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Abstract—Development of CAD systems for detection of 

prostate cancer has been a recent topic of research and 

remains a challenging task. In this paper, we propose a 

novel method of prostate cancer detection within the 

peripheral zone. The key idea is to assume that every grey 

level could be associated with malignant or normal tissues 

by using a weighted probability. Based on the weighting, we 

use specific metrics to determine abnormality. We show 

experimental results to illustrate the performance of this 

method in comparison to some previous studies. Initial 

results show that our method achieved 81% correct 

classification result and 9% and 10% false positive and false 

negative results, respectively (sensitivity/specificity: 

0.85/0.72).  

 

Index Terms—Prostate Cancer Detection, Computer Aided 

Detection, Histogram Analysis, Grey Level Distribution, 

Prostate Abnormality 

 

I. INTRODUCTION 

With an estimate of 1.7 million cases globally by 2030 

[1], prostate cancer is one of the most common cancers 

affecting men, and is a leading cause of mortality in 

males [2]. In 2013, there were approximately 280,000 and 

40,000 cases in the United State and United Kingdom, 

respectively [1]. Clinical diagnostic tools such as 

prostate-specific antigen (PSA) level, digital rectal 

examination (DRE), transrectual ultrasound (TRUS) and 

biopsy tests are used globally despite their inconsistent 

results (0.51-0.89 and 0.67-0.87 sensitivity and 

specificity, respectively) [3]. Some of these methods are 

invasive and patients can suffer stress from false-positive 

test results, subsequent evaluation, therapy, and "over-

treatment" [2]. 

Prostate magnetic resonance imaging (MRI) has the 

potential to improve the accuracy of clinical diagnostic 

tests [4]. Therefore the main goal of our research is to 

develop computer aided diagnosis (CAD) tools towards 

the detection of prostate abnormalities. Since 80-85% of 

the cancers arise within the peripheral zone [5], the 

proposed method only considered abnormalities that 

occur within this region. There have been several studies 

which used only the peripheral zone of the prostate [6-8] 

and allows us to compare our quantitative results to these 

previous studies. Fig. 1 shows an example of prostate 

                                                           
 

MRI image with its ground truth delineated by an expert 

radiologist and Fig. 2 shows a schematic overview of a 

prostate containing a tumor. 

 

  
 

Figure 1.The ground truth of prostate gland, central zone and tumor and 

represented in red, yellow and green, respectively. 

 

 
 

Figure 2. CZ = central zone, PZ = peripheral zone, TZ=transitional zone 
T = tumor. 

 

The proposed method compares grey level histograms 

from each slice with models (e.g. normal and malignant 

histograms models) which were constructed based on 

training data the distribution of grey level. Subsequently, 

we use specific metrics to determine abnormality. There 

are several methods in the literature which have used 

histogram analysis techniques [9-12]. A method proposed 

in [9] characterised each suspicious region of interest by 

performing histogram analysis on multiparametric MR 

images. On the other hand, [10] used colour channel 

histograms to capture the pattern of malignancy tissues in 

Gleason graded images. Moreover, [11] reports that 

features based histograms can achieve high sensitivity 

and specificity which is similar to some other features 

such as Gray Level Co-occurrence matrix (GLCM) and 

Grey Level Run-Length matrix (GLRLM). Finally, [12] 

used T2-weighted signal intensity histogram skewness as 

one of their features in differentiating between malignant 

and normal tissues. In terms of using grey level properties 

in detecting abnormalities, several studies have been done 

in medical image analysis application. The authors in [13] 

proposed a method for recognition of lung abnormalities 

based on four different templates describing typical 

geometry and grey level distribution of lung modules 



[13]. On the other hand, Yu [14] proposed a method 

which is relying on spatial grey level dependence for 

detecting and locating brain abnormality. Finally, the 

authors in [15] proposed a method using the distribution 

of grey level variations for abnormality detection in 

mammography.  

