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Pros and Cons of lon-Torrent Next Generation
Sequencing versus Terminal Restriction Fragment
Length Polymorphism T-RFLP for Studying the Rumen
Bacterial Community

Gabriel de la Fuente, Alejandro Belanche, Susan E. Girwood, Eric Pinloche, Toby Wilkinson,
C. Jamie Newbold*

Institute of Biological Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Ceredigion, United Kingdom

Abstract

The development of next generation sequencing has challenged the use of other molecular fingerprinting methods used to
study microbial diversity. We analysed the bacterial diversity in the rumen of defaunated sheep following the introduction
of different protozoal populations, using both next generation sequencing (NGS: lon Torrent PGM) and terminal restriction
fragment length polymorphism (T-RFLP). Although absolute number differed, there was a high correlation between NGS
and T-RFLP in terms of richness and diversity with R values of 0.836 and 0.781 for richness and Shannon-Wiener index,
respectively. Dendrograms for both datasets were also highly correlated (Mantel test=0.742). Eighteen OTUs and ten
genera were significantly impacted by the addition of rumen protozoa, with an increase in the relative abundance of
Prevotella, Bacteroides and Ruminobacter, related to an increase in free ammonia levels in the rumen. Our findings suggest
that classic fingerprinting methods are still valuable tools to study microbial diversity and structure in complex
environments but that NGS techniques now provide cost effect alternatives that provide a far greater level of information
on the individual members of the microbial population.
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Introduction

Microbial populations that inhabit gut environments play an
essential role in the wellbeing of the host by utilizing nutrients that
otherwise are not digestible by the host, creating an environment
that is not conducive for pathogen survival and stimulating the
immune system [1]. To understand form and function of complex
ecosystems identifying primary drivers of microbial diversity and
community structure is essential [2]. The evolution of the study of
rumen microbial diversity is similar to that of other microbial
ecosystems, moving from culture-based and microscopic observa-
tions to the use of culture-independent, molecular techniques. The
small subunit ribosomal RNA gene (S rRNA) is the most common
target for characterising bacterial diversity in such environments
[3]. The use of fingerprinting techniques can provide useful
information on the structure of the rumen microbiome. The more
commonly used techniques in the study of the rumen microbial
ecosystem are single-strand conformation polymorphism [4],
denaturing gradient gel electrophoresis [5], restriction fragment
length polymorphism (RFLP) and its variant terminal-RFLP [6].
These methods have used non-targeted approaches to identify
differences and similarities in microbial communities in response
to differences in host species, diets and feed efficiency, [7,8] but
they do not provide direct sequence information. In spite of this
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shortcoming, fingerprinting techniques continue to be used as they
provide a quick snapshot of the microbiota. They can show that
there are differences between various treatments, but they cannot
be used to identify key species in a system biology approach [9].

The development of next generation sequencing (NGS)
technologies has supported a rapid growth of applications [10]
including developments in the screening of complex microbial
[11,12]. In particular, the characterization of
bacterial 16S rRNA gene pools through massively parallel
amplicon sequencing is becoming a method of choice which can
replace previously used clone library sequencing techniques [13]
and potentially even fingerprinting techniques, such as T-RFLP.
The increasing numbers, quality and length of reads per run,
together with the possibility of “barcode-tagging” amplicons with
sample-specific adaptors to allow samples to be multiplexed [14],
provides the opportunity to screen multiple samples at high
sequencing depth. However, the general reproducibility and
robustness of NGS, its potential to adequately recover relative
template abundances, and its comparability to other screening
techniques like rRNA gene fingerprinting are still a matter of
debate [10]. The respective literature is continuing to grow and
provides both supportive [15] and less supportive arguments [16]
regarding the use of NGS in microbial ecology studies. In addition
to the generally accepted need for quality filtering to avoid

communities
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Comparison of Microbial Diversity by NGS and T-RFLP

Table 1. Protozoa concentration (log (numbers +1) per mL of rumen fluid) from sheep either protozoa-free (P1), faunated with
holotrich protozoa (P2) or with a complete protozoal population (P3).

