,ϕ)(x), (3.7)

where S0 is the singular integral operator along the real line with density M0,ϕ(t) − M0,ϕ(∞). It
follows from [2, n. 4.6] that both matrices N−

1,ϕ(x) and N+
1,ϕ(x) satisfy Hölder conditions on R̄,

are bounded there with N∓
1,ϕ(∞) = 1

2 M0,ϕ(∞) and possess an analytic continuation into lower
Π− and upper Π+ half-planes, respectively. Surely, its product is also Hölder conditions on R̄

and bounded.
Let us refine the factorization of the matrix G1,ϕ(x), i.e. look for a presentation of G1,ϕ(x) in

the form

G1,ϕ(x) = I + εNϕ(x) = (I + εN−
1,ϕ(x) + ε2N−

2,ϕ(x))(I + εN+
1,ϕ(x) + ε2N−

2,ϕ(x)), (3.8)

where N−
1,ϕ(x) and N+

1,ϕ(x) are those found at the previous step.
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Comparing terms at different powers of ε, we get, in particular, the following relation for
determination of factors N−

2,ϕ and N+
2,ϕ :

N−
1,ϕ(x)N+

1,ϕ(x) + N−
2,ϕ(x) + N+

2,ϕ(x) = 0. (3.9)

Denoting

M1,ϕ(x) ≡ −N−
1,ϕ(x)N+

1,ϕ(x),

we arrive at the following jump boundary value problem

N−
2,ϕ(x) + N+

2,ϕ(x) = M1,ϕ(x), x ∈ R, (3.10)

where the right-hand side is already known. The solution to this problem is given by the formula
similar to (3.5)

N∓
2,ϕ(z) = 1

2 M1,ϕ(∞) ∓ (C0M1,ϕ)(z). (3.11)

It has the same properties as the solution of (3.5), in particular, its boundary values satisfy the
relation

N∓
2,ϕ(x) = 1

2 M1,ϕ(x) ∓ 1
2 (S0M1,ϕ)(x) (3.12)

and N∓
2,ϕ(∞) = − 1

8 N2
ϕ(∞).

One can proceed in the same manner. Thus on the kth step, we use the representation

G1,ϕ(x) = I + εNϕ(x) = (I + εN−
1,ϕ(x) + · · · + εkN−

k,ϕ(x))

× (I + εN+
1,ϕ(x) + · · · + εkN−

k,ϕ(x)), (3.13)

where N−
1,ϕ(x), . . . , N−

k−1,ϕ(x) and N+
1,ϕ(x), . . . , N+

k−1,ϕ(x) are found in the previous steps. This leads
to the jump boundary value problem

N−
k,ϕ(x) + N+

k,ϕ(x) = Mk−1,ϕ , x ∈ R, (3.14)

where

Mk−1,ϕ = −[N−
1,ϕ(x)N+

k−1,ϕ(x) + N−
2,ϕ(x)N+

k−2,ϕ(x) + · · · + N−
k−1,ϕ(x)N+

1,ϕ(x)].

The solution to this problem is given by a formula similar to (3.5) (or to (3.11)).
Thus, the factorization of the matrix function G1,ϕ(x) is given in the form of an asymptotic

series

G1,ϕ(x) =
(

I +
∞∑

k=1

εkN−
k,ϕ(x)

)(
I +

∞∑
k=1

εkN+
k,ϕ(x)

)
, (3.15)

where the pair N−
k,ϕ(x) and N+

k,ϕ(x) is the unique solution to the jump problem (3.14) for any k ∈ N.
The following theorem gives conditions when this asymptotic factorization becomes an

explicit one, i.e. gives convergence conditions for the asymptotic series involved.

Theorem 3.1. Let Gϕ be a matrix which meets conditions (1) to (6). Let the parameter ε (defined in (6))
satisfies the inequality

|ε| ≤ 1
A

(3.16)

with the constant A = A(ϕ) being equal to

A = ‖Nϕ(·)‖μ(1 + Cμ)2, (3.17)
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‖Nϕ(·)‖μ being the norm of the matrix function Nϕ(x) in the Hölder space Hμ equal to the maximum of
the norms of its entries, and Cμ being the norm of the singular integral operator S0 : Hμ → Hμ.

Then both series in the right-hand side of (3.15) converge for all x ∈ R.

Proof. It follows (e.g. [2, p. 48]) that singular integral operator S0 is bounded in Hölder spaces
since the ‘standard’ singular integral operator S is. The later is well-known, see [48] for the exact
value of the norm of ‖S‖Hμ→Hμ

. Let us denote the norm of S0 in Hölder space Hμ(R) by Cμ, i.e.

Cμ = ‖S0‖Hμ→Hμ
.

Then, we have the following series of estimates

‖N∓
1,ϕ(·)‖μ ≤ α1‖Nϕ(·)‖μ(1 + Cμ), where α1 = 1

2 ,

‖N∓
2,ϕ(·)‖μ ≤ 1

2 ‖M1,ϕ(·)‖μ(1 + Cμ)

and ‖M1,ϕ(·)‖μ ≤ (α1‖Nϕ(·)‖μ(1 + Cμ))2,

i.e.
‖N∓

2,ϕ(·)‖μ ≤ α2‖Nϕ(·)‖2
μ(1 + Cμ)3, where α2 = 1

2 α2
1.

Finally, for each k ≥ 2
‖N∓

k,ϕ(·)‖μ ≤ 1
2 ‖Mk−1,ϕ(·)‖μ(1 + Cμ)

and
‖Mk−1,ϕ(·)‖μ ≤ (α1αk−1 + α2αk−2 + · · · + αk−1α1)‖Nϕ(·)‖k

μ(1 + Cμ)2k−2,

i.e.
‖N∓

k,ϕ(·)‖μ ≤ αk‖Nϕ(·)‖k
μ(1 + Cμ)2k−1, where αk = 1

2 (α1αk−1 + · · · + αk−1α1).

We can calculate explicitly few first coefficients αk, namely, α1 = 1/2, α2 = 1/8 and α3 = 1/16. As
for coefficients with large enough indices, we can proof by induction that

αk <
1

16(k − 3)
, ∀k ≥ 12.

Therefore,

‖εkN∓
k,ϕ(·)‖μ ≤ |ε|k 1

32(k − 3)(1 + Cμ)
(‖Nϕ(·)‖μ(1 + Cμ)2)k, ∀k ≥ 12.

As the sequence k
√

1/(32(k − 3)(1 + Cμ)) ≤ 1 is increasing for sufficiently large k and

lim
k→∞

k

√
1

32(k − 3)(1 + Cμ)
= 1,

then the convergence of the series(
I +

∞∑
k=1

εkN−
k,ϕ(x)

)
and

(
I +

∞∑
k=1

εkN+
k,ϕ(x)

)

for all x ∈ R follows from (3.16). �

Remark 3.2. It follows from the standard properties of the Cauchy type integral and singular
integral with Cauchy kernel that conditions of theorem 3.1 guarantee convergence of the series in
the right-hand side of (3.15) in the half-planes Π−, Π+, respectively.

Remark 3.3. In fact, the decay of the second term in the right-hand side of (3.2) at infinity
follows from the asymptotic relations (2.7) which in turn follows from the properties of matrices
of the considered class and the proposed construction.

Remark 3.4. If the number A = A(ϕ) in theorem 3.1 is small enough, i.e.

A = ‖Nϕ(·)‖μ(1 + Cμ)2 < 1, (3.18)

then the results remain valid for ε = 1 and the described procedure will work without
any changes.

 on December 3, 2015http://rspa.royalsocietypublishing.org/Downloaded from 

http://rspa.royalsocietypublishing.org/


7

rspa.royalsocietypublishing.org
Proc.R.Soc.A470:20140109

...................................................

(b) Special case
Let us consider the problem of factorization of 2 × 2 invertible matrices from a subclass of
GK2, namely

Gϕ(x) =
(

p(x) q(x) eixϕ

q(x) e−ixϕ p(x)

)
, (3.19)

given on the real line (x ∈ R) and depending on the real parameter ϕ ∈ R.
We assume that the following assumptions hold:

(1) the entries p(x) and q(x) are real-valued Hölder continuous functions on R̄, i.e. p, q ∈
Hμ(R̄);

(2) the combinations of the functions p and q are positive

p(x) ± q(x) > 0, x ∈ R; and (3.20)

(3) the following limits exist

lim
|x|→+∞

p(x) = 1 and lim
|x|→+∞

q(x) = 0. (3.21)

As in the general case, the factorization of matrices of type (3.19) is motivated by certain
problem of fracture mechanics. The considered matrices are similar to those which are studied
and explicitly factorized in [31,41,49], but certain conditions of the above-cited papers are not
satisfied in our case.

