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The motion of a foam lamella traversing an idealised bi-conical pore with a
rounded central region

D.J. Ferguson, S.J. Cox

Institute of Mathematics and Physics, Aberystwyth University, Aberystwyth SY23 3BZ, UK

Abstract

The non-smooth motion of a single foam lamella traversing anidealised rock pore can lead to a significant pressure
drop. We vary two parameters defining the shape of a biconicalpore in two dimensions, and use Surface Evolver sim-
ulations and geometric arguments to demarcate the four different types of possible motion. We predict the transitions
between different-shaped pores in which the lamella makes asymmetric or an asymmetric jump, an asymmetric crawl,
or undergoes smooth motion. We give the time-averaged pressure drop as a function of pore shape.

1. Introduction

Foam is widely used in the oil industry for enhanced oil recovery (EOR) and as a proppant-carrying fluid for
hydraulic fracturing. Pumping a gas into an oil reservoir todisplace the oil into the production wellbore suffers from
two significant problems: gravity override, in which the less dense gas simply rides over the oil in the reservoir, and
channelling, where the gas simply chooses the easiest path and bypasses the oil trapped in less permeable regions. The
use of a foam instead of a gas offers the possibility to control the mobility of the injected fluids, and thus to improve
the efficiency of the sweep, as first noted over fifty years ago [1].

There have been several approaches to investigating the behaviour, and particularly the flow, of foams in porous
media. One involves the controlled injection of gas and surfactant into sandstone cores, beadpacks and sandpacks,
and measuring quantities such as the effluent bubble size, the pressure gradient, the fractional flows of gas and liquid,
and the displacement of residual fluids; for example Bertinet al. [2] injected gas and surfactant into a heterogeneous
porous medium consisting of a sandstone core surrounded by sand. The difference in permeability between the sand
and the sandstone was 67 to 1, and the experiment was performed both with and without cross-flow between the two
regions. With cross-flow, the foam flow rate was equalized in both regions, in spite of the differing permeabilities,
so that an effective expulsive foam front moved through the entire block. Without cross-flow, it was observed that
flow rates were higher in the low-permeability sandstone region. It is this behaviour which holds the key to a foam’s
usefulness as a drive fluid in EOR.

Measurements of effluent bubble sizes [3] have demonstratedthat bubble size is about as large or larger than the
pore bodies in the medium, and that even pre-generated foam had its texture altered by the porous medium. Hence
the accepted view is that a foam flows through a porous medium as a train of bubbles, separated by foam lamellae
which span the pores. The bubble trains take winding paths between regions of trapped gas and rock grains, as shown
schematically in fig. 1(a).

This suggests a different approach, namely, to investigateevents at the scale of the pores, and to determine the
motion of individual bubbles or lamellae. A natural way to model a porous structure is as a bundle of narrow capillaries.
An investigation of flow in uniform smooth capillaries [5] identified foam texture (i.e. bubble size and its distribution)
as the most important factor in determining the effective foam viscosity, both for bulk and confined foams. Studying
the flow of single lamellae in straight tubes allows an exploration of the effects of dissipation, particularly those due
to the motion of Plateau borders in contact with the walls of the channels [6].

Rock pores are rarely straight, with uniform diameter, however. Rossen [7, 8, 9] considered flow through a more
complicated pore shape, constructing a theory for the minimum pressure gradient required to maintain foam flow in
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(a) (b)

Figure 1: (a) Bubbles flowing between trapped gas and rock grains in a porous medium. (b) A train of lamellae in an idealised porous medium.

a bi-conical pore. In his experiments, the lamella were found to jump across the centre of the pore, often forming
strongly curved shapes straddling the middle of the pore, resulting in an additional contribution to the resistance over
that expected for smooth lamella motion, and therefore a higher pressure drop for pores with a higher ratio of body-
to-throat size. Rossen also evaluated the effects of compressibility (which increases the minimum pressure gradient)
and interactions with stationary lamellae trapping gas in adjacent pores (which could reduce it to zero). He showed
that even in two dimensions (2D) the qualitative features ofthe three-dimensional (3D) problem are retained.

