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3D Facial Skin Texture Analysis Using Geometric
Descriptors

Abstract—We compare skin texture classification using various
2D texture descriptors and on the other hand, their extensions
to 3D surface orientation data. We perform a multi-resolution
analysis on both the 2D and 3D data. Rotation-Invariant Local
Binary Patterns, Multiple Orientations Gabor Filters and Center-
Symetric Autocorrelation are used to extract 2D texture features
from high resolution facial skin albedo patches. For extracting
texture feature directly from the corresponding normal map
patches, we propose extensions of these texture measures in
both the slant/tilt and tangent spaces. We compare the results of
classifying facial wrinkles and pores using the 2D-based and 3D-
based texture features. We use the 3DRFE dataset which consists
of high resolution 3D facial scans along with the corresponding
photometric and albedo images. We notice a net improvement on
both classifying wrinkle and pore using the 3D orientation based
features over the 2D ones.

I. INTRODUCTION

Texture analysis is an important task in automated image
processing and computer vision. It has been widely used
in applications such as medical image processing, content-
based image retrieval and face identification among others.
However, it has been seen mostly as a 2D problem. In current
studies, texture feature are generally extracted from 2D im-
ages, exploiting information such as color, brightness, contour
etc. Although there is no unanimously accepted definition
of surface texture, it is obvious that humans use relief and
occlusion related information in the process of perceiving and
discriminating texture. Psychological studies have supported
that assertion. He and Nakayama, by manipulating binocular
disparities of texture elements, conclude that the visual system
cannot ignore information regarding surface layout in texture
discrimination [9]. Ho and Maloney show that images formed
under fixed lighting and viewing conditions convey only partial
texture roughness information to human observers [10], [11].

In the Computer Science community, some studies have
been interested in showing the relevancy of considering surface
texture processing as a 3D problem. Sejong and Yoonsuck
prove that texture segmentation is more effective and accurate
in a 3-dimensional configuration [13]. In Computer Vision,
several surface texture processing related works consider 3D
informations. Smith et al propose a method for computing a
co-occurrence matrix for normal maps [17]. Sandbach et al
compute Local Binary Patterns on depth maps and APDIs
(Azimuthal Projection Distance Image) of normal maps to
classify 3D facial action units [16]. Peyre and Mallat propose
a bandelets approach for compressing and characterizing 3D
surface geometry.

The issue has also raised interest in the Skin Bioengineer-
ing community too. A number of studies have used 3D surface
texture to analyse skin disruption. Warr et al demonstrate

the considerable value added by augmenting the classical 2D
ABCD features with 3D pattern analysis in classifying benign
and malignant Melanoma [5]. Koh et al use a 3D imaging
system to quantify skin surface roughness and acne volumes.
Warr et al use first and second order differential forms of skin
surface relief to describe skin lesion disruption.

This growing interest in 3D surface texture characterisation
is also motivated by the increasing availability of high resolu-
tion 3D datasets due to the ceaseless advances in 3D surface
capture and recovery techniques. Today, high resolution 3D
surface reconstructions can be achieved with great precision.
Multi-view stereo systems can reconstruct surface geometry
with an accuracy of about a tenth of a millimetre [7] while
laser-based systems can achieve a precision of up to a thou-
sandth of a millimetre [4]. Structured Light (also known as
Active Stereo) systems tends to outperform multi-view systems
in precision and speed whereas Photometric Stereo techniques
can generate surface orientations with a resolution that is only
limited by the resolution of the sensor used to capture the
images. Recent studies have combined the last two techniques
to produce highly detailed 3D human facial datasets that holds
information about to the skin fine structure (down to the level
of the pores) [12], [18].

In this paper, we propose a comparative study of skin
texture analysis using, on one hand various rotation-invariant
2-dimensional texture descriptors and on the other hand, their
extensions to 3-dimensional surface texture. A multi-resolution
scheme is adopted. Wrinkles and pores presence are classified
on high resolution 3D facial scans. We also compare the 3D
texture descriptors we propose to some others in the literature.

In the first section of this paper, we expose the motivations
and the contributions of this work. In the second, we introduce
the 2-dimensional texture descriptors we will experience with.
In the third, we introduce our proposed extensions of these
descriptors to 3-dimensional texture. And in the last section,
we present and discuss our experimental results.

II. MOTIVATION AND CONTRIBUTIONS

A. Motivation

A 2D image is a snapshot of a 3D scene with a set of
well-defined conditions, including the lighting environment,
the relative position of the camera and the objects forming the
scene etc. These conditions together determine what is seen in
the image and what is not. Thus a 2D image will not convey
all the information present in the scene it represents and this
is valid for the textures present in the scene. It is clear that
some texture patterns can be totally captured and rendered in
a 2D image without the above conditions considerably altering
their appearance: a zebra skin macro-texture won’t change



considerably on images with changes of lighting condition and
viewpoint as long as there is enough ambient lighting. But,
when it comes to textures with surface roughness as an areal
image of a mountainous region or a bumpy unpolished wooden
fabric, these imaging conditions can considerably affect their
appearance in an image. Ho and Maloney studied the effects
that lighting condition and view point can have on human
perception of texture [10], [11].

In this, paper we are interested in skin texture and vari-
ations in appearance due to skin conditions. Despite the
apparent global smoothness of its macro-structure, skin texture
can be relatively rough in the meso and micro scales. Certain
skin conditions such as wrinkles, lines, large pores, moles can
even cause clearly visible surface irregularities on the skin.
Therefore, skin texture does not escape from the issues stated
above. We show in figure 1 how the apparent texture of a
wrinkly skin region can change with lighting condition.

(a) (b)

(c) (d)

Fig. 1. Change of the apparent texture under different illumination conditions
on a skin patch normal map. (a) light vector angle: 0 (b) light vector angle:
π
4

(c) light vector angle: π
3

(d) light vector angle: π
2.2

It is clear that any 2D texture descriptor would give a
different response to each of the images on figure 1 while
they all represent the same skin patch. In addition, even if we
assume that an image has been captured in optimal position and
lighting conditions for best texture and roughness visibility,
its 3D representation with the same resolution (which can
be obtained with photometric stereo) will always hold more
information about the surface texture. This is inherent to the
process of recovering a 3D surface which involves change of
lighting and/or viewing conditions. To illustrate this, we show
in figure 2 the difference between applying a 2D Gabor filter to
a skin patch diffuse and specular albedo (the latter being the 2D
representation with the most surface detail) and our extension
of Gabor filtering to 3D surface on the corresponding normal
map (with same resolution as the albedos).

Diffuse image Gabor response

Specular image Gabor response

Normal map Gabor response

Fig. 2. Gabor responses from different representation of a wrinkly skin patch
surface (The Gabor filter is set with an orientation of π

2
, a standard deviation

of 1.40 and a wavelength of 3. The images are 145× 58)

These observations lead us to the conclusion that if it
is technically possible to obtain 3D surface data with the
same spatial resolutions as 2D images, we only can gain in
analysing texture directly from the 3-dimensional data rather
than from the 2-dimensional images, which are just partial
representations of actual scene contents.

B. Contributions

We propose extended versions of Gabor filtering, Local Bi-
nary Patterns and Center-Symmetric Autocorrelation to surface
orientation Data. We compare results of analysing skin texture
using these proposed extensions on normal maps and their
2D counterpart on the corresponding albedo images. We also
compare as well our 3D surface textures descriptors to some
others recently proposed in the literature and show improved
performance in classifying facial wrinkle and pore presence.

III. 2D TEXTURE DESCRIPTORS

We use multi-orientation and rotation invariant descriptors
as most skin condition textures do not have a predominant
orientation: a wrinkle is still a wrinkle, no matter if it appears
vertical, oblique or horizontal on the face. We describe in
this section three 2D texture descriptors which are Gabor
Filter, Rotation-Invariant Local Binary Patterns and Centre-
Symmetric Autocorrelation Function.

A. Gabor Filtering

Gabor filtering is widely used in texture segmentation [6],
[1]. It has the advantage to approximate the two-dimensional
receptive-field profiles of simple cells in the mammalian visual
cortex [3]. The real part of a 2-dimensional Gabor Filter is
represented by the function:

f(x, y, σ, θ, λ, γ, φ) = exp

(
−x
′2 + γ2y′2

2σ2

)
cos

(
2π
x′

λ
+ φ

)
Which is a sinusoid enveloped in a Gaussian where x′ =

x cos θ + ysinθ and y′ = y cos θ − x sin θ. σ, θ, λ, γ and



φ are respectively the Gaussian standard deviation, the filter
orientation, the bandwidth, the aspect-ratio between the two
axes and the phase.

In order to generate multi-orientation texture descriptors, a
bank of Gabor filters has to be applied with different values
of orientations. It is theoretically not possible to generate
perfectly rotation-invariant descriptors, but more the bank of
filters covers varied orientations, more the resulting descriptors
are rotation robust. Figure 3 shows the Gabor responses with
different orientations on a wrinkly skin patch.

Fig. 3. Gabor responses for different orientations(respectively 0, π
3

and π
2

) of
a wrinkly skin patch surface (The Gabor filter is set with a standard deviation
of 1.40 and a wavelength of 3. The images are 145× 58)

B. Rotation-Invariant Local Binary Patterns

Local Binary Patterns are proposed by Ojala et al [14] as
an extension of Texture Spectrum first introduced by Wang
and He in the early nineties [19]. They are one of the most
used texture measure method in the literature. They consist in
thresholding, at any position, the neighbourhood to the central
pixel and by multiplying the results by the corresponding
binomial weight (Fig. 4).
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Fig. 4. Local Binary Patterns chart for an 8-pixels neighbourhood

In its original formulation, the Local Binary Patterns are
not rotation-invariant. Ojala et al proposed a method of getting
rotation-invariant Local Binary Patterns [15]. It consists in pre-
computing a rotation-free dictionary of patterns, performing
a circular shifting on each neighbourhood thresholding result
till it matches one in the precomputed dictionary and finally
assigning the corresponding index as the LBP value (Fig. 5).
Figure 6 shows an example of Local Binary Patterns and
Rotation-invariant Local Binary Patterns of a skin patch with
acne.
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Fig. 5. Rotation-invariant Local Binary Patterns chart for an 8-pixels
neighbourhood

Albedo LBP Rot-Inv. LBP

Fig. 6. LBP and Rotation-invariant LBP of an acne skin patch (8-pixel
neighbourhood and radius 2)

C. Center-Symmetric Autocorrelation Function

Harwood et al proposed a set of Center-symmetric Auto-
correlation related texture measures [8]. These measures in-
clude a linear and ranked center-symmetric auto-correlation
(SAC and SRAC) and their corresponding covariance (SCOV).
Because SCOV is not grey-level normalized, it holds more
texture information than the SAC and SRAC. It is proven to
outperform both SAC and SRAC in classifying 2-dimensional
texture[8]. So we chose to experiment with SCOV in this work.
Given a 8-pixels neighbourhood, the SCOV is given by the
function in Fig. 7. In Fig. 8 we give an example of SCOV
image of an acne skin patch.

x1
x2

x3

x4

y1

y2

y3

y4

Fig. 7. Center-symmetric Covariance Function

Albedo SCOV

Fig. 8. SCOV image of an acne skin patch (radius 2)

IV. ANALYSING TEXTURE USING 3-DIMENSIONAL
SURFACE ORIENTATION

We extend the three 2-dimensional texture measures pre-
sented in section III to analyse 3-dimensional orientation tex-
ture from dense normal maps. As a normal map is a classical
RGB image where the red, green and blue channels encode
respectively the X , Y and Z components of the normals, one



may consider applying directly 2-dimensional texture analysis
algorithms to the normal maps. This would be theoretically
inconsistent as unlike image pixels, normals do not satisfy
the linearity condition required in the convolutions involved
(a linear combination of two normals does not result in a unit-
vector). Instead of calculating the texture measures introduced
in section III directly on the normal maps, we propose deriving
these from either the slant-tilt space or the tangent space.

a) Slant-Tilt space: The normal’s slant and tilt are
extracted at each position (Fig. 9). This results in a map where
at each position we have two values corresponding to the
normal’s elevation and azimuth. For normalization sake, we
keep the tangent values so the slant-tilt map is normalized in
[−1, 1]. Considering n = (nx, ny, nz) denoting a normal, the
slant and tilt tangent values are obtained with:

tanσ =
x2 + y2

z
, tan τ =

y

x

Fig. 9. A normal’s Slant(σ) and Tilt(τ )

b) Tangent space: In this approach we consider the
normals as elements of a Riemannian manifold and unfold
these about the local means using a logarithm mapping (Fig.
10). This results in a tangent map whose elements are 2-
dimensional coordinates and are obtained with:

logµθ0,τ0
(nθ,τ ) =

{
k cos θ sin(τ − τ0)
k(cos θ0 sin τ − sin θ0 cos θ cos(τ − τ0))

With θ = π
2 − σ. θ0 and τ0 are the spherical coordinates

of the local normal mean µ.

At each neighbourhood, the local normal mean is the one
that minimises the mean of the geodesic distances to all the
other normals in the same neighbourhood.