Note that even if one supposes that the functions p(x) and q(x) are meromorphically continued
into semi-planes Π− and Π+, then it does not mean that these extended functions have a finite
number of zeroes and poles there.

Remark 3.5. Under conditions (1)–(3), matrix (3.19) admits the canonical factorization

Gϕ(x) = G−
ϕ (x)G+

ϕ (x). (3.22)

By (3.20), matrix (3.19) is positive definite and thus admits the canonical factorization [1].
Let us start with factorization of an auxiliary matrix F(x) = G0(x) having no exponential term

in their entries

F(x) =
(

p(x) q(x)
q(x) p(x)

)
. (3.23)

Note that

F(x) = P

(
p(x) + q(x) 0

0 p(x) − q(x)

)
P, (3.24)

where the projector P is defined

P = 1√
2

(
1 1
1 −1

)
.

It follows from conditions (1)–(3) that both diagonal elements of the middle diagonal matrix
have index equal to zero. Hence, they admit the representation

p(x) + q(x) = (p(x) + q(x))− · (p(x) + q(x))+

and p(x) − q(x) = (p(x) − q(x))− · (p(x) − q(x))+,

⎫⎬
⎭ (3.25)

with the factors of the form [2],

(p(z) + q(z))∓ = exp
{
∓ 1

2π i

∫+∞

−∞
log [p(τ ) + q(τ )]

τ − z
dτ

}
, z ∈ Π∓

and (p(z) − q(z))∓ = exp
{
∓ 1

2π i

∫+∞

−∞
log [p(τ ) − q(τ )]

τ − z
dτ

}
, z ∈ Π∓,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.26)
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and boundary values (p(x) + q(x))∓ of the functions (p(z) + q(z))∓ (and (p(x) − q(x))∓ of the
functions (p(z) − q(z))∓ are determined by using Sokhotsky–Plemelj formulae [2].

Therefore, we immediately obtain the right canonical factorization of the matrix G0(x)

G0(x) =F(x) = F−(x)F+(x), (3.27)

where

F−(x) = 1√
2

⎛
⎝(p(x) + q(x))− (p(x) − q(x))−

(p(x) + q(x))− −(p(x) − q(x))−

⎞
⎠ (3.28)

and

F+(x) = 1√
2

⎛
⎝(p(x) + q(x))+ (p(x) + q(x))+

(p(x) − q(x))+ −(p(x) − q(x))+

⎞
⎠ . (3.29)

Now we can represent the initial matrix Gϕ(x) in the form

Gϕ(x) = F−(x)(F−(x))−1Gϕ(x)(F+(x))−1F+(x) ≡ F−(x)G1,ϕ(x)F−(x) (3.30)

and proceed with factorization of the matrix G1,ϕ(x).
The inverse matrices (F−(x))−1 and (F+(x))−1 are equal, respectively,

(F−(x))−1 = 1
�−

⎛
⎝(p(x) − q(x))− (p(x) − q(x))−

(p(x) + q(x))− −(p(x) + q(x))−

⎞
⎠

and �− = 2√
2

(p(x) + q(x))−(p(x) − q(x))−,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.31)

and

(F+(x))−1 = 1
�+

⎛
⎝(p(x) − q(x))+ (p(x) + q(x))+

(p(x) − q(x))+ −(p(x) + q(x))+

⎞
⎠

and �+ = 2√
2

(p(x) + q(x))+(p(x) − q(x))+.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.32)

Hence (for shortness, we omit the argument x for functions p and q),

G1,ϕ = 1
�

⎛
⎝ (p − q)(2p + q(eiϕk + e−iϕk)) (p − q)−(p + q)+q(e−iϕk − eiϕk)

(p − q)+(p + q)−q(eiϕk − e−iϕk) (p + q)(2p − q(eiϕk − e−iϕk))

⎞
⎠

and � = 2(p2 − q2).