Cox et al. [10] simulated the motion of a lamella through the same idealised bi-conical pore, both in 2D and 3D,
using the Surface Evolver program. The results in 2D were in agreement with Rossen’s earlier analysis, validating the
simulations, and in 3D were used to show that when a lamella undergoes an asymmetric jump (as described in more
detail below) the time-averaged pressure difference is again higher than expected for smooth lamella motion.

In this work we return to the 2D problem and explore the parameter space – the ratio of body-to-throat size and
amount of trapped liquid in the pore – further in the Surface Evolver. We describe our assumptions and the geometry
of the idealised pore in§2; in particular, the rounded region of the pore body differsslightly from previous work and
we find that this influences the time-averaged pressured drop. The different lamella behaviour found in the simulations
is given in§3, and in§4 we derive analytically the relationships between the parameters that demarcate the different
behaviour.

2. Methods

2.1. The idealised problem

Rossen [7, 8, 9] assumed that the train of lamellae passed through a series of bi-conical sections, as illustrated in
fig. 1(b). One section is illustrated in fig. 2 with a single lamella shown emerging from the throat.

In simulating the passage of the lamella through this bi-conical pore, the following assumptions are made:

(i) The flow is slow enough that a quasi-static model is appropriate, thus viscous drag of the lamella ends on the
pore wall is negligible and the contact angle is constant at90◦;

(ii) The gas is incompressible, does not diffuse through thelamellae, and enters the pore at constant flow rate;

(iii) The surface tension of a lamella is constant, thus surface tension gradients are neglected.

We infer therefore that the lamellae obey Plateau’s equilibrium laws [11], which are a consequence of the fact that
a soap film tries to minimize its surface energy, equivalent here to its length. In our 2D case this means that the lamella
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Figure 2: The geometry of the idealised bi-conical pore, witha single lamella shown as a thick line.

is an arc of a circle (which includes a straight line, corresponding to zero pressure difference) which meets the pore
wall at 90◦. The assumption of constant flow rate allows us to view each increment in the volume of the “bubble”
behind a lamella as a time step.

The shape of the pore is defined by its lengthL, the size of the pore throatRt, and the angle at which the pore
opensθ, shown in fig. 2. The sharp corners at the top and bottom of the pore body are rounded over a distance2ǫL

to represent the effects of pre-existing liquid in the pore,which would fill the smallest spaces and form a continuous
wetting film coating the pore walls [3, 4]. We fixL = 1 andRt = 0.2, set surface tensionγ = 1 w.l.o.g., and consider
the effect of varyingθ andǫ on the motion of a lamella and the time-averaged pressure drop.

The upper boundary of the pore is described piecewise:

y(x) =







x tan θ + Rt for x ∈ [0, (1 − ǫ)L],

yr +
√

r2 − (x − L)2 for x ∈ ((1 − ǫ)L, (1 + ǫ)L),
−x tan θ + 2Rb − Rt for x ∈ [(1 + ǫ)L, 2L].

(1)

The circular arc describing the central rounded part of the boundary has radiusr and centre at(L, yr), with

r =
ǫL

sin θ
, (2)

yr = Rt + L tan θ − ǫL

(

tan θ +
1

tan θ

)

. (3)

The lower boundary is a reflection of the upper boundary in thehorizontalx-axis.

2.2. Surface Evolver simulations

The Surface Evolver [12] is a program for modelling surfacesshaped by surface tension subject to volume and
boundary constraints. Our constraints are the fixed walls ofthe pore, and the volume (area) enclosed behind (to the
left of) the lamella.
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We simulate gas entering the pore from the left and pushing the lamella to the right. The pressure difference across
the lamella is given by the Young-Laplace equation [11]:

∆p =
2γ

rl
, (4)

whererl is the radius of curvature of the lamella. The simulation starts with the lamella at the left side of the pore
enclosing a bubble of volume0.1Vtot, whereVtot is the total volume of the pore. Each quasi-static iterationconsists
of increasing the bubble volume by a small amount1

200
Vtot and calculating the new lamella shape and position; we

then record the volume of the bubble, expressed as a fractionof Vtot, thex coordinates of the ends of the lamella (the
points at which the lamella meets the upper and lower walls),the length of the lamella, and the pressure difference
across it.