O

μ
TμP

Logμ(N) 

N

Fig. 10. Projection of a normal onto the local tangent plan

For visualisation purpose only, we compute single channel
slant/tilt map and tangent map (figures 11 and 12 ). The pixel
values are obtained with (for both the slant/tilt map and the
tangent map):

I(i, j) = arctan 2(y′, x′)
√
x′2 + y2

(a) (b)

(c) (d)

Fig. 11. Wrinkles patch - (a) Albedo(diffuse + specular), (b) Normal Map,
(c) Slant/Tilt Map and (d) Tangent Map

(a) (b)

(c) (d)

Fig. 12. Pores patch - (a) Albedo(diffuse + specular), (b) Normal Map, (c)
Slant/Tilt Map and (d) Tangent Map

c) Analysis: We adopt a multi-scale scheme where at
each level, the texture filter (one of those described in section
III) is applied on either the slant-tilt map or the tangent
map. This results in two responses, one for each channel. We
normalize all the responses into the interval [0, 1]. Assuming
Rc,l denotes the response on the channel c at the level l, the
normalization is performed with:

Rc,lnormalized =
Rc,l −minRc,l

maxRc,l −minRc,l

The histograms of the two normalized responses are com-
puted and concatenated to form the texture descriptor at level



l. The same process is repeated at the subsequent level with a
down-sampled version of the current normal map.

As we already illustrate, a convolution can not be done
directly on the normals (because of these not being linear). So
the down-sampling is done in the tangent plan with a Gaussian
low pass, followed by projecting back the result in the original
3-dimensional space using the manifold exponential chart.

V. EXPERIMENTS AND RESULTS

We have run a number of experiments to compare the
responses of applying the different texture measures in 2D
and 3D configurations and assess their effects on classifying
facial skin conditions from high resolution albedo images
and the corresponding normal maps. These experiments are
preliminary as the dataset used (the ICT-3DRFE [18]) does
not contain extensive skin condition variation. We are in the
process of collecting our own skin condition dataset using
the same class of 3D capture device used on the ICT-3DRFE
dataset collection (a Lightstage [12]).

A. Ground Truth

We use the ICT-3DRFE dataset captured with a Lightstage.
A Lightstage is a 3D capture device that combines photometric
stereo techniques and multi-view (or structured light) tech-
niques to produce high quality geometry and reflectance data.
There are many advantages of using a Lightstage to capture
facial skin condition dataset. First, the Lightstage is able to
produce high quality mesh geometry and high resolution (down
to the level of the pores) reflectance data (as normal maps).
This not only provides us with adequate data to analyse fine
skin texture, but also allows us to produce photo-realistic
rendering of the skin, which is critical to the rating of the
ground truth. Figure 13 gives an example of skin rendering
we can achieve using rendering techniques described in Cook
and Torrance 1982 [2].

Fig. 13. Our 3D Rendering of a face sample ( zooming-in shows fine skin
detail )

The second advantage is that the reflectance data produced
by the Lightstage is given in different color channels. The
provided normal maps are separated in to three diffuse (red,
green and blue) and one specular channel. The diffuse normal
maps’ level of detail increases with the frequency. This means
blue normal maps are more detailed than the green ones, which
are in turn more detailed than the red ones. The specular
normal map gives the most detailed structure of the skin
surface. In this work we use the specular normal maps for
3-dimensional orientation data and an addition of the diffuse
and specular albedo as 2-dimensional data.

Even though the ICT-3DRFE does not contain that much
skin condition and ageing variation, we have managed to
manually extract and rate in a scale of 4 levels (1 meaning
“total absence” and 4 meaning “extremely visible”) 31 patches
visually judged wrinkly, 21 patches showing large pores and
30 smooth patches (for negative samples). Every patch is
then divided in a number of fixed-size blocks (with 20%
overlap). These blocks are used as individual samples for
feature extraction.

We would like to consider a wider range of skin conditions,
e.g. acne, moles, melanoma etc. However there is not enough
presence of these conditions within the current dataset. We
are taking this into consideration in the new dataset we are
collecting.

B. Feature Extraction

For each sample, we build a 3-level multi-scale feature
pyramid. The texture measures described in III are used on the
albedo samples and their extensions described in IV are used
on the normal map samples. We experiment a 3×3 and a 5×5
neighbourhoods for each of these texture measures. The feature
pyramid size depends on the texture measure used and their
parameter settings. We use a Support Vector Machine attribute
evaluation to assign a rank to each of the features. In this work
we chose to keep only the 256 best features regardless the
texture measure used. The generated feature-vectors are used
to train and test a 4 classes Multilayer Perceptron classifier.