In this paper we propose a new method for detecting 

prostate cancer within the peripheral zone using the 

distribution of grey levels. In comparison to the existing 

methods (detecting prostate cancer in medical images) in 

the literature, our method is different in the sense that we 

do not rely on texture features such as blobs and 

statistical features. The methods in [16], [17] and [18] 

used texture features to classify malignant and normal 

tissue. Secondly, our method uses a single modality (T2-

Weighted MRI) unlike the method in [19], which used 

multimodality, i.e. diffusion MRI and MR Spectroscopy. 

Similarly, the method proposed in [9] used 

multiparametric MR, i.e. T1- and T2-weighted imaging. 

Finally, the proposed method is purely based on the grey 

levels information whereas the method in [9] used 

additional clinical diagnostic information such as biopsy 

tests in deciding whether cancer is truly present or not.  

II. MODELLING THE PERIPHERAL ZONE 

Since the proposed method only considers malignant 

tissues/regions within the PZ, it is important to define the 

PZ region. We use a simple method proposed in [20, 21] 

which uses a quadratic equation             to 

define the boundary of PZ based on three vertex 

coordinates    ,    and    (which can be found based on 

the prostate’s boundary). Fig. 3 shows an example how 

the PZ region is defined. The coordinates of   ,    and    

can be determined based on the Cp (central coordinate), 

minimum and maximum x and y coordinates (xmin, ymin, 

xmax and ymax) . A detailed description of the method can 

be found in [20, 21]. 

 

 
 

Figure 3: Prostate gland (red) and the defined PZ (indigo region) and its 

boundary (green) which goes through   ,    and   . 

III. METHODOLOGY 

Fig. 4 shows the overview of the proposed algorithm. 

In summary, the methodology relies on the distribution of 

grey level within the histograms which were constructed 

based on the grey level occurrence within 44 malignant 

and normal regions. The histogram models represent the 

weighting values for every grey level. Based on the 

constructed histograms (88 slices) for each new slice, the 

histogram will be compared with the histogram models 

constructed in the early phase (yellow region in Fig. 4).  

 
 

 
 

 

 

 

 
 

 
Figure 4: The overview of the proposed methodology 

 

A. Construction of Histograms 

For every slice, the proposed method constructs the 

first histogram (   ) by taking every pixel intensity 

within the malignant region (note that all malignant 

regions were delineated by an expert radiologist) and 

each pixel is classified according to its intensity into an 

appropriate grey level. The second histogram (  ) is 

constructed using the same process with     but taking 

normal regions instead. Normal regions are taken from 

the whole PZ region (with condition there is no tumors 

found within the PZ) as shown in Fig. 3 indigo region. 

This means    and    contain the distribution of 

malignant and normal grey level, respectively. Since 

every image size is 16 bits, there is a total of 65, 536 

grey.  There were 44 malignant and normal regions (in 

total 88 regions) taken from 44 slices (in total 88 slices all 

from 20 patients) to construct    and   . 

Mathematically, this process can be presented in (1), (2), 

(3) and (4).  

 

   {              }   (1) 

   {              }   (2) 

   {           }  (3) 

   {                }  (4) 

 

where ,  ,   and     represent the     region (or grey 

level), every grey level, malignant and normal region, 

respectively. This means, there are 44 histograms in total 

from 44 malignant slices (another 44 histograms from 

normal slices). Finally, we combine all histograms using 



(3) and (4) to produce the resulting models. Fig. 5 

illustrates an example of this process.  

 

 
 

Figure 5: An example of histogram result (   ). The x and y axis 
represent the grey level location and the frequency of occurrence for 

every grey level. 

   

Fig. 5 shows an example of the construction of    

based the n slices (in our case 44 slices). Note that the 

pixel intensities are only taken within the malignant 

region which is within the red boundary in Fig. 5. The 

process is similar when constructing    but taking the PZ 

region as defined in Fig. 3. To this point we have 

constructed two histogram models which are    and    

where both histograms store the frequency of grey level 

occurrence from malignant and normal regions, 

respectively. However, since many grey levels occur in 

both regions, we need to identify the distinctive grey 

levels which occur only in malignant or normal regions, 

and grey levels that occur both in malignant and normal 

regions. These allow us to differentiate malignant and 

normal grey tissues. These can be found by finding the 

intersection of     and    as shown in (5). In our case, 

intersection means a particular grey level can be found in 

both malignant and normal regions (i.e. grey level at the 

position 3990
th

 occurs in    and   , see Fig. 9) . 

 

                             (5) 

 

where    is the histogram contains all the grey levels 

occur both in malignant and normal regions. Each grey 

level’s frequency in    is the mean of corresponding 

frequencies in    and    (e.g.          
 
    

         ) with condition that the element     is in    

and   . Fig. 6 shows an illustration of this process in a 

Van diagram. From the van diagram, we can see that    

and   , have their unique grey levels. The values in    
represents grey levels 3, 50, 234 and 941 occur in both 

   and   . This means, prostate tissues which are fall in 

these grey level values are classified as malignant or 

normal. 

 

 
 

Figure 6:    contains all the overlap grey levels from    and   . Each 
element in the Van diagram represents the grey level. 

  

By the end of this phase, we have three histogram 

models which present the only malignant (  ), only 

normal (  ) and malignant and normal (  ) grey levels. 

Fig. 7 and 8 show examples of malignant and normal 

grey level distributions from grey level 38,000 to 39,000, 

respectively. We chose only 1000 grey levels in the 

following examples so the differences are visible.  

 

 
 

Figure 7: Malignant grey level distribution for 1000 grey levels. 

 

 
 

Figure 8: Normal grey level distribution for 1000 grey levels 

 

On the other hand, Fig. 9 shows an example of grey level 

distribution of    for the same 1000 grey levels.  

 



 
 

Figure 9: Grey level distribution for   . 

 

Based on the examples in Fig. 7- 9 we can clearly see that 

normal regions have higher occurrence within this range 

and very small occurrence for malignant grey levels 

within this range. However, it is possible that all grey 

levels in malignant regions only occur in    (e.g. if all 

grey levels occur in     we need further steps to 

determine abnormality). To reduce this problem we need 

to extract two more histograms from    . Both 

histograms (     and    ) represents the distribution of 

overlapping malignant and benign grey levels, 

respectively. In contrast to   ,     and     were 

constructed based on the exact number of occurrence of 

grey levels whereas    is based on the average 

occurrence number of grey levels of     and    . 

Therefore, every grey level now has a weighted value and 

using these histogram models (   ,   ,   ,     and    ) 

we could estimate the probability of abnormality using 

specific metrics.     

B. Histogram Normalisation 

Since the sum of    outweighs considerably high the 

sum of    and     (caused false negative results), all 

models need to be normalised to ensure the weighting 

values for all grey levels are distributed evenly (used for 

the first metric only). By normalising all histogram 

models the sum for every histogram is equal to 1. The 

normalisation can be done using the following equation 

 

       
     

∑     
   (6) 

 

where    {         } and  (small  ) indicates a 

normalised histogram. Therefore we get an equal 

summation of histogram but still different distributions 

and weighting value for every grey level’s location. 

 

 

 

 

 

 

C. Abnormality Detection 

In the proposed method, abnormality detection is 

performed by calculating specific information from every 

histogram which is extracted from PZ. We use the 

following metrics to measure abnormality. 

 

1) The sum of histogram multiplication (    ) for 

each    with each of     (e.g.     and     ). This 

can be calculated using the following equation  

 

      ∑                  (7) 

 

This metric indicates the product of probability 

when every element in     is multiplied with every 

element (frequency) in   . This means, the higher 

the value of       the more chance the slice has a 

tumor. For instance,              means the 

malignant product of probability is higher when 

multiplied with    compared to   . A large 

number of       indicates there are many grey 

levels in    have the same grey level in    

(similar case in       and      ).  

2) The histogram intersection (      ) [22] between 

    and    which can be calculated using the 

following  

 

      ∑     { 
 
            }  (8) 

 

Based on (8), we do not use the normalised 

histograms (   ) but     (denormalised histogram) 

instead, because normalised histograms could 

affect the value of histogram intersection due to 

the small values in     which lead to incorrect 

results. We used this metrics as it has been 

successfully used for similarity measure in many 

different applications including medical image 

analysis. This metric measures the closeness of 

match between two histograms (in our case     

and   ) . Higher value of       indicates higher 

probability of the histograms is similar. In the 

proposed method, this matric is used to measure 

the closeness of a match between every    with 

the histogram models. The closer the match with 

model the higher the value of      . Finally, 

higher value means most gray levels in both 

histograms are distributed equally. 