Since we increase the volume behind the bubble by a fixed amount, each step represents a unit of time. The average
pressure difference across a lamella during its motion through the pore therefore gives a time-averaged pressure drop
∆pavg. This can also be thought of as a population average for the pressure drop across a series of lamellae [7].
We take the average over the volume interval[0.1Vtot, 0.9Vtot], noting that provided the lamella has returned to a
symmetric arc far downstream, the contributions to the pressure drop at low and high bubble volumes cancel out, i.e.

∆pavg =
1

Vtot

∫ Vtot

0

pdV =
1

0.8Vtot

∫ 0.9Vtot

0.1Vtot

pdV. (5)

To survey the parameter space, we increaseθ from π
110

to 30π
110

(measured in radians) in 30 steps, andǫ from 0.02
to 0.98 in 49 steps, running a single simulation for each(θ, ǫ) pair.

3. Results

Varying the two parametersθ andǫ produces four different types of behaviour:

Case (i) Smooth traverse

At large ǫ, for example, the pore is very rounded and the lamella travels smoothly across the pore, maintaining
up-down symmetry throughout the motion. The average pressure difference across it is zero since the time it spends
with a positive pressure difference, as it moves towards thebody of the pore is balanced by the time spent with a
negative pressure difference after it passes the pore body.

This is evident in the symmetrical pressure-time graph (fig.3(d)), where it is also possible to see the point at which
the lamella enters the rounded region of the pore from the change in slope.

Case (ii) Symmetric jump

For smallerǫ, for example, the lamella jumps across the body of the pore when its ends reach the rounded region.
It then assumes a symmetric shape again, but now curving backwards. We refer to this as a symmetric jump. Fig.
4 shows the lamella positions, and the pressure-volume graph is shown in fig. 3(a). Since the jump occurs after the
bubble volume is half the pore volume, this jump leads to a non-zero time-averaged pressure drop.

Case (iii) Asymmetric jump

In certain cases, when the ends of the lamella reach the rounded part of the pore it jumps not in a symmetric way
but in an asymmetric way, leading to a lamella that straddlesthe body of the pore. This usually occurs forǫ slightly
larger than for the symmetric jump (although it can also be triggered by the introduction of a little asymmetry in the
shape of the pore of lamella). When the trailing end of the lamella reaches the rounded part, the lamella jumps back
to a symmetric position as in the cases above. Fig. 5 illustrates the lamella positions before and after each jump, and
the associated pressure-volume graph is shown in fig. 3(b). Note how the pressure drop is zero while the lamella is
straight. An asymmetric jump also leads to a non-zero time-averaged pressure drop.
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Figure 3: Pressurevs. volume graphs for the motion of the lamella through the pore, with θ =
π

5
. (a) Symmetric jump, withǫ = 0.10. (b)

Asymmetric jump, withǫ = 0.20. (c) Asymmetric crawl, withǫ = 0.36. (d) Smooth traverse, withǫ = 0.46.

Figure 4: Lamella positions before and after thesymmetric jump withθ =
π

5
andǫ = 0.1.

5



Figure 5: Lamella positions before and after anasymmetric jump withθ =
π

5
andǫ = 0.2.

Figure 6: Lamella positions during an asymmetric crawl withθ =
π

5
andǫ = 0.36.
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Figure 7: The time-averaged pressure drop for all values ofθ andǫ considered here, with the three demarcation curves, eqs. (8), (13) and (15)
shown emanating from the origin. The vertical and horizontallines are the lines along which the data is plotted in fig. 8

Case (iv) Asymmetric crawl

A case that we believe we have identified for the first time is intermediate between cases (i) and (iii): when the
lamella reaches the rounded part of the pore, one end crawls across the rounded region first, with the other moving
backwards a little distance. The lamella then continues to move asymmetrically until the trailing end reaches the
rounded part. The trailing end then crawls across the middle, until symmetry is restored. The time-averaged pressure
drop is zero in this case.

The sequence of lamella shapes is shown in fig. 6, and the associated pressure-volume graph is shown in fig.
3(c). We emphasise that each lamella shape is an equilibriumfilm shape, and that this behaviour isnot due to poor
convergence. (In technical terms, we assessed this from theeigenvalues of the Hessian of energy [9, 13].)

4. Demarcating the different types of behaviour

The results of 1470 simulations varyingθ andǫ are summarised in fig. 7, in terms of the time-averaged pressure
drop∆pavg.

For largeǫ the lamella always moves smoothly through the pore. Asǫ decreases, the asymmetric crawl appears,
first at highθ (narrow, tall, pores), occupying a rather narrow band. There is another narrow band in which the
asymmetric jump is observed, and then at smallǫ we find the symmetric jump. In the two regions where the jumps
occur, there are distinct bands of high∆pavg.

We now give analytic expressions for the three curves which demarcate the different behaviours shown on fig. 7.

4.1. Pore volume

Recall that at any instant in time, that is for any given bubble volume, the lamella minimizes its length and meeting
the pore wall at90◦.

The total volume of the bi-conical pore is

Vtot = 4RtL + 2L2 tan θ +
2θǫ2L2

sin2 θ
−

4ǫ2L2

sin 2θ
. (6)
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4.2. Constraints
Not all values ofθ andǫ give rise to physically-realistic motion because it is possible that the lamella does not

remain confined within the pore in the way that we describe. For example, it is possible that when the lamella is in the
asymmetric configuration, one of its ends may emerge from thedownstream end of the pore, before the lamella jumps
back to the symmetric configuration. This occurs when

ǫ < Rt sin 2θ − cos 2θ. (7)

This is visible as a short dashed line at the top of the asymmetric jump region on fig. 7, and clearly has little influence
on our results.

It is also possible that as the forward-bulging lamella reaches the rounded region of the pore body, it may intersect
the downstream part of the pore boundary part-way along its length. However, this does not happen for the values of
θ andǫ considered here.

4.3. Symmetric to asymmetric jump
The symmetric jump occurs for small values ofǫ. If the bubble volumeVb(x) when the ends of the lamella reach

the rounded part of the pore (i.e. whenx = (1− ǫ)L) is less than half the total pore volume, then the lamella is unable
to make a symmetric jump because its area would then have to begreater than half the pore volume. The symmetric
jump therefore can only occur up to the point at which

Vb((1 − ǫ)L) =
Vtot

2
. (8)

This statement is equivalent to Rossen’s criteria [9], thatthere is a turning point in the graph ofx versus Vb. If the
value ofVb is lower, then an asymmetric jump occurs.

While x ≤ (1 − ǫ)L the radius of curvature of the lamella (cf. fig. 2) is

rl(x) =

√

(

x +
Rt

tan θ

)2

+ (x tan θ + Rt)
2

=
x

cos θ
+

Rt

sin θ
, (9)

and the bubble volume is

Vb(x) = θrl(x)2 −
R2

t

tan θ
. (10)

At x = (1 − ǫ)L we therefore have

Vb((1 − ǫ)L) = θ

(

(1 − ǫ)L

cos θ
+

Rt

sin θ

)2

−
R2

t

tan θ
. (11)

Eqs. (6) and (11) together mean that eq. (8) is an implicit expression forǫ andθ, and is the leftmost of the three curves
plotted on fig. 7; it correctly separates the regions in whichthe two jumps are found to occur in the simulations.

4.4. Asymmetric jump to crawl
The asymmetric jump only occurs ifVb((1 − ǫ)L) < 1

2
Vtot and if the arc length of the lamella, at the point where

its ends meet the beginning of the rounded region of the pore wall (x = (1−ǫ)L), is greater than the lamella’s (straight
line) length in the asymmetric configuration.

The straight line length is given by2L sin θ + 2Rt cos θ, independent ofǫ, while the length of the arc is2θrl((1−
ǫ)L), with rl given by eq. (9). Thus the critical parameters are implicitly determined by the inequality

2θ

(

(1 − ǫ)L

cos θ
+

Rt

sin θ

)

≥ 2L sin θ + 2Rt cos θ. (12)

This can be rearranged to give an expression for the criticalvalue ofǫ, in terms ofθ, at which the behaviour changes
from the asymmetric jump to the asymmetric crawl:

ǫ = 1 +
Rt

L tan θ
−

sin 2θ

2θ
−

Rt cos2 θ

Lθ
. (13)

This is the middle of the three curves plotted on fig. 7, in agreement with the simulation results.

8



-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

Cone angleθ

T
im

e-
av

er
ag

ed
pr

es
su

re
dr

op∆
p

a
v

g

ǫ = 0.1
ǫ = 0.2

(a)

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

Rounding parameterǫ

T
im

e-
av

er
ag

ed
pr

es
su

re
dr

op∆
p

a
v

g

θ = 8π/55

θ = 5π/22

(b)

Figure 8: Variation in the time-averaged pressure drop for fixed (a)ǫ or (b)θ.