Protozoa P1 P2 P3 SED P

Isotricha sp 0° 4,02 3.60° 0.120 <.001
Dasytricha sp 0° 4,587 417° 0.086 <.001
Subf. Entodiniinae o° o° 5.80° 0.050 <.001
Subf. Diplodiniinae o° o 4552 0.075 <.001
Epidinium sp. o° 0P 412° 0.096 <.001
Total Protozoa 0° 4.69° 5.857 0.061 <.001

Different superscript letters denote significant differences.
doi:10.1371/journal.pone.0101435.t001

overestimation of diversity [16], issues with the technical
reproducibility and semi-quantitative potential of pyrotag se-
quencing have also been raised [17]. Fingerprinting techniques
might thus still represent an acceptable and low-cost way to study
microbial diversity in complex ecosystems. In this study we
evaluated the use of the Ion Torrent PGM NGS as an alternative
to fingerprinting techniques to study microbial diversity in gut
environments by sequencing the V3 region of the 16S rRINA gene
and comparing the results with those obtained using a terminal-
RFLP fingerprinting study of the same gene (16S rRNA). To be
able to establish a reliable comparison we used DNA from 8
animals during three different states of rumen protozoal coloni-
zation. Rumen protozoa are not essential to rumen function but
can significantly affect ruminal fermentation and their host’s
nutrition [18], so the progressive colonization of rumen protozoa
served as a powerful model to evaluate changes in the rumen
microbiome of sheep.

Methods

Experimental design description, colonization procedure

and collection of rumen samples

All animal procedures were carried our according to the
Animals (Scientific Procedures) Act 1986 (PLL 40/316; PIL 40/
9798) in accordance with the guidelines of the European Directive
2010/63/EU and after approval by the Aberystwyth University’s
Internal Ethical Review Panel. Eight mature protozoa-free Texel-
crosshreed sheep isolated from faunated sheep at birth [19] and
approximately 4 years old at start of experiment were used in an
experiment with three consecutive periods, with a 3-month
adaptation phase between each period. For the first period (P1)

or with a complete protozoal population (P3).

animals remained fauna-free; for the second period (P2) they were
inoculated with a mixed holotrich population (Isotricha intestina-
lis, Isotricha prostoma and Dasytricha ruminantium species),
obtained from cryopreserved samples from monofaunated sheep.
Holotrich protozoa were inoculated by oral administration of
50 mL of holotrich protozoa mix diluted in Coleman’s Simplex
type Solution [20]. For the third period (P3) animals were
inoculated with rumen fluid obtained from control animals (with a
natural protozoal population consisting of the subfamilies En-
todiniinae (87%) and Diplodiniinae (2.5%), Epidinium sp.(7%),
Isotricha sp.(0.5%) and Dasytricha sp.(2%)). During the last month
of each period sheep were kept in individual pens with free access
to fresh water and mineral blocks and fed an experimental diet
composed of 67% ryegrass hay and 33% ground barley to meet
1.5 times maintenance requirements [21]. Diet was distributed in
two equal meals per day (0900 and 1900h). At the end of each
period rumen fluid (about 350 mL per animal) was obtained by
oesophageal tubing before the morning feeding. Then rumen fluid
was filtrated trough 250 pm?® pore size nylon mesh and pH
recorded.

Biochemical analyse and protozoal counts

Rumen fluid samples were added to 20% orthophosphoric acid
(containing 20 mM 2-ethyl butyric acid as an internal standard,
I mL acid/4 mL of rumen fluid) to deproteinise the samples.
SCFA analysis (acetate (C2), propionate (C3) and N-butyrate (C4)
acids) was conducted after sedimenting for 24 h before being
filtered through a Cronus 0.45 pm? 25 mm Nylon Syringe Filter
with prefilter into a glass vial and capped. SCFAs were determined
by gas liquid chromatography using 2-ethyl butyric acid as the
internal standard as described by [22]. Ammonia (NH3) concen-

Table 2. Fermentation parameters of rumen samples from sheep either protozoa-free (P1), faunated with holotrich protozoa (P2)

P1 P2 P3 SED P
pH 6.94 6.89° 6.73° 0.0496 0.002
NH3-N (mg/dL) 1.29° 1390 4.85° 0.583 <0.001
C2 (mM) 51.59° 60.16° 63.08° 236 <0.001
C3 (mM) 17.35 142 16.55 2.154 0.344
C4 (mM) 6.37° 967 11.38° 1.159 0.002

Different superscript letters denote significant differences.
doi:10.1371/journal.pone.0101435.t002
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Table 3. Richness (Ri) and Shannon-Wiener (Sh) indexes of NGS (OTU matrix from lon Torrent data) or T-RFLP (peaks in the
amplicons of 165 rRNA gene digested using Hhal, Haelll, Mspl and Rsal.

indexes P1 P2 P3 SED P
T-RFLP Ri 172.2° 236.5° 166.5° 12.07 <0.001

Sh 406" 468° 3.91° 0.121 <0.001
NGS Ri 370P 514° 383° 39.8 0.005

Sh 3.79° 459° 3.96%° 0.265 0.023

population (P3). Different superscript letters denote significant differences.
doi:10.1371/journal.pone.0101435.t003

tration was determined using the phenol method of Whitehead
[23].