 



 
 

Figure 10: Flow chart decision rules. 

 

Finally, now we have seven variables (      ,     , 

      ,      ,       ,      and      ) which will be used 

to determine as whether abnormality is present or not 

based on the decision rules in Fig. 10. It should be noted 

that there are other metrics in the literature [23] available 

but these will be investigated in the future. Based on Fig. 

10, it is clearly shows that if      ,       or      value is 

higher than       ,      or      indicates higher 

probability of the prostate being abnormal. Similarly 

when the prostate’s slice is more likely to be benign, the 

values of       ,      or      are greater than        , 

     or      . In the next section we will present our 

experimental results. 

IV. EXPERIMENTAL DATA 

In this study, we used 243 slices of T2-Weighted MRI 

images taken 35 different patients aged 47 to 79. The data 

contains 88 slices of training data from 20 patients and 

50% of the training data are malignant and the other half 

is normal. For evaluation purpose we used 155 slices of 

MRI images from 35 patients and 105 slices of them are 

malignant and 50 slices are normal. Our data were 

collected from Norfolk and Norwich Hospital University 

and for every slice all ground truths (prostate gland, 

central zone and tumor) were delineated by an expert 

radiologist. 

 

 

 

V. EXPERIMENTAL RESULTS 

This section presents the experimental results based on 

155 slices T2-Weighted MRI images with 105 slices are 

malignant and 50 slices are normal from 35 different 

patients aged 49 to 74. The prostate, cancer and central 

zones were delineated by an expert radiologist on each of 

the images. Each slice was analysed and classified as to 

whether the prostate contains abnormality based on the 

methodology described in section three. Next, we 

compared the result with the ground truth as to whether 

the prostate contains cancer regions or not. An 

abnormality is considered to have been detected if the 

classification result is correct in comparison with the 

ground truth. We use several quantitative measures to 

evaluate the results such as sensitivity (   ), specificity 

(   ) and Accuracy   (   ). Each of these metrics can be 

calculated using the following equations 

 

    
  

     
   (9) 

 

    
  

     
   (10) 

 

    
     

           
  (11) 

 

where TP and FP denote the numbers of true positive and 

false positive, respectively. Similarly, TN and FN show 

the numbers of true negatives and false negatives. 

Accuracy means the number of correct classified slices 

out of the total number of slices. Sensitivity measures the 

proportion of actual positives which are correctly 

identified (in this case the percentage of malignant slice 

which are correctly identified) whereas specificity 

measures the proportion of actual negatives which are 

correctly identified (in this study the percentage of 

normal slice which are correctly identified). 

The proposed method achieved 81% correct accuracy, 

which means 126 slices were classified correctly with 

0.85 and 0.72 sensitivity and specificity, respectively. On 

the other hand, the proposed method produced 9% and 

10% false positive and false negative results, 

respectively. In comparison with existing methods in the 

literature the proposed method achieved similar results. 

Nevertheless, it is extremely difficult to make a 

qualitative comparison due to the differences in datasets 

(different modalities such as T2-weighted (T2-W) MRI, 

diffusion-weighted (DWI) MRI, dynamic contrast 

enhanced (DCE) MRI, Magnetic resonance spectroscopy 

(MRS), etc.) and frameworks used by the other methods. 

However, to compare the proposed method, we cite 

several methods which have similar goals (detecting 

prostate cancer). There are many other methods in the 

literature but it is difficult to gather all of those methods 

(also space limitation) and we selected these methods 

(see Table 1) because they have at least one of the 

qualitative results (e.g. sensitivity) and it is clearly stated 

the number of cases used in the evaluation. 



