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Abstract

This paper examines a biologically-inspired representation technique designed for the support of sensory-motor learning in
developmental robotics. An interesting feature of the many topographic neural sheets in the brain is that closely packed
receptive fields must overlap in order to fully cover a spatial region. This raises interesting scientific questions with
engineering implications: e.g. is overlap detrimental? does it have any benefits? This paper examines the effects and
properties of overlap between elements arranged in arrays or maps. In particular we investigate how overlap affects the
representation and transmission of spatial location information on and between topographic maps. Through a series of
experiments we determine the conditions under which overlap offers advantages and identify useful ranges of overlap for
building mappings in cognitive robotic systems. Our motivation is to understand the phenomena of overlap in order to
provide guidance for application in sensory-motor learning robots.
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Introduction

Many of the sensors in the human body and the neurons in the

central nervous system effectively capture their inputs over a

spatial region rather than at a specific point. These receptive fields

have smooth curved convex boundaries and so approximate to

distorted circular shapes. A notable feature of such shapes when

packed together, as in topographic sheets, is that they must overlap

in order to fully cover a spatial area — unlike the arrays of

contiguous pixels used in digital systems. Thus, overlap implies at

least partial sharing of inputs in arrays of fields. This phenomenon

of overlap raises interesting scientific questions with engineering

implications: are there any benefits with overlapping structures?

what function could overlap serve? how is accuracy affected by

overlap in an array? what is the best size of the fields for a given

task? It might appear at first that overlap introduces unnecessary

crosstalk and reduces accuracy. However, we have used overlap-

ping fields very successfully in a series of sensory-motor mapping

experiments on real robots and this paper examines some of their

properties and effects. The question we address here concerns how

overlap affects the representation and transmission of spatial

location information on and between topographic maps. The aim

is to better understand overlap, particularly in the context of

spatial localisation and cross-modal coordination, in order to build

more efficient representation models for application in sensory-

motor robot learning systems.

Actual or effective overlap occurs in many neuronal and sensing

mechanisms in biology. For example, sensory receptors often

project divergently onto higher-order layers of neurons and motor

signals usually converge through neural layers, in both cases single

cells receive inputs from increasing numbers of neighbouring

regions [1,2]. The sensors need not physically overlap; for

example, in the eye the rods and cones connect to bipolar,

horizontal and amacrine cells which then connect to the ganglion

cells that exit the eye and form the optic nerve to the brain [3]. As

well as providing various important visual functions, the overlap-

ping fields of the interneuron cells create effective structural

overlap between the sensors and the ganglion output. Structural

overlap is not the only way that overlapping effects can occur, for

example, the eye is subject to a constant high frequency (80 Hz)

vibration (the ocular microtremor) that has the effect of causing

stimuli points to overlap [4]. This is functionally important

because when the microtremor is artificially suppressed, by image

stabilisation, visual perception fades and disappears. A few authors

have pointed out that edge-detection quality can be improved

when receptive fields overlap as compared with conventional

contiguous image cells [4,5]. Considerable theoretical work has

been done on possible models for the growth and plasticity of

topological maps in the brain, e.g. [6], and these explore the

tradeoffs between factors such as coverage and continuity.

It is clear that computational maps exist in the brain that can

produce highly efficient forms of information processing [7]. But

while there is much inspiration to be gained from these studies,

there is little guidance to help robot implementors and experi-

menters to design adequate and efficient models for particular

representations and cognitive tasks. This is especially true for the

phenomenon of overlapping fields and we explore the following

questions; what are the effects of overlap on locational accuracy in

a topographic array and on mappings between two topographic

arrays8 how does overlap influence the structure of connections

between arrays? and, do overlapping fields have a useful role in

representing transformations between arrays? Our focus through-

out is on spatial information, that is, locative information about a

stimulus point in a sensory or motor space. We have examined

these issues by building an abstract, simplified model with

significant overlapping elements and then investigated perfor-

mance through an intensive programme of simulation experi-
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ments. Although it is possible to explore regular structures by

analytical means we wished to include unstructured arrays and

random elements and compare these with the regular cases. For

this reason we used simulation as a general tool throughout, and

all the results are taken from the mean performance over many

simulation trials.

This paper is organised as follows. In the next section we define

the general model and mathematical nature of our topographical

mapping method for the representation of sensory-motor trans-

forms and coordination structures. Then we describe a series of

experiments on an implementation of the model in order to

explore the effects of overlap in terms of accuracy, noise and

transform fidelity. Next we present a series of the most significant

results from those experiments along with results from two

example robotic applications. The paper ends with a discussion

of the findings and a brief comparison of the conclusions with

those drawn from studies of overlap in living neural systems.

A Sensory-Motor Mapping Model

It is important to state the assumptions and simplifications used

in our analysis. The models used here are intended to be

sufficiently abstract to allow reasonable generality in focusing on

the role of overlap between modules while reducing complications

from other sources. We focus on the transfer of spatial information

between layers of neuron-like modules but do not stipulate any

detailed internal structure of those modules. We assume indepen-

dence between the modules, i.e. any inter-field computational

effects are ignored. Our interest is in the spatial effects of overlap,

rather than the processing of stimuli features, and stimuli are

modelled as point excitations at discrete spatial locations. Although

we do not attempt to model any biological systems perhaps the

best inspiration comes from the mapping between the retina and

the Superior Colliculus where notable correspondence is evident

but is distorted in a non-linear manner [8]. We reason that a

desired micro structure of the modules, or any enhancing

superstructure, can be superimposed on our simplified abstraction

without seriously affecting the underlying conclusions about

overlapping effects. For example, the centre-surround receptive

field structures found in visual and somatosensory systems provide

both increased sensitivity and improved spatial localisation, but we

ignore this subfield complexity in our simple modules as we wish to

separate the details of such complex responses from the

phenomena of local overlap with neighbours. Hence we define

our modules as independent processors of their inputs and allow

their resultant responses to overlap.

Maps and mappings
In several previously reported experiments [9–11], we have used

two-dimensional arrays of overlapping elements with explicit links

between corresponding sensory or motor values for the represen-

tation of sensory-motor transforms and coordination structures.

Although three dimensions might seem appropriate for repre-

senting spatial events, we take inspiration from neuroscience,

which shows that most areas of the brain are organised in

topographical two-dimensional layers [12,13]. This remarkable

structural consistency suggests some potential advantage or

efficacy in such two-dimensional arrangements [14]. We base

our experiments on this scenario but, as demonstrated later, the

techniques described also work for higher dimensional spaces.

A typical coordination structure will consist of a 2D array

representing two sensory or motor variables, known as a map or

surface, connected to another 2D array by a set of links that join

points or small regions, known as fields by analogy with receptive

fields, in each array.

More formally, let there exist a sensory system S with two

independent variables, S5R2, and a motor system M also

describable in terms of two variables, M5R2. Then a mapping t
can be defined as:

t : S.M ð1Þ

where the set members in S are either points, pi~(xi,yi)[S, or

local regions of the surface, fi, i.e. fields. Each field has a reference

point or centre, ci, and a boundary defined by a boundary function bi,

so that the field fi consists of all the points (xk,yl) inside the

boundary bi. The surface M is similarly covered with points or

fields.

We will use the above sensory-motor example throughout but

all that follows equally applies to any intermediate maps, with

possibly very indirect connections to sensory or motor systems. We

will often refer to input values as stimuli. Finally, note that it is

possible for mappings to be bidirectional (i.e. given a value from

M we can find an associated value from S), unlike most neural

network models.

Mappings and their growth
Spatial coordination is a significant issue in both neuroscience

and robotics research because it is necessary to coordinate the

differing spatial frameworks of the various sensory and motor

systems. For example, coordinating the spatial frame of an active

vision system with the spatial structure of a hand/arm system

requires cross-modal relations to be established and understood; in

this case, image based information needs to be related to the

coordinate data available from a multi-degree of freedom

mechanism.

As a simple example consider a saccade system for an eyeball (or

active camera). A stimulus on the periphery of the retina (image) is

to be brought to the fovea (centre) by a change in the eyeball

(camera) gaze orientation. This requires a relation between the 2D

image on the retina and the 2D motor system consisting of the two

degrees of freedom provided by the two axes of movement of the

eyeball (or camera). One solution could involve two surfaces, S
and M, representing the retina and the motor components

respectively, and explicit links from peripheral fields in S could

access the appropriate motor values in M that will drive the eye

such that the peripheral stimulus point becomes the centre of gaze.

For a complete mapping we would expect every point in S to be

covered by at least one field that links to a suitable motor vector

given by a point in M. Figure 1 shows an illustration of a complete

mapping for S. The radii are low for clarity and this gives very

little overlap. Note that this case is a many-to-one mapping, as M
contains points not fields, and values between the points can be

determined if necessary by an interpolation method. Also note that

not all of M needs to be covered; mappings will often cover a

different space on M than on S.

There are several possibilities for mechanisms that could

establish the links between S and M. Conventional connectionist

practice might advocate the provision of weighted links from each

field on S to every field on M, as in figure 2, with the path strength

for each link being stored in a weight. As stimuli are experienced

so the weights are adjusted to reflect the usage value of each link in

representing the emerging mapping. After the weights have been

adjusted many times the distribution of the weights then records

the correlation pattern. There is some superficial justification for

Overlapping Structures
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such a scheme because early neurogenesis massively overproduces

synaptic connections [1] which are then pruned down during early

neonatal experience [15]. However, the idea that there could be

complete connectivety between maps has been shown to be totally

unrealistic for the brain [16]. Also this method would be very

inefficient for sensory-motor coordination because for any

reasonable mapping the vast majority of the weights would be

zero, giving a proportion of unused links much higher than even

the 50% pruning rates reported for early cortical development

[17]. Furthermore, before the maps can be used, this approach

requires a (long) learning period while the weights converge; this is

also infeasible.

We favour an alternative method in which the links are created

at the point when an association between two maps is experienced.

Thus, when a positive spatiotemporal correlation occurs between a

pair of events (e.g. the target location on the periphery of the retina

and the motor vector that is appropriate to bring the eye to fixate

on that target) an explicit link is established between the respective

points or fields on the S and M maps. This has the advantage that

the mapping grows with experience and becomes structured to

match the pattern of the correlations. It is also real-time,

cumulative and incremental; all being important features for

robotic and developmental models.

Fields and their structure
It is important that our terminology is not confused with field

computation in which large numbers of computational elements can

be considered as continuous distributions of data. Mathematical

techniques for continuous fields have found wide application in the

physical sciences, e.g. for the analysis of flow of heat, fluids and

stress forces, and they are now being used in brain modelling and

neuroscience [18]. These studies are different in that they mainly

focus on large scale effects, rather than local overlap, but we note

that continuous techniques can be used to express linear

projections between maps [18].

Field sizes and shapes. The concept of a field is meant to

capture the idea of local spatial equivalence or influence

surrounding discrete neural modules. In a two-dimensional

sensory system, S, a stimulus might be defined by its point of

occurrence, (xi,yi), but the accuracy and resolution of both

biological and artificial sensing (and motor) systems are finite and

in practice all points within a local region, e.g. (xi+d1,yi+d2),
will be indistinguishable. Here the d1,d2 can be seen as tolerance

parameters that define a locality within which stimuli are deemed

equivalent. These two parameters give a simple boundary function

but such rectangular shaped fields are awkward and not

neurologically valid [13]. A better field model is an elliptical or

circular boundary function; thus by defining a radial distance r
from the field centre (xc,yc), a stimulus at (xi,yi) can be detected

by the field if r2
§(xc{xi)

2z(yc{yi)
2.

Field distributions and overlap. Fields can be distributed

across maps either in a structured or an unstructured manner. We

can examine these options by considering the field centres either to

be aligned with a regular lattice or to be randomly placed. First,

considering the structured case, we note that to build a regular

lattice there are only three possible shapes that can tesselate the

plane: square, triangle, and hexagon. We do not consider the

hexagonal case as this produces a lattice which is a subset of the

triangular case.

If the plane is to be covered with circles then locating their

centres on a triangular grid gives a more efficient covering (i.e. less

wasted space without overlap) than using a square grid. Hence, for

a uniform distribution of field centres in two axes, the fields should

be placed on an equilateral triangular grid as, for example, the

triangular structures in figure 3 (top row).

This can be compared with a rectangular grid, as normally used

for image pixels. The minimum radius to ensure complete

covering on a square grid of unit spacing is 0.707 and this gives

57% overlap (i.e. for any field only 43% of its area is not shared

with another field); while the minimum radius for complete

coverage on a triangular grid of unit spacing is 0.577, giving an

area of overlap of only 21%, this is illustrated in figure 3 (left

column).

Figure 4 (left) shows a field covering designed for an artificial

retina. Here the peripheral fields increase in size in proportion to

distance from the fovea (centre point). Notice from figure 4 (right)

that the tessellation is nearer triangular locally rather than

rectangular by arranging the fields on every other radial to be

offset. This example shows how a field distribution can be

arranged for a particular sensory structure with known require-

ments. In general, there are many options for determining field

placements, using different formula or structures. See [19] for the

design of overlapping field arrays for modelling the human retina

and discussion of the lack of any exact analytic or geometric

models.

It is useful to understand how the density of overlap increases as

fields are packed closer together. Figure 5 shows overlap in the 2D

plane varying with increasing field size. All the data-points for

Figure 1. Example mapping. An S to M mapping with many-to-
one structure.
doi:10.1371/journal.pone.0084240.g001

Figure 2. Total connectivity. Typical structure in artificial neural nets.
doi:10.1371/journal.pone.0084240.g002

Overlapping Structures

PLOS ONE | www.plosone.org 3 January 2014 | Volume 9 | Issue 1 | e84240



figure 5 were obtained by exact calculation from geometric

analysis. A uniform triangular grid of unit size is used, (as in

figure 3, left column), and each grid point is the centre of a field of

radius r. As r increases so the areas of overlap intensify. The

leftmost peak is the background (i.e. the area not covered by any

fields) and this decreases from 100% with no fields (at r~0) while

the plot for the area covered by one field correspondingly

increases. At r~0:5 the point is reached where pairs of field

boundaries are touching and where overlap between fields can

begin. This is the optimum packing configuration for filling the

plane with circles without overlap. As r increases further, the area

covered by overlap between two fields increases, while the area

covered by single fields starts to decline. When r~0:577~(1=H3)

triples of field boundaries are now touching and the background

reaches 0% (all points on the surface are covered). This is the start

of three field overlap and any further increase in r will see

increasing area covered by three fields. Eventually the area of two-

field overlaps reaches its peak and then declines towards zero,

while the plot for three-field overlap builds towards another peak.

At r~0:866~(H3=2) nearly all of the surface is covered by three-

field overlaps and four field overlaps are just about to begin, (see

figure 6, left). The state for r~1 is notable as only 3 and 4 field

overlaps exist; single and double coverage has finished and the

next higher overlaps are just about to start. This pattern continues

and the rate of growth of overlapping complexity is quite rapid

with increasing r; for example at r~1:155~(2=H3) there are 4, 5,

6 and 7 fold overlaps, (shown in figure 6, right).

Pre-structured grids may seem inappropriate for developing

systems but we note that regular grids do not preclude highly

distorted mappings as the fields are selected from the grid and the full

lattice structure is not necessarily imposed on the eventual

mapping. There exists evidence that the topographic structure is

Figure 3. Structure comparison. Comparison of arrays of fields
centred on triangular (top row) and square (bottom row) 5 by 5 grids.
The left column shows minimum radii for complete coverage at
r~0:577 for triangular (top left) and r~0:707 for square (bottom left).
The right column shows r~1. The central fields are highlighted for
clarity of overlap.
doi:10.1371/journal.pone.0084240.g003

Figure 4. Polar structure. A polar field array (left) and a plot of the field centres on their radials (right).
doi:10.1371/journal.pone.0084240.g004

Figure 5. Field coverage. Areas of overlap with increasing field
radius. Abscissa is field radius; ordinate gives coverage per unit area of
the 2D plane.
doi:10.1371/journal.pone.0084240.g005

Overlapping Structures
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determined during neurogenesis by many influences and both

genetic and experiential inputs have strong effects [20]. It is

possible that genetically encoded neural growth patterns provide

regular arrays of neural sheets and then the interconnections are

established by a separate process of coordination. There is also

evidence that neurons can expand their receptive fields in order to

adapt to a damaged area caused by a lesion [21] and we note that

such plasticity is better served by a uniform grid structure rather

than an irregular covering of fields.

Methods

All experiments are based on a software implementation of the

model described in the previous section. In most cases the fields

are uniform (all circular of radius r) and are either structured, with

field centres on an equilateral triangular grid, or randomly located

to simulate unstructured generation.

In order to keep the results independent of the actual sizes used,

the field radii are always reported as relative to the spacing so that

r~1:0~ distance between field centres for the triangular grid

structure.

In order to generate sets of unstructured field locations we ran

many experiments to obtain very similar densities (fields per unit

area) to a regular triangular layout and found this required the

fields to be treated as if the radius was set to r~0:85. This permits

reasonable comparison between the results for structured and

unstructured placement.

Field response functions
A receptive field usually has a central point of maximum

response and the output can be defined in terms of the relation

between the stimulus and this reference point. We define circular

fields fi such that the output response varies according to the

distance di of the stimulus pi from the field centre. Then

hi~1{
di

ri

ð2Þ

is the offset distance, varying from 1.0 to zero as the stimulus

moves from the centre to the field edge. The output can then be

modulated by a function; F (hi). Several fields may be excited by a

single stimulus and so these response functions produce an

encoding of the spatial location of the stimulus. The nature of this

encoding depends upon the response function and we consider

several cases:

Uniform or flat response. The simplest case is to allