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The motion of a foam lamella traversing an idealised bi-conical pore with a
rounded central region

D.J. Ferguson, S.J. Cox
Institute of Mathematics and Physics, Aberystwyth University, Aberystwyth SY23 3BZ, UK

Abstract

The non-smooth motion of a single foam lamella traversingdaalised rock pore can lead to a significant pressure
drop. We vary two parameters defining the shape of a bicopaa in two dimensions, and use Surface Evolver sim-
ulations and geometric arguments to demarcate the fowardift types of possible motion. We predict the transitions
between different-shaped pores in which the lamella makgsenetric or an asymmetric jump, an asymmetric crawl,
or undergoes smooth motion. We give the time-averagedymesgsop as a function of pore shape.

1. Introduction

Foam is widely used in the oil industry for enhanced oil rergv(EOR) and as a proppant-carrying fluid for
hydraulic fracturing. Pumping a gas into an oil reservoidigplace the oil into the production wellbore suffers from
two significant problems: gravity override, in which thedetense gas simply rides over the oil in the reservoir, and
channelling, where the gas simply chooses the easiest pathy@asses the oil trapped in less permeable regions. The
use of a foam instead of a gas offers the possibility to cotitieomobility of the injected fluids, and thus to improve
the efficiency of the sweep, as first noted over fifty years a¢o [

There have been several approaches to investigating tltavibel and particularly the flow, of foams in porous
media. One involves the controlled injection of gas andasaint into sandstone cores, beadpacks and sandpacks,
and measuring quantities such as the effluent bubble se@réssure gradient, the fractional flows of gas and liquid,
and the displacement of residual fluids; for example Begttia. [2] injected gas and surfactant into a heterogeneous
porous medium consisting of a sandstone core surroundednuly Jhe difference in permeability between the sand
and the sandstone was 67 to 1, and the experiment was peddmiie with and without cross-flow between the two
regions. With cross-flow, the foam flow rate was equalizeddthlvegions, in spite of the differing permeabilities,
so that an effective expulsive foam front moved through thiire block. Without cross-flow, it was observed that
flow rates were higher in the low-permeability sandstonéoreglt is this behaviour which holds the key to a foam’s
usefulness as a drive fluid in EOR.

Measurements of effluent bubble sizes [3] have demonstth&tdbubble size is about as large or larger than the
pore bodies in the medium, and that even pre-generated fadnitshtexture altered by the porous medium. Hence
the accepted view is that a foam flows through a porous medaimteain of bubbles, separated by foam lamellae
which span the pores. The bubble trains take winding pattvedes regions of trapped gas and rock grains, as shown
schematically in fig. 1(a).

This suggests a different approach, namely, to investigatats at the scale of the pores, and to determine the
motion of individual bubbles or lamellae. A natural way toaeba porous structure is as a bundle of narrow capillaries.
An investigation of flow in uniform smooth capillaries [5]adtified foam texture (i.e. bubble size and its distribution
as the most important factor in determining the effectivenfioviscosity, both for bulk and confined foams. Studying
the flow of single lamellae in straight tubes allows an exgion of the effects of dissipation, particularly those due
to the motion of Plateau borders in contact with the wallhef¢hannels [6].

Rock pores are rarely straight, with uniform diameter, heeveRossen [7, 8, 9] considered flow through a more
complicated pore shape, constructing a theory for the minirpressure gradient required to maintain foam flow in
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Figure 1: (a) Bubbles flowing between trapped gas and rodkgia a porous medium. (b) A train of lamellae in an idealisedpemedium.

a bhi-conical pore. In his experiments, the lamella were ébtmjump across the centre of the pore, often forming
strongly curved shapes straddling the middle of the poreyltiag in an additional contribution to the resistancerove
that expected for smooth lamella motion, and therefore hdrigressure drop for pores with a higher ratio of body-
to-throat size. Rossen also evaluated the effects of cawsibitty (which increases the minimum pressure gradient)
and interactions with stationary lamellae trapping gasdja@ent pores (which could reduce it to zero). He showed
that even in two dimensions (2D) the qualitative featurethefthree-dimensional (3D) problem are retained.