TABLE I.  FROM THE LEFT COLUMN REPRESENTS THE AUTHORS, 
NUMBER OF PROSTATES/PATIENTS, ACCURACY RATE, SENSITIVITY, 

SPECIFICITY AND MODALITIES, RESPECTIVELY 

Authors # Acc Sen Spe Mod 

Sung et al.[24] 42 89 89 89 DCE 

Vos et al.[9] 29 89 - - T2-

W+DCE 

Ampeliotis at 

al.[3] 

10 87 - - T2-

W+DCE 

Rampun et 

al.[21] 

19 85 82 87 T2-W 

Tiwari et 

al.[25] 

19 84 - - T2-

W+MRS 

Artan and 

Yetik.[8] 

15 82 76 86 DCE 

Our method 35 81 85 72 T2-W 

Castaneda et 

al.[26] 

15 80 67 86 CrW 

Reinsberg et 

al.[27] 

42 - 81-93 64-73 DWI+MRS 

Litjens et 

al.[28] 

188 - 84 - DWI+DCE 

Futterer et 

al.[29] 

6 - 83 83 T2-W 

Girouin et 

al.[30] 

46 - 78-81 32-56 T2-W 

Llobet et 

al.[18] 

303 - 57 61 Ultrasound 

 

Table 1 presents the experimental results of thirteen 

different methods including the proposed method and 

their accuracy, sensitivity, specificity and modalities. All 

methods were ordered based on accuracy, sensitivity and 

specificity accordingly. Note that some of the authors did 

not include one/two of these qualitative results (indicated 

as ‘-’). The method proposed in [9] and [24] achieved the 

highest correct classification rate (89%) followed by the 

method in [3] with 87% accuracy. Our method has 

similar accuracy result with the method in [26] with just 

1% higher. In addition, the proposed method reported 

similar sensitivity with the methods proposed in [21], 

[28] and [29] and the method of [24] reminds 89%. 

Although the method proposed in [27] achieved the 

highest sensitivity but the authors reported inconsistency 

of 81%-93%. The method in [18] achieved the lowest 

accuracy which is 57% whereas the method in [8] and 

[26] produced 76% and 67% sensitivity, respectively. On 

the other hand, the methods in [21], [26], [8] and [29] 

achieved high specificity 87%, 86%, 86% and 83%, 

respectively. The proposed method achieved only 72% 

but it is still higher than the methods proposed in [18] and 

[30].  

These comparisons are subjective because accuracy, 

sensitivity and specificity are highly influenced by the 

number of datasets, different modalities and methods’ 

framework. For instance, although the method proposed 

in [26] and [29] achieved 86% and 83% specificity, 

respectively; the evaluation is based on smaller numbers 

of dataset (6 and 15 patients, respectively). On another 

study [31] shows higher sensitivity and specificity of 

93% and 96%, respectively but based on 46 ultrasound 

images. Similarly, the method proposed in [24] and [9] 

achieved the highest accuracy but based on DCE and T2-

W+DCE modalities, respectively. Therefore it is 

extremely difficult to make a direct comparison either 

quantitatively or qualitatively. However, for indirect 

comparison purpose our method achieved comparable 

results with the state of art. One obvious drawback of this 

method is since it entirely relying on the grey level 

distribution, the metrics could give inaccurate results if 

the data is heavily affected by noise (due to change of 

pixel intensity affected by noise).  

VI. CONCLUSIONS 

 We have introduced a novel method for automated 

prostate cancer detection using grey level distribution. 

The proposed method achieved similar results to some of 

the methods in the literature. The proposed method shows 

that prostate abnormalities could be detected using grey 

level distribution by giving a weighted value (by 

normalising the histogram models) for each of the grey 

levels. Moreover, in this paper we have shown the 

importance of grey-level values in detecting prostate 

abnormality by assigning every grey level into different 

classes (e.g. malignant or benign) and assigning a 

weighting value for every single grey level’s location. In 

short, with 9% and 10% false positive and false negative 

results, respectively we have achieved comparable results 

(81% accuracy out of 35 patients). Although it is difficult 

to make a quantitative comparison with the methods in 

Table 1 due the differences in datasets and frameworks, 

the main objective to show the potential of grey level 

distribution in detecting prostate cancer because it has 

been showed its potential in different human’s body such 

as breast [15], lung[13] and brain[14]. Finally, the next 

stage of this research is to test it on a larger dataset with 

several combination methods [20, 21] and applying a 

robust noise reduction method to improve its sensitivity 

and specificity. 
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