4.5. Asymmetric crawl to smooth motion

The straight-line lamella configuration is not attainable when the radius of curvature of the rounded part of the pore
wall is greater than the height of the pore (i.e. when the centre of the arc lies below thex-axis). Thus the asymmetric
crawl is replaced by smooth motion of the lamella when

r = y(L), (14)

wherer andy(x) are as given in eqs. (1) and (3). Rearranging gives

θ = tan−1

(

Rt −
√

R2
t − 4ǫ(ǫ − 1)

2(ǫ − 1)

)

. (15)

This is the right hand curve plotted in fig. 7, and agrees with the results of the simulation in demarcating the asym-
metrical crawl from the smooth motion of the lamella.

5. Discussion

We have shown how the different behaviours vary with the poreangleθ and the rounding parameterǫ and offered
explanations for why these changes occur. Our main result isfig. 7, showing that the time-averaged pressure drop
is only non-zero if the lamella jumps, and that in these casesthe pressure drop broadly increases asθ increases and
ǫ decreases, that is for pores that are from from being straight and contain little residual fluid. Fig. 8 shows how
the average pressure drop varies withθ for fixed ǫ andvice versa (along the horizontal and vertical lines marked on
fig. 7). Note how the time-averaged pressure drop falls almost to zero around the transition from a symmetric to an
asymmetric jump, but that the largest pressure drops are caused by the symmetric jump.

Rossen [7, 8, 9] studied a pore in which the rounded region wasdefined by a sinusoidal function, rather than a
circular arc (eq. 1). This changes the slope of the pore wall in the rounded region, and thus the lamella shape for
given volume. To make comparison with that work, we show in fig. 9 our results for this geometry, which should be
compared with fig. 8. Changing the geometry to be sinusoidal has a significant quantitative effect on the parameter
values for which the jumps occur and hence on the time-averaged pressure drop. In particular, symmetric jumps now
only occur for very smallǫ, while asymmetric jumps occur for a larger range ofǫ. Thus, in the sinusoidal case, it is
the asymmetric jump that leads to the greatest pressure drops, and they are greater in magnitude than in the circular
arc case.

Beyond the quasi-static limit of slow lamella motion, friction at the ends of a lamella, where it meets the pore wall,
will become important [14]. It may even be sufficient to suppress the jumps entirely, in which case viscous forces will
be the only contribution to the time-averaged pressure drop. Then it will be the length of the pore walls that determine
this quantity, not its shape.

Nguyenet al. [15] performed a similar set of experiments to Rossen using amodel glass pore; they made direct
measurements of the pressure at either end, and compared these to the predictions of a model which incorporates
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Figure 9: Variation in the time-averaged pressure drop for a pore with a sinusoidally curved body. Two different values of(a)ǫ (cf. fig. 8(a)), where
here the data covers only the asymmetric jump, and (b)θ (cf. fig. 8(b)).

dynamic effects such as viscous drag and surface tension gradients due to the stretching and contracting of the lamella.
Their results suggest that the quasi-static model significantly underestimates the pressure difference, especially in the
diverging section of the pore.

A model that accounts for the redistribution of surfactant,such as the one developed by Kraynik and Hansen
[16], and therefore the variation in surface tension, is required. Such variations in surface tension will affect the
instantaneous pressure difference across the film (eq. (4)), and therefore the time-averaged pressure drop, introducing
further asymmetry into the pressure time graph, in additionto possible jumps.

Incorporating these dynamic effects into a Surface Evolversimulation requires an understanding of how the foam
structure is distorted from the equilibrium conditions given by Plateau’s rules. A 2D viscous froth model for dry bulk
foam is described in [17], which allows the lamellae to be distorted from a circular arc by a viscous drag force. The
distortions due to drag have also been investigated experimentally [20] for single lamellae in straight tubes of varying
cross-section.

Other effects which need to be examined are diffusion (whichhas recently been investigated in [18]) and the
interactions with stationary lamellae [19], as well as moving lamellae which merge during the motion through the
pore, observed experimentally in [15].
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