Cox et al. [10] simulated the motion of a lamella through the same idedlbi-conical pore, both in 2D and 3D,
using the Surface Evolver program. The results in 2D wergir@ment with Rossen’s earlier analysis, validating the
simulations, and in 3D were used to show that when a lameti@ngoes an asymmetric jump (as described in more
detail below) the time-averaged pressure difference isidggher than expected for smooth lamella motion.

In this work we return to the 2D problem and explore the patanms&pace — the ratio of body-to-throat size and
amount of trapped liquid in the pore — further in the Surfagel#er. We describe our assumptions and the geometry
of the idealised pore if2; in particular, the rounded region of the pore body diffdightly from previous work and
we find that this influences the time-averaged pressured dimpdifferent lamella behaviour found in the simulations
is given in§3, and in§4 we derive analytically the relationships between the ipatars that demarcate the different

behaviour.
2. Methods

2.1. Theidealised problem

Rossen [7, 8, 9] assumed that the train of lamellae passedghra series of bi-conical sections, as illustrated in
fig. 1(b). One section is illustrated in fig. 2 with a single kta shown emerging from the throat.
In simulating the passage of the lamella through this bigapore, the following assumptions are made:

(i) The flow is slow enough that a quasi-static model is appat@, thus viscous drag of the lamella ends on the
pore wall is negligible and the contact angle is constagoat

(i) The gas is incompressible, does not diffuse througHaheellae, and enters the pore at constant flow rate;

(iii) The surface tension of a lamella is constant, thusaeftension gradients are neglected.

We infer therefore that the lamellae obey Plateau’s equilib laws [11], which are a consequence of the fact that
a soap film tries to minimize its surface energy, equivalen¢ o its length. In our 2D case this means that the lamella



Figure 2: The geometry of the idealised bi-conical pore, witingle lamella shown as a thick line.

is an arc of a circle (which includes a straight line, cormesfing to zero pressure difference) which meets the pore
wall at 90°. The assumption of constant flow rate allows us to view eactement in the volume of the “bubble”
behind a lamella as a time step.

The shape of the pore is defined by its lengththe size of the pore throdt;, and the angle at which the pore
opensd, shown in fig. 2. The sharp corners at the top and bottom of déhhe ppody are rounded over a distarzed,
to represent the effects of pre-existing liquid in the pavkich would fill the smallest spaces and form a continuous
wetting film coating the pore walls [3, 4]. We fix = 1 andR; = 0.2, set surface tension= 1 w.l.0.g., and consider
the effect of varying ande on the motion of a lamella and the time-averaged pressuge dro

The upper boundary of the pore is described piecewise:

rtand + Ry forz € [0, (1 —¢€)L],
y(x) =19 y+ 12— (x—L)2 forxe ((1—¢e)L,(1+¢€)L), Q)
—xtanf + 2R, — R, forxz € [(1+¢€)L,2L].

The circular arc describing the central rounded part of thendary has radiusand centre atL, y,.), with

el
_ 2
: sing’ 2)
yr = Ry+ Ltanf — el (tan9—|— ! > 3)
tan 6

The lower boundary is a reflection of the upper boundary irhthrézontalx-axis.

2.2. Surface Evolver simulations

The Surface Evolver [12] is a program for modelling surfaskeaped by surface tension subject to volume and
boundary constraints. Our constraints are the fixed waltb®fore, and the volume (area) enclosed behind (to the
left of) the lamella.



We simulate gas entering the pore from the left and pushia¢atinella to the right. The pressure difference across
the lamella is given by the Young-Laplace equation [11]:

Ap=22, (@)
T

wherer; is the radius of curvature of the lamella. The simulatiomtstaith the lamella at the left side of the pore
enclosing a bubble of volum&1V;,,, whereV,,, is the total volume of the pore. Each quasi-static iterationsists
of increasing the bubble volume by a small amo%@;ﬂftot and calculating the new lamella shape and position; we
then record the volume of the bubble, expressed as a fraatib}y,, thex coordinates of the ends of the lamella (the
points at which the lamella meets the upper and lower wahg) Jength of the lamella, and the pressure difference
across it.

Since we increase the volume behind the bubble by a fixed atyeach step represents a unit of time. The average
pressure difference across a lamella during its motiorutjinahe pore therefore gives a time-averaged pressure drop
Ap®9. This can also be thought of as a population average for thespre drop across a series of lamellae [7].
We take the average over the volume interigal V., 0.9V;,;], noting that provided the lamella has returned to a
symmetric arc far downstream, the contributions to thequnessdrop at low and high bubble volumes cancel out, i.e.

1 Viot 1 0.9Viot
Ap*9 = / dV = / dV. 5
P V;fot 0 P 0-8‘/;50t J0.1Vior P ( )
To survey the parameter space, we incrgaem ;7 to ?1’07’5 (measured in radians) in 30 steps, arfcom 0.02

to 0.98 in 49 steps, running a single simulation for e@th) pair.

3. Results

Varying the two parametetsande produces four different types of behaviour:

Case (i) Smooth traverse

At large ¢, for example, the pore is very rounded and the lamella tsaseloothly across the pore, maintaining
up-down symmetry throughout the motion. The average prestifference across it is zero since the time it spends
with a positive pressure difference, as it moves towardstiay of the pore is balanced by the time spent with a
negative pressure difference after it passes the pore body.

This is evident in the symmetrical pressure-time graph &{(d)), where itis also possible to see the point at which
the lamella enters the rounded region of the pore from thagdan slope.

Case (ii) Symmetric jump

For smallere, for example, the lamella jumps across the body of the poenvitis ends reach the rounded region.
It then assumes a symmetric shape again, but now curvingMaadk. We refer to this as a symmetric jump. Fig.
4 shows the lamella positions, and the pressure-voluméhgsaghown in fig. 3(a). Since the jump occurs after the
bubble volume is half the pore volume, this jump leads to azeno time-averaged pressure drop.

Case (iii) Asymmetric jump

In certain cases, when the ends of the lamella reach the edypakt of the pore it jumps not in a symmetric way
but in an asymmetric way, leading to a lamella that stradifledody of the pore. This usually occurs foslightly
larger than for the symmetric jump (although it can also ered by the introduction of a little asymmetry in the
shape of the pore of lamella). When the trailing end of the lemmeaches the rounded part, the lamella jumps back
to a symmetric position as in the cases above. Fig. 5 illtegrne lamella positions before and after each jump, and
the associated pressure-volume graph is shown in fig. 3(bje Now the pressure drop is zero while the lamella is
straight. An asymmetric jump also leads to a non-zero tieaged pressure drop.
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Figure 5: Lamella positions before and afterasgmmetric jump with§ = % ande = 0.2.

Figure 6: Lamella positions during an asymmetric crawl Witk £ ande = 0.36.
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Case (iv) Asymmetric crawl

A case that we believe we have identified for the first time isrimediate between cases (i) and (iii): when the
lamella reaches the rounded part of the pore, one end crandssathe rounded region first, with the other moving
backwards a little distance. The lamella then continues aenasymmetrically until the trailing end reaches the
rounded part. The trailing end then crawls across the mjiddigl symmetry is restored. The time-averaged pressure
drop is zero in this case.

The sequence of lamella shapes is shown in fig. 6, and theiassbpressure-volume graph is shown in fig.
3(c). We emphasise that each lamella shape is an equilidiiomshape, and that this behaviourrist due to poor
convergence. (In technical terms, we assessed this froeidgleavalues of the Hessian of energy [9, 13].)

4. Demar cating the different types of behaviour

The results of 1470 simulations varyifigande are summarised in fig. 7, in terms of the time-averaged pressu
drop Ap®v9.

For largee the lamella always moves smoothly through the porec Ascreases, the asymmetric crawl appears,
first at high# (narrow, tall, pores), occupying a rather narrow band. &hsranother narrow band in which the
asymmetric jump is observed, and then at smale find the symmetric jump. In the two regions where the jumps
occur, there are distinct bands of higip**9.

We now give analytic expressions for the three curves wharhatcate the different behaviours shown on fig. 7.

4.1. Porevolume

Recall that at any instant in time, that is for any given bebldlume, the lamella minimizes its length and meeting
the pore wall ab0°.

The total volume of the bi-conical pore is
20e2L?  4e*L?

= 4R, L + 2L%tanf + ——— — ——.
Viet = AR:L + tan 0 + G790  sn2d (6)



4.2. Constraints

Not all values off ande give rise to physically-realistic motion because it is polgsthat the lamella does not
remain confined within the pore in the way that we describe eikample, it is possible that when the lamella is in the
asymmetric configuration, one of its ends may emerge fronddlenstream end of the pore, before the lamella jumps
back to the symmetric configuration. This occurs when

€ < Ry sin 26 — cos 26. (7)

This is visible as a short dashed line at the top of the asymerjeimp region on fig. 7, and clearly has little influence
on our results.

It is also possible that as the forward-bulging lamella hesdhe rounded region of the pore body, it may intersect
the downstream part of the pore boundary part-way alongiitgth. However, this does not happen for the values of
0 ande considered here.

4.3. Symmetric to asymmetric jump

The symmetric jump occurs for small valueseofif the bubble volumé/,(x) when the ends of the lamella reach
the rounded part of the pore (i.e. when= (1 — €)L) is less than half the total pore volume, then the lamellaable
to make a symmetric jump because its area would then havedecelager than half the pore volume. The symmetric
jump therefore can only occur up to the point at which

Vio
Vi((1 =)L) = == ®)

This statement is equivalent to Rossen’s criteria [9], thate is a turning point in the graph ofversus V. If the
value ofVj, is lower, then an asymmetric jump occurs.

While z < (1 — ¢)L the radius of curvature of the lamella (cf. fig. 2) is

2
rl(x)z\/(x+ Rt) + (ztanf + Ry)* = T 4 B 9

tan 6 cosf = sin@’

and the bubble volume is

Vila) = ory(ay? — 1 (10)
b\ X)) =0ri (T tane'
At 2 = (1 — €¢) L we therefore have
(1-eL R \> R?
1-€)L) = - 11
V(1 - L) 9( cos 6 sin 0 tan @ (11)

Egs. (6) and (11) together mean that eq. (8) is an implicitesgion fore andd, and is the leftmost of the three curves
plotted on fig. 7; it correctly separates the regions in whightwo jumps are found to occur in the simulations.

4.4. Asymmetric jump to crawl

The asymmetric jump only occursti,((1 — €)L) < 3V, and if the arc length of the lamella, at the point where
its ends meet the beginning of the rounded region of the paligw= (1—¢)L), is greater than the lamella’s (straight
line) length in the asymmetric configuration.

The straight line length is given B/ sin 6 + 2R, cos 6, independent of, while the length of the arc &0r;((1 —
€)L), with ; given by eq. (9). Thus the critical parameters are impjicigttermined by the inequality

1—¢€)L
260 (1=€) + ,Rt > 2Lsin6 + 2R; cos 6. (12)
cos sin 6

This can be rearranged to give an expression for the critedake ofe, in terms off, at which the behaviour changes
from the asymmetric jump to the asymmetric crawl:

R; - sin 26 - R, cos® 0
Ltan6 20 Lo
This is the middle of the three curves plotted on fig. 7, in agrent with the simulation results.

e=1+ (13)
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Figure 8: Variation in the time-averaged pressure drop fedfifa)c or (b) 6.