C. Results and Comments

We summarize in tables I and II the results of classifying
facial wrinkle and pore presence using 2D texture measures
on skin patches albedo and their extensions to 3D surface
orientation on the corresponding normal maps. We have imple-
mented two other methods for texture analysis on normal maps
recently proposed in the literature ([17], [16]) and compare
these to our proposed extensions. We use a Leave-One-Out
cross-validation strategy.

TABLE I. RESULTS CLASSIFYING WRINKLES

Recall Precision F-Measure
3× 3 5× 5 3× 3 5× 5 3× 3 5× 5

SAC
Albedo 0.56 0.58 0.50 0.55 0.52 0.56

Slant-Tilt 0.80 0.82 0.82 0.82 0.81 0.82
Tangent 0.78 0.80 0.81 0.82 0.79 0.81

RLBP
Albedo 0.54 0.56 0.52 0.51 0.53 0.53

Slant-Tilt 0.78 0.80 0.78 0.79 0.78 0.79
Tangent 0.78 0.81 0.76 0.77 0.77 0.78

Gabor
Albedo 0.59 0.62 0.61 0.62 0.60 0.62

Slant-Tilt 0.83 0.87 0.84 0.0.86 0.83 0.86
Tangent 0.85 0.90 0.86 0.89 0.85 0.89

Sandbach2012 (LABPs) 0.76 0.79 0.74 0.77 0.75 0.78
Smith2011 0.69 0.70 0.69



TABLE II. RESULTS CLASSIFYING PORES

Recall Precision F-Measure
3× 3 5× 5 3× 3 5× 5 3× 3 5× 5

SAC
Albedo 0.61 0.62 0.58 0.60 0.59 0.61

Slant-Tilt 0.82 0.84 0.82 0.84 0.82 0.84
Tangent 0.81 0.82 0.83 0.82 0.82 0.82

RLBP
Albedo 0.63 0.65 0.61 0.66 0.62 0.65

Slant-Tilt 0.86 0.89 0.84 0.88 0.85 0.88
Tangent 0.85 0.88 0.85 0.87 0.85 0.87

Gabor
Albedo 0.51 0.51 0.50 0.49 0.50 0.50

Slant-Tilt 0.79 0.82 0.77 0.80 0.78 0.81
Tangent 0.77 0.82 0.79 0.83 0.78 0.82

Sandbach2012 (LABPs) 0.78 0.80 0.77 0.79 0.77 0.79
Smith2011 0.70 0.69 0.69

All three texture characterization methods used in this work
show a clear improvement when used in a 3D configuration
(slant/tilt or tangent space) on classifying both wrinkle and
pore presence. The improvement is though less important in
pore classification, which could be explained by the fact that
pores are generally finer than wrinkles, so it is harder to get
an accurate capture of their surface topology in a normal map.

The Gabor descriptors tend to give better results on clas-
sifying wrinkles whereas on classifying pores the Rotation-
Invariant Local Binary Patterns appear to achieve better results.

Applying the texture measures on either the tangent or
the slant/tilt space outperforms both the normal co-occurrence
matrix proposed by Smith et al[17] and the LABPs(Local
Azimuthal Binary Patterns) proposed by Sandbach2012 [16].
This is inherent of the lossy property of these two methods.
In Smith’s work a co-occurrence matrix is computed by
sampling and indexing the slant/tilt range of values to generate
a dictionary of slant/tilt - grey level pairs. Depending on the
sampling factor, a number of normals with different orientation
can be mapped to the same grey level. In Sandbach’s work
the projection of the normal map on the tangent map is used
to generate a new image called Azimuthal Projection Distance
Image(APDI). The APDIs pixels are obtained with the norm of
the tangent coordinates which will be the same for all normals
having the same slant.

VI. CONCLUSION

In this paper, we have investigated how an extra dimension
could add value over classical 2D texture analysis methods,
through an application to facial skin texture analysis. We have
proposed small extensions of common 2D texture measures to
3D surface orientation data and conducted a comparative study
between these. The results show considerable improvements on
classifying facial wrinkle and pore presence when extracting
the texture feature directly from the normal maps rather than
from the corresponding albedo images. However it is clear that
this improvement is tightly related to the nature of the texture
analysed. If the texture is characterised by the surface rough-
ness more than color or brightness information, geometric-
based features would obviously be the best description choice.
But if the surface intersect color variation is more determinant,
radiometric information would describe the texture better than
geometrical ones.
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