Total protozoal counts were quantified by optical microscope
using the procedure described by Dehority [24] and adapted by de
la Fuente et al. [25]. Concentrations of Isotricha sp. and Dasytricha
sp. were calculated as representative of holotrich protozoa, and of
subfamily Entodiniinae, subfamily Diplodiniinae and Epidinium
sp., as representative of entodiniomorphid protozoa.

Molecular analyses

DNA extraction. Rumen fluid samples were stored on ice
until frozen at —80°C: prior to freeze drying. Before extraction of
nucleic acids, freeze-dried samples were disrupted by bead
beating. Freeze-dried samples (100 mg) were added to a 2-mL
screw top tube with one autoclaved glass bead added (4 mm,
undrilled, G/0300/53, Fisher Scientific, UK). Samples were bead-
beaten for 90 s at 5000 rpm in a Mini-Beadbeater (Biospec
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Genomic DNA was obtained from rumen samples from 8 animals (A1 to A8) either protozoa-free (P1), faunated with holotrich protozoa (P2) o with a complete protozoal

products Inc., Bartlesville, OK). DNA was then extracted using
QIAGEN QJAamp DNA stool mini kits (Qiagen Ltd., UK) as
previously described [26].

Fingerprinting analysis (T-RFLP).
using a 16S rRNA bacterial-specific primer pair, cyanine-labelled
27F (5'-AGA GTT TGA TCC TGG CTG AG-3') and unlabelled
1389R (5'-AGG GGG GGT GTG TAG AAG-3") [27] following
Skeivanova et al. [26]. A 25-ul reaction was prepared containing
1.25 U GoTaq DNA polymerase (Promega UK Ltd., South-
ampton, UK), 1x Promega reaction buffer, 1.75 mM MgCl,,
0.2 mM of each dNTP with each primer used at 0.5 uM.
Resultant amplicons were analysed on a 1% (w/v) TAE agarose
gel to assess the quality of amplification.

DNA concentration of each amplified and purified sample was
determined by spectrophotometry (Nanodrop ND-1000 spectro-
photometer) to enable a standardised quantity of 50 ng DNA for
digestion with restriction enzymes. Digestion of samples was

PCR was performed
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Figure 1. Correlation between T-RFLP and NGS. Correlation plot between NGS (OTU matrix from lon Torrent data) and T-RFLP (peaks in the
amplicons of 16S rRNA gene digested using Hhal, Haelll, Mspl and Rsal (dendrogram shows amalgamation of data from all four enzymes) on both
Richness (Figure 2a) and Shannon-Wienner index (Figure 2b). Genomic DNA was obtained from rumen samples from 8 animals (A1 to A8) either
protozoa-free (P1, crosses), faunated with holotrich protozoa (P2, black triangles) o with a complete protozoal population (P3, black squares).
doi:10.1371/journal.pone.0101435.g001
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Comparison of Microbial Diversity by NGS and T-RFLP

Figure 2. Dendrogram of the rumen bacterial population analysed by T-RFLP(a) or NGS(b). Dendrogram using the combination of
Manhattan distances and UPGMA (unweighted pair group method with arithmetic mean) of T-RFLP (peaks in the amplicons of 16S rRNA gene
digested using Hhal, Haelll, Mspl and Rsal (dendrogram shows amalgamation of data from all four enzymes) or NGS (OTU matrix from lon Torrent
data). Genomic DNA was obtained from rumen samples from 8 animals (A1 to A8) either protozoa-free (P1, crosses), faunated with holotrich protozoa
(P2, black triangles) o with a complete protozoal population (P3, black squares).

doi:10.1371/journal.pone.0101435.9002

carried out using the restriction enzymes, Hhal, Haelll, Rsal and
Mspl (New England Biolabs UK Ltd.) following the manufacturers
recommendations with the exception of Hhal where the recom-
mended addition of bovine serum albumin was omitted.

Restriction digests (20 uL) were purified by ethanol precipita-
tion in a thermowell 96-well PCR plate (Costar; Corning Inc.,
NY). DNA was precipitated with 120 pL. of 95% ethanol at
—80°C, 4 uL. EDTA (100 mM), 4 puL. sodium acetate (3M,
pH 5.2) and 4 uL of glycogen (20 mg/ml) and 30 min centrifu-
gation at 4°C at 3000 g. DNA pellets were washed twice with
200 pL of 70% ethanol, air-dried at room temperature and re-
suspended in 35 uL. sample loading solution buffer including a
600 bp size standard (Beckman Coulter Inc., Fullerton). T-RFs
were separated on a CEQ 8000 Genetic Analysis System
(Beckman Coulter, High Wycombe, UK) using the Frag4
parameters (denaturation step at 90°C for 120 seconds; injection
at 2 kV for 30 seconds; separation at 4.8 kV for 60 min with a
capillary temperature of 50°C). The protocol and software used
was as described by [26] using the Local Southern method to
distinguish true peaks from background noise. In this instance the
following criteria was applied prior to exporting data from the
CEQ 8000 genetic analysis system: Slope threshold of 5 and
relative peak height of 5% (where 5% of the second highest peak
was used as the lower threshold for peak identification). These
parameters allow detection and elimination of smaller, broader
peaks that would have a less specific size and not be indicative of
single true OTUs.

NGS analysis. Amplification of the V3 hyper variable region
of 16S rRNA was carried out with primers 341F and 518R [28].
The forward primer (5'-CCTACGGGAGGCAGCAG-3') carried
the Ton Torrent Primer A-key adaptor sequence (5'-CCATCT-
CATCCCTGCGTGTCTCCGACTCAG-3') and the reverse
primer (5'-ATTACCGCGGCTGCTGG-3') carried the Ion
Torrent  Primer  Pl-key adaptor sequence A (5'-
CCTCTCTATGGGCAGTCGGTGAT-3") followed by a 12
nucleotide sample specific barcode sequence (Table S1). For each
sample replicate PCR was performed in duplicate; a 25-ul reaction
was prepared containing 1.25 U FastStart High Fidelity Enzyme
Blend, 10x FastStart High Fidelity Buffer with 18 mM MgCl,
(Roche Diagnostics Ltd., Burgess Hill, UK), 0.2 mM of each
dNTP (Promega UK Ltd., Southampton, UK), 0.2 uM of each
primer and 1 pl DNA template at 2.5-125 ng/pl. The conditions
used were a hot start of 95°C for 10 min, 95°C for 2 min, followed
by 22 cycles of 95°C for 30 s, 50°C for 30 s and 72°C for 30 s with
a final extension at 72°C for 7 min. Reactions were amplified in a
T100 thermal cycler (Bio-Rad, Hemel Hempstead, UK). Resul-
tant amplicons were visualized on a 1% (w/v) TAE agarose gel to
assess quality of amplification before pooling the duplicate
reactions.

Pooled PCR reactions for all sample replicates were purified as
per Roche technical bulletin 2011-007 (January 2012) ‘Short
Fragment Removal Procedure for the Amplicon Library Prepa-
ration Procedure’ using Agencout AMpure XP beads (Beckman
Coulter Inc., Fullerton, USA). DNA concentration of the purified
PCR products was assessed using an Epoch Microplate Spectro-
photometer with a Take3 Micro-Volume plate (BioTek UK,

PLOS ONE | www.plosone.org

Potton, UK) to enable equi-molar pooling of samples with unique
barcode sequences. Each library was further purified using the E-
Gel System with E-Gel SizeSelect 2% Agarose gel (Life
Technologies Ltd, Paisley, UK). Purified libraries were assessed
for quality and quantified on an Agilent 2100 Bioanalyzer with a
High Sensitivity DNA chip (Agilent Technologies UK Ltd,
Stockport, UK). The sample libraries were subsequently se-
quenced using the Ion Torrent PGM sequencer following the Ion
PGM Template OT2 200 Kit (Life Technologies Ltd, Paisley,
UK).

The emulsion PCR was carried out using the Ion PGM
Template OT2 200 Kit (Life Technologies) as described in the
appropriate user Guide (Catalog number: 4480974, Revision 4.0)
provided by the manufacturer. Sequencing of the amplicon
libraries was carried out on the Ion Torrent Personal Genome
Machine (PGM) system using the Ion PGM Sequencing 200 Kit
v2 (all Life Technologies) following the corresponding protocol
(Catalog number: 4482006, Revision 1.0). Raw sequence reads of
all samples were deposited at the EBI Short Read Archive (SRA)
from the European Nucleotide Archive (ENA) and can be accessed
under the study accession number PRJEB5190.

Following sequencing, data were combined and sample
identification numbers assigned to multiplexed reads using the
MOTHUR software environment [29]. Data were denoised, low
quality sequences, pyrosequencing errors and chimeras were
removed, then sequences were clustered into OTU’s at 97%
identity using the CD-HIT-OTU pipeline (available from http://
eeizhong-lab.ucsd.edu/cd-hit-otu, [30]). OTU’s containing fewer
than 10 reads were excluded due to the likelihood of them being a
sequencing artifact. Samples were normalised by randomly
resampling to the lowest number of sequences per sample
(period/animal  combination) using Daisychopper  (www.
genomics.ceh.ac.uk/GeneSwytch/). Taxonomic information on
16S rRNA transcripts was obtained by comparison against The
Ribosomal Database Project- II (RDP) [31]. This method is widely
used and provides rapid taxonomic classifications from domain to
genus of both partial and full-length rRNA gene sequences. We
considered only annotation with a bootstrap value over 0.7,
stopping the assignation at the last well identified phylogenetic
level and leaving successive levels as unclassified.

Statistical analyses

Analysis of the TRFs was performed using Minkowski Metrics,
Manhattan distances and unweighted pair group method with
arithmetic mean (UPGMA). UPGMA was carried out using
Neighbor within the Permanova+ package (version 1.0.2; primer-
E, Ivybridge, UK). Permutational multivariate analysis of variance
(Permanova) and canonical analysis of principal coordinates (CAP)
[32] were also carried out using Permanova+. These analyses
utilised Manhattan distances of fourth-root transforms of both
T-RFLP and OTU abundance data. Permanova and CAP were
performed using 9999 unrestricted permutations.

Data were prepared and tables and figures produced using
Microsoft Excel and the ‘R’ software environment (version 2.15;
http//www.r-project.org/). Richness and Shannon-Wiener diver-
sity indices were calculated using normalised data as recom-
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Figure 3. PCA plot of the rumen bacterial structure analysed by T-RFLP(a) or NGS(b). Principal Component Analysis of T-RFLP (Figure 4a,
peaks in the amplicons of 16S rRNA gene digested using Hhal, Haelll, Mspl and Rsal (dendrogram shows amalgamation of data from all four enzymes)
or NGS (Figure 4b, OTU matrix from lon Torrent data). Genomic DNA was obtained from rumen samples from 8 animals either protozoa-free (P1, black
crosses), faunated with holotrich protozoa (P2, black triangles) or with a complete protozoal population (P3, black squares).

doi:10.1371/journal.pone.0101435.g003

mended to reduce over-inflation of true diversity in pyrosequenc-
ing data sets [33]. Species richness and Shannon-Wiener diversity
were then analysed by one-way ANOVA using R. Spearman’s
product-moment correlations were performed between fermenta-
tion parameters (pH, NHs, C2, C3 and C4) and biodiversity
indexes values from both datasets (NGS and T-RFLP). A
Canonical Correspondence Analysis (CCA) was also performed,
including the fermentation parameters as constraining variables in
the model. CCA is known to be a useful tool to explain the
structure of a multivariate data table by using environmental
variables, assuming a unimodal distribution of “species” (OTUs or
T-RFs) [34]. Thus, the ordination diagram represents not only a
pattern of community distribution, but also the main features of
the distribution of species along the environmental variables.

In an attempt to normalize the data, a square root transforma-
tion was used before analyzing the effect of the colonization of
rumen protozoa on each individual OTU by ANOVA. To
minimize the false discovery rate when pairwise comparison were
made, P values were adjusted using the method of Benjamini and
Hochberg [35] where significance was set at Q<<0.1. Furthermore,
only OTUs with an average abundance of 0.01% or higher were
considered.

Results

Protozoal counts

Counts of total and groups of protozoa are shown in Table 1.
No protozoa were found in any of the animals from P1. No
significant differences were observed in the protozoa concentration
between animals over the studied periods (P>0.05). Protozoal
proportions in P2 consisted of an average of 23% and 77%
Isotricha sp. and Dasytricha sp. respectively. Both Isotricha spp and
Dasytricha sp. numbers decreased when a full protozoal fauna was
established (Table 1, P<<0.05). The protozoal population in P3
consisted of 89.3% subfamily Entodiniinae, 51% subfamily
Diplodiniinae, 2.6% Epidinium sp., 2.4% Daystricha sp. and
0.7% Isotricha sp.

Fermentation parameters

Changes in the fermentation pattern were observed in the three
periods studied (Table 2). Concentration of ammonia increased
when total protozoal fauna was present in the rumen of the sheep
(P<<0.001). A shift in the SCFA production was also observed, with
an increase in the levels of acetic and butyric acids when rumen
was colonized with protozoa (P2 and 3, P<<0.01).

T-RFLP dataset

For the fingerprinting analysis, 811 fragments from 4 different
enzymes were obtained after filtering them together. The T-RFLP
analysis included T-RFs in the range of 56 to 644 bp.

NGS dataset

Three million, seven hundred and three thousand, seven
hundred and forty eight sequences of average length 229 bp were
obtained from the Ion Torrent PGM sequencing. Quality filtering
resulted in 1,104,458 high quality sequences that were clustered
mto 864 unique OTUs with 18361 sequences per sample and
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period after normalisation. Rarefaction curves calculated from
non-normalised data (Figure S1) showed that for each sample the
corresponding curve did not plateau, indicating that complete
sampling of these environments was not achieved. Good’s
coverage is an estimator of sampling completeness and calculates
the probability that a randomly selected amplicon sequence from a
sample has already been sequenced. At the 97% similarity level, all
V3 samplings had more than 99.5% coverage, which means that
over 200 (1/(1—0.995)) extra reads would be needed to detect a
new phylotype.

Diversity

The microbiome diversity within the eight animals between the
three periods is shown in Table 3.

Richness diversity index was lower in the results from T-RFLP
than those obtained from NGS, although this didn’t lead to large
differences in the Shannon-Weiner index (P>0.05). Both richness
abundance and Shannon-Wiener index from T-RFLP and NGS
data were compared by correlation (Figures la and 1b).
Correlation between both datasets showed an R value of 0.836
and 0.781 for richness abundance and Shannon-Wiener index,
respectively. Dendrograms using the combination of Manhattan
distances and UPGMA (unweighted pair group method with
arithmetic mean) of NGS and T-RFLP datasets were also
performed (Figures 2a and 2b). Mantel test was performed
between both similarity matrices, resulting in a correlation of
0.742 (Monte-Carlo test, p=0.001). When exploring the data by
principle component analysis (Figures 3a and 3b), the same pattern
was observed according to the period in both datasets (T-RFLP
and NGS). Principal Components 1 and 2 together accounted for
32.6 and 50.8% of the variance within the data from T-RFLP and
NGS, respectively.

Correlation between Diversity and Fermentation
parameters

Pearson’s product-moment correlations were performed be-
tween fermentation parameters (pH, C2, C3, C4 and NHj3) and
Richness values from both datasets (NGS and T-RFLP, Table 4).
Richness and Shannon index were negatively correlated with the
presence of C3 in both datasets (P<<0.05). None of the rest of the
fermentation parameters showed significant correlation with the
diversity indexes although correlation values showed little differ-
ences between both datasets (Table 4).

Canonical Correspondence Analysis between TRIF’s or OTU’s
and fermentation products is shown in Figures 4a and 4b. A
permutation test (199 permutations) was conducted and the model
found to be highly significant (P =0.005 in both dataset). The two
main axes accounted together for 21.5 and 25% of total variation
in T-RFLP and NGS datasets, respectively. The constraining
variables explained 34.2% and 38.7% of the variability, respec-
tively.

Classification of NGS data

Based on classification by RDPII, differences between the three
periods were observed within the main phyla present (Figure 5,
Table 5). In P1 and 3, Bacteroidetes was the most dominant phyla
(49.7 and 68.5%, respectively), followed by Firmicutes (35.9 and
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17.5%). In P2 Firmicutes was the most dominant phyla (40.2%),
followed by Bacteriodetes (39.3%). When total protozoa were
present, the proportion of Bacteroidetes increased significantly.
(P<<0.001, Table 5).

Significant OTUs and Genera analysis

Eighteen OTUs with an average abundance of 0.1% or higher
presented a significant variation in their abundances across the
three experimental periods (Table S2, Corrected p-value<0.1).
Among them, only three were classified to genus level (all the three
belonged to Prevotella sp.) and 10 out from 18 belonged to the
order Bacteroidales. Three of them were considered unclassified
up to phyla level.

Ten out of forty two classified bacterial genera were impacted
by colonization of the rumen by protozoa (Benjamini and
Hochberg Q<0.1, Figure 6). Four of them (Ruminobacter,
Prevotella, Oscillibacter and Streptococcus) were present at an
average abundance higher than 0.5%.

Discussion

High-throughput sequencing has allowed biologists to explore
new ways to study sequence-based profiling and metagenomics in
complex microbial communities, including those associated with
human health and disease [36,37]. With next generation
sequencing platforms rapidly evolving, sequencing could be a
regular reliable and price competitive alternative to classic
fingerprinting methods. The only limitation of most NGS
platforms is the short read lengths of approximately 250-400 bp
that provide poor phylogenetic information as compared to full
length 16S rRNA gene sequences (~1500 bp). Although some
platforms already include long lengths [38]. The cost of next
generation sequencing has dropped dramatically over the last few
years, and is becoming an affordable alternative to the more
classical techniques to study microbial diversity [38,39]. The use of
barcodes to multiplex samples in NGS can reduce the cost per
sample because most of the cost derived from NGS is associated to
the price of the chip and the sequencing kits. In our own lab, the
cost of processing 24 samples by Ion Torrent using one 316 chip
was comparable at around {600, to characterisation by T-RFLP
using four enzymes (circa £,270). T-RFLP has been considered the
default method to study microbial diversity in complex environ-
ments [40,41], here we show NGS gives very similar and
comparable information. However, NGS also allowed us to
classify the bacterial populations that are affected by the presence
of rumen protozoa in more depth than the data obtained with T-
RFLP and target potential bacterial species responsible for
metabolic shifts. Several web based tools such as phylogenetic
assignment tool (PAT), TRUFFLER, APLAUS are available to
determine microbial community composition by comparison with
T-RFs predicted from an in silico analysis of TRNA database
sequences [42,43,44] but the identification is still laborious and less
accurate than the data obtained by NGS. The growing interest in
NGS has attracted many experts from different disciplines and
revolutionized the field of microbial ecology, promoting multiple
research lines. This “revolution” has promoted the creation of
numerous bioinformatic tools, that are available to process and
analyse NGS data, as has been reviewed recently [39,45].
Continuing improvements in data analysis algorithms applied to
the NGS data has decreased the error rate of sequencing data
bases that makes the technique more reliable than few years ago
[46].

Comparison between both datasets showed a high correlation in
the dendrograms (R =0.742), richness abundance (R =0.836) and
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Figure 4. CCA plot of rumen bacterial communities analysed by T-RFLP(a) or NGS(b) and considering fermentation parameters.
Canonical correspondence analysis of NGS (OTU matrix from lon Torrent data) or T-RFLP (peaks in the amplicons of 16S rRNA gene digested using
Hhal, Haelll, Mspl and Rsal. The formula used in the analysis was the following y (either NGS or T-RFLP data) = pH+Ammonia (NH3)+Acetate (C2)+
Propionate (C3)+Butyrate (C4). Genomic DNA was obtained from rumen samples from 8 animals either protozoa-free (P1, black crosses), faunated
with holotrich protozoa (P2, black triangles) o with a complete protozoal population (P3, black squares). Blue vectors indicate the effect of the
constraining variables (pH, Ammonia (NH3), Acetate (C2), Propionate (C3) and Butyrate (C4).

doi:10.1371/journal.pone.0101435.g004

Shannon-Wiener index (R=0.781). PCA from both datasets
(Figures 3a and 3b) showed a similar grouping effect by period that
was highly significant (MonteCarlo test, P<<0.001 in both datasets).
Several diversity indices can be calculated to more objectively
assess the effect of diet or location on the dominance among
bacterial phylotypes [47]. The Shannon diversity index [48],
which uses both the number and relative intensities of bands, has
been calculated in several studies to test the effect of factors such as
diet, sample processing methodology and defaunation on the
rumen bacterial and archaeal community structure [49,50,51].
The Shannon diversity index reflects the diversity of abundant
sequence types. In our study, Shannon indexes were similar
between the two studied datasets (Table 3). In the first period a low
value in the Shannon index was observed in the NGS dataset that
could be matched to a low diversity in animals 2 and 7. This effect
was also observed in the species richness in these individuals, and
also in both dendrogram and PCA analysis (Figures 2a, 2b, 3a and
3b). In general, higher variability in the bacterial community was
observed between individuals in P1 compared with P2 and P3
(standard deviation in Shannon index of NGS data of 0.88, 0.23
and 0.32 in P1, P2 and P3 respectively). These results are in
accordance with the higher variability observed in fauna-free
animals in the three most abundant phyla classified (Fibrobacteres,
Firmicutes and Bacteroidetes) and suggest that the presence of
ciliate protozoa in the rumen may have a stabilizing effect on the
bacterial communities [52]. The data analysed in this study
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allowed us to investigate the transition of the rumen ecosystem
when the progressive colonization of rumen protozoa was induced.
This process is of great biological interest [53], because the
presence of rumen protozoa has been associated directly or
indirectly with metabolic processes, like the recycling of microbial
N in the rumen, the production of methane, as well as changes in
the short chain fatty acids profile produced by the rumen
microbiome [54,55,56,57].

Ten bacterial genera where significantly impacted by the
presence of rumen protozoa (Figure 6). Among them, the increase
of Bacteroides, Prevotella and Ruminobacter in the P3 indicates an
increase on the proteolytic activity within the rumen when
entodiniomorphid protozoa were present [58]. Holotrich protozoa
contribute in a major way to the fermentation of soluble
carbohydrates [59], but their role in proteolysis is more limited.
In our study, presence of only holotrich protozoa did not alter the
relative abundance of these N utilizing bacteria. The decrease on
the relative abundance of Streplococcus may be related to the
ability of rumen protozoa to prevent acidosis by engulfment of
starch granules, promoting a more stable pH [60].

In this experiment we have shown that eighteen of the most
abundant OTUs showed significant differences during successive
colonization of the rumen by protozoa (Table S2). However
almost 50% of them could not be classified beyond the level of
class and three could not be identified at even phyla level. If the
full advantages of NGS are to realised there is clearly a need for
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Figure 5. Phyla-level classification of OTUs from NGS at 97%. Phyla-level classification of OTUs from NGS at 97%. Genomic DNA was obtained
from rumen samples from 8 animals (A1 to A8) either protozoa-free (P1), faunated with holotrich protozoa (P2) o with a complete protozoal

population (P3).
doi:10.1371/journal.pone.0101435.g005
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projects such as the Hungate 1000 (www.hungatel000.org.nz)
which aim to characterise and sequence the genomes of the great
many bacteria in the rumen that to date remain uncharacterised
and indeed in many cases uncultured [61].

Conclusions

Ton Torrent PGM is a reliable and cost-effective tool to study
microbial diversity in complex ecosystems which compared well in
terms of derived information to T-RFLP, especially when a high
number of samples are to be studied. Furthermore, the additional
information provided by the NGS data in terms of microbial
classification that could be very important in studies focused in

Table 5. Relative abundance (%) of the main phyla identified in rumen fluid from protozoa-free (P1), faunated with holotrich
protozoa (P2) o with a complete protozoal population (P3) animals.

Phyla P1 P2 P3 SED P
Actinobacteria 1152 0.09° 0.24° 0.304 0.008
Bacteroidetes 49.7° 39.3¢ 68.5% 3.74 <.001
Elusimicrobia 0.00 0.01 0.00 0.006 0.283
Fibrobacteres 214 3 292 0.995 0.644
Firmicutes 35.9° 40.2° 17.5° 38 <.001
Proteobacteria 0.51° 0.6° 3.23° 0.949 0.019
Spirochaetes 0.49% 0.44° 0.16° 0.109 0.02
SR1 0.62 0.64 0.28 0216 0.208
Synergistetes 0.00 0.01 0.00 0.002 0.06
Tenericutes 0.30 0.06 0.12 0.109 0.095
™7 0.61 0.51 0.26 0.157 0.106
Verrucomicrobia 0.00 0.04 0.04 0.033 0.451
Superscripts show significant differences between means (P<<0.05).

doi:10.1371/journal.pone.0101435.t005

discovering key species affected by dietary or environmental shifts
[45,62]. However, our findings demonstrated that traditional
fingerprinting methods, such as T-RFLP, give similar results to
NGS and they can therefore provide still valuable information
when NGS is not available or a non-targeted microbial analysis is
required. Successive colonisation of the rumen by protozoa
influenced the bacterial population present with increases in the
relative abundances of Prevotella, Bacteroides and Ruminobacter.
A more homogeneous bacterial community is observed when
protozoa are present in the rumen, suggesting that rumen
protozoa might help stabilise the rumen fermentation by reducing
the variability in bacteria present among individual animals.
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Figure 6. Bacterial genera significantly impacted by rumen protozoa. Boxplots of bacterial genera found to shift in their relative abundance
(as percentage) when progressive colonization of rumen protozoa is applied. Samples come from rumen fluid from protozoa-free (P1), faunated with
holotrich protozoa (P2) o with a complete protozoal population (P3) animals.

doi:10.1371/journal.pone.0101435.9006
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Supporting Information

Figure S1 Rarefaction curves. Genomic DNA was ob-
tained from rumen samples from 8 animals either
protozoa-free (P1l), faunated with holotrich protozoa
(P2) o with a complete protozoal population (P3).

(TIF)

Table S1 Barcode primers used for multiplexed Ion
Torrent sequencing.

(DOCX)

Table 82 Classification of OTUs (18 of 864) found to
shift in their relative abundance when progressive
colonization of rumen protozoa is applied. Samples come
from rumen fluid from protozoa-free (P1), faunated with holotrich
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