4.5. Asymmetric crawl to smooth motion

The straight-line lamella configuration is not attainableew the radius of curvature of the rounded part of the pore
wall is greater than the height of the pore (i.e. when thereenitthe arc lies below the-axis). Thus the asymmetric
crawl is replaced by smooth motion of the lamella when

r=y(L), (14)

wherer andy(z) are as given in egs. (1) and (3). Rearranging gives

. [ Ri— /R —de(e—1)
0 = tan 1( e —1) ) (15)

This is the right hand curve plotted in fig. 7, and agrees withresults of the simulation in demarcating the asym-
metrical crawl from the smooth motion of the lamella.

5. Discussion

We have shown how the different behaviours vary with the poigled and the rounding parameteand offered
explanations for why these changes occur. Our main resfity.is7, showing that the time-averaged pressure drop
is only non-zero if the lamella jumps, and that in these césegpressure drop broadly increased ascreases and
e decreases, that is for pores that are from from being straigth contain little residual fluid. Fig. 8 shows how
the average pressure drop varies witfor fixed e andvice versa (along the horizontal and vertical lines marked on
fig. 7). Note how the time-averaged pressure drop falls alteozero around the transition from a symmetric to an
asymmetric jump, but that the largest pressure drops asedaay the symmetric jump.

Rossen [7, 8, 9] studied a pore in which the rounded regiondeéised by a sinusoidal function, rather than a
circular arc (eq. 1). This changes the slope of the pore wathé rounded region, and thus the lamella shape for
given volume. To make comparison with that work, we show in $igour results for this geometry, which should be
compared with fig. 8. Changing the geometry to be sinusoidalahsignificant quantitative effect on the parameter
values for which the jumps occur and hence on the time-aeerpgessure drop. In particular, symmetric jumps now
only occur for very smalk, while asymmetric jumps occur for a larger rangeofThus, in the sinusoidal case, it is
the asymmetric jump that leads to the greatest pressure,daop they are greater in magnitude than in the circular
arc case.

Beyond the quasi-static limit of slow lamella motion, figot at the ends of a lamella, where it meets the pore wall,
will become important [14]. It may even be sufficient to sugg®the jumps entirely, in which case viscous forces will
be the only contribution to the time-averaged pressure.drbpn it will be the length of the pore walls that determine
this quantity, not its shape.

Nguyenet al. [15] performed a similar set of experiments to Rossen usinmpdel glass pore; they made direct
measurements of the pressure at either end, and comparadtthéhe predictions of a model which incorporates
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dynamic effects such as viscous drag and surface tensidiegta due to the stretching and contracting of the lamella.
Their results suggest that the quasi-static model signifigainderestimates the pressure difference, especiatlye
diverging section of the pore.

A model that accounts for the redistribution of surfactanich as the one developed by Kraynik and Hansen
[16], and therefore the variation in surface tension, isunegl. Such variations in surface tension will affect the
instantaneous pressure difference across the film (eq.af@)therefore the time-averaged pressure drop, introguci
further asymmetry into the pressure time graph, in addtiiopossible jumps.

Incorporating these dynamic effects into a Surface Evairaulation requires an understanding of how the foam
structure is distorted from the equilibrium conditionsegivoy Plateau’s rules. A 2D viscous froth model for dry bulk
foam is described in [17], which allows the lamellae to beatied from a circular arc by a viscous drag force. The
distortions due to drag have also been investigated expatatly [20] for single lamellae in straight tubes of varnyin
cross-section.

Other effects which need to be examined are diffusion (wihiak recently been investigated in [18]) and the
interactions with stationary lamellae [19], as well as nmgviamellae which merge during the motion through the
pore, observed experimentally in [15].
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