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.33)

It is not hard to see that G1,ϕ is a sum of the unit matrix and the matrix which is ‘small’ for
appropriate choice of ϕ. Hence, following remark 3.4, we rewrite the right-hand side of (3.33) as
the following sum:

G1,ϕ = I + Nϕ , (3.34)

where

Nϕ =

⎛
⎜⎜⎜⎜⎝

−2q sin2(ϕx/2)
(p + q)

− iq(p − q)−(p + q)+ sin ϕx
(p2 − q2)

iq(p − q)+(p + q)− sin ϕx
(p2 − q2)

2q sin2(ϕx/2)
(p − q)

⎞
⎟⎟⎟⎟⎠ . (3.35)

Note that the latter matrix can be written as the sum of two diagonal matrices, namely

Nϕ = N1 + N2 (3.36)

N1 = 2 sin2 ϕx
2

⎛
⎜⎝− q

(p + q)
0

0
q

(p − q)

⎞
⎟⎠ (3.37)
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and

N2 = i sin ϕx

⎛
⎜⎜⎝

0 −q(p − q)−(p + q)+

(p2 − q2)
q(p − q)+(p + q)−

(p2 − q2)
0

⎞
⎟⎟⎠ . (3.38)

Let us denote

ε1 = ε1(ϕ) ≡ max
x∈R

∣∣∣q(x) sin
ϕx
2

∣∣∣ . (3.39)

Lemma 3.6. The parameter ε1 can be taken smaller than any positive number δ by an appropriate choice
of ϕ.

Proof. Indeed, taking into account condition (3.21)2, one concludes that there exists xδ > 0 such
that for any |x| ≥ xδ ∣∣∣q(x) sin

ϕx
2

∣∣∣≤ |q(x)| ≤ δ.

On the other hand, as xq(x) belongs to the space Hμ[−xδ , xδ] ⊂ C[−xδ , xδ] there exists a constant
qh > 0 such that

|xq(x)| ≤ qh, for all |x| ≤ xδ .

Finally, this means ∣∣∣q(x) sin
ϕx
2

∣∣∣≤ |q(x)|ϕx
2

≤ ϕ

2
qh.

Choosing ϕ = 2δ/qh, we finish the proof. �

It follows from the structure of the matrix Nϕ from (3.35) that parameter A = A(ϕ) discussed
in theorem 3.1 is smaller than 1 for an appropriate choice of ϕ. It guarantees applicability of the
general procedure in this special case.

4. An example
We present here an example of 2 × 2 matrix function Gϕ ∈ GK2 for which the above-discussed
factorization does not involve Cauchy type integration for the components and auxiliary matrices.

Let,

Gϕ(x) =

⎛
⎜⎜⎜⎝

x2 + 10
x2 + 1

6
x2 + 1

eixϕ

6
x2 + 1

e−ixϕ x2 + 10
x2 + 1

⎞
⎟⎟⎟⎠ , x ∈ R. (4.1)

It is a special case of the matrix functions discussed in §3b. Here, p(x) = (x2 + 10)/(x2 + 1) and
q(x) = 6/(x2 + 1), and an auxiliary matrix F(x) = G0(x) has the form

G0(x) =

⎛
⎜⎜⎜⎝

x2 + 10
x2 + 1

6
x2 + 1

6
x2 + 1

x2 + 10
x2 + 1

⎞
⎟⎟⎟⎠ , x ∈ R. (4.2)

The above matrix satisfies all conditions (1)–(3) of §3b, moreover, the functions p and q are not
only Hölder continuous on R but infinitely differentiable.

It follows from condition (2) that

Ind det Gϕ(x) = Ind det G0(x) = 0,

besides, owing to condition (2), the matrix Gϕ(x) is positive definite and thus admits the canonical
factorization (if it exists).
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Canonical factorization of the matrix G0(x)

G0(x) = G−
0 (x)G+

0 (x)

can be found in an explicit form

G−
0 (x) = 1√

2

⎛
⎜⎜⎝

x − 4i
x − i

x − 2i
x − i

x − 4i
x − i

−x − 2i
x − i

⎞
⎟⎟⎠ (4.3)

and

G+
0 (x) = 1√

2

⎛
⎜⎜⎝

x + 4i
x + i

x + 4i
x + i

x + 2i
x + i

−x + 2i
x + i

⎞
⎟⎟⎠ . (4.4)

Hence, one can calculate an auxiliary matrix

G1,ϕ(x) = (G−
0 (x))−1Gϕ(x)(G+

0 (x))−1

in the following form:

G1,ϕ(x) = (x2 + 1)2

2(x2 + 16)(x2 + 4)

(
g1,1(x) g1,2(x)

g2,1(x) g2,2(x)

)
, (4.5)

where

g1,1(x) = 2(x2 + 4)(x2 + 10) + 6(x2 + 4)(eiϕx + e−iϕx)
(x2 + 1)2 , (4.6)

g1,2(x) = 12(x − 2i)(x + 4i)(−eiϕx + e−iϕx)
(x2 + 1)2 , (4.7)

g2,1(x) = 12(x + 2i)(x − 4i)(eiϕx − e−iϕx)
(x2 + 1)2 (4.8)

and g2,2(x) = 2(x2 + 16)(x2 + 10) + 6(x2 + 16)(−eiϕx − e−iϕx)
(x2 + 1)2 . (4.9)

It leads to the following representation of the matrix:

G1,ϕ(x) = I + N1 + N2, (4.10)

where we can take ε = 1 due to theorem 3.1 (see also remark 3.4), and

N1 = 6i sin2 ϕx
2

⎛
⎜⎜⎝

1
x2 + 16

0

0 − 1
x2 + 4

⎞
⎟⎟⎠

and N2 = 12i sin ϕx

⎛
⎜⎝ 0 − 1

(x + 2i)(x − 4i)
1

(x − 2i)(x + 4i)
0

⎞
⎟⎠ .

This follows from the consideration presented in the previous section.
Following general scheme of §3a, we factorize G1,ϕ(x) at first in the form (3.3) where the

first terms of factorization should be computed by the formula (3.4). Following the asymptotic
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procedure described above, it is sufficient at the first stage to factorize the matrix

M0,ϕ(x) = 6i

⎛
⎜⎜⎜⎝

sin2(ϕx/2)
x2 + 16

− 2 sin ϕx
(x + 2i)(x − 4i)

2 sin ϕx
(x − 2i)(x + 4i)

− sin2(ϕx/2)
x2 + 4

⎞
⎟⎟⎟⎠ , (4.11)

For this particular case, instead of using the Cauchy integrals, one can factorize each entry
nij(x), i = 1, 2, of the matrix by using decomposition in simple fractions and the Taylor formula.
Combining the obtained results, we get the following representation of matrix N−

1,ϕ(x) and N+
1,ϕ(x)

(first components of asymptotic factorization)

N−
1,ϕ(x) = 6i

⎛
⎜⎜⎜⎜⎝

−e−iϕx − e−4ϕ + 2
32i(x − 4i)

+ e−iϕx − e−4ϕ

32i(x + 4i)
−i e−iϕx + i e−4ϕ

6i(x − 4i)
+ i e−iϕx − i e−2ϕ

6i(x + 2i)

i e−iϕx − i e−2ϕ

6i(x − 2i)
− i e−iϕx − i e−4ϕ

6i(x + 4i)
e−iϕx + e−2ϕ − 2

16i(x − 2i)
− e−iϕx − e−2ϕ

16i(x + 2i)

⎞
⎟⎟⎟⎟⎠ (4.12)

and

N+
1,ϕ(x) = 6i

⎛
⎜⎜⎜⎜⎝

eiϕx + e−4ϕ − 2
32i(x + 4i)

− eiϕx − e−4ϕ

32i(x − 4i)
−i eiϕx + i e−2ϕ

6i(x + 2i)
+ i eiϕx − i e−4ϕ

6i(x − 4i)

i eiϕx − i e−4ϕ

6i(x + 4i)
− i eiϕx − i e−2ϕ

6i(x − 2i)
−eiϕx − e−2ϕ + 2

16i(x + 2i)
+ eiϕx − e−2ϕ

16i(x − 2i)

⎞
⎟⎟⎟⎟⎠ . (4.13)

Note that both plus (N+
1,ϕ) and minus (N−

1,ϕ) matrix functions vanish at infinity in the
corresponding half-plane. The procedure can be performed further as it was described in
the general case.

5. Outlook and discussions
To illuminate the efficiency of the proposed procedure, we present here the numerical results
related to the previous example (§4) showing the quality of the factorization if one decides to
restrict the approximation to the first asymptotic term only.

In figures 1 and 2, we present the normalized absolute error of the factorization using only
the first asymptotic term for different values of the parameter ϕ. We compute the errors for each
component of remainder, �K, that is difference between the exact factorization and its asymptotic
approximation along the real axis

�K(x) = G1,ϕ(x) − (I + N−
1,ϕ)(I + N+

1,ϕ) = N−
1,ϕN+

1,ϕ .

As it follows from the properties of the Cauchy type integral [5], the obtained estimates are valid
also into the upper and lower half-planes.

In figure 1, we depict the error related to the diagonal elements of the remainder while in
figure 2, we show the result for the off-diagonal element. Note that as they are complex conjugate
with respect to each other, it is enough to discuss only one of them. Unexpectedly, even for rather
large value of the parameter ϕ = 1, the error is not too high, while for smaller magnitudes of ϕ, it
decays quickly with the argument and its larger value is concentrated only near the centre of the
coordinate. Moreover, one can observe that for j = 1, 2,

�kjj(0) = 4ϕ2 + O(ϕ3), ϕ → 0.

This result can also be verified analytically.
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Figure 1. (a,b) Absolute error in the diagonal elements appeared by replacing the exact factorization with the only first
asymptotic terms (4.12) and (4.13) for various values of the parameterϕ. (Online version in colour.)
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Figure 2. Absolute error in the off-diagonal elements appeared by replacing the exact factorization with the only first terms
(4.12) and (4.13) for various values of the parameterϕ. (Online version in colour.)

With a decrease in the parameter ϕ, the amplitude of the error oscillations increases but their
support moves out from the coordinate centre to infinity. Thus, such oscillations play a minor role
and the numerical computation of the Cauchy integrals in the described procedure would not
affect the accuracy of the computations.

It is not correct to say, however, that ϕ is an optimal small parameter in the problem under
consideration. As it follows from theorem 3.1, not only the parameter ϕ but the decay of the
corresponding functions (e.g. the function q(x) in the special case) play an important role in
the analysis and it is rather δ which should be taken as the appropriate small parameter.

To clarify this, let us note that two terms N1 and N2 are of different orders with respect to
the small parameter ϕ. Indeed: N1(ϕ) = O(ϕ2) and N2(ϕ) = O(ϕ), as ϕ → 0. As a result, one could
construct another first-order approximation of the factorization based only on the term N2 instead
of N1 + N2. This gives the same first-order estimate in terms of the small parameter ϕ. Simple
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calculations give the following (first-order) factorization terms in this case:

N∗−
1,ϕ(x) =

⎛
⎜⎜⎜⎝

0 − i(e−iϕx − e−4ϕ)
x − 4i

+ i(e−iϕx − e−2ϕ)
x + 2i

i(e−iϕx − e−2ϕ)
x − 2i

− i(e−iϕx − e−4ϕ)
x + 4i

0

⎞
⎟⎟⎟⎠ (5.1)

and

N∗+
1,ϕ(x) =

⎛
⎜⎜⎜⎝

0 − i(eiϕx − e−2ϕ)
x + 2i

+ i(eiϕx − e−4ϕ)
x − 4i

i(eiϕx − e−4ϕ)
x + 4i

− i(eiϕx − e−2ϕ)
x − 2i

0

⎞
⎟⎟⎟⎠ . (5.2)

We estimate then the quality of the approximation for the factorization of the matrix function
G1,ϕ(x) based now solely on the first-order term with respect to the parameter ϕ. The new
reminder is

�K∗(x) = G1,ϕ(x) − (I + N∗−
1,ϕ)(I + N∗+

1,ϕ) = N1(x) − N∗−
1,ϕN∗+

1,ϕ .

Note that the off-diagonal terms give exact (identical) results for the terms (5.1) and (5.2) as
opposite to the factorization provided by the terms (4.12) and (4.13). Thus at the first glance,
the latter approach looks less beneficial than the former.

In figure 3, we compare the errors related to the diagonal elements of the remainders for the
value of the parameter ϕ = 10−3. The errors corresponding to matrix functions (5.1) and (5.2)
are given by doted lines while those related to (4.12) and (4.13) are depicted by the solid line.
One can observe a striking difference in the accuracy of the two approximations. While for a
small values of the variable |x| < 1 they are identical, for larger values of the argument, the
approximation given by the general procedure provides much better accuracy than that based
on the only first-order term, N2, with respect to the small parameter ϕ. Moreover, if one decides
to continue asymptotic expansion further, it may become a real issue in numerical computations
of the next asymptotic terms as the decay is very slow. Thus, the procedure suggested here is in a
sense optimal.

Note that proposed procedure is working not only in the case described in §3b, but also in the
case when entries of matrices are quasi-polynomials, i.e. the sum of different exponentials with
meromorphic coefficients, provided that all conditions of the class GKn are satisfied.

In the case of non-canonical factorization, our algorithm becomes more cumbersome. This
situation is the subject of further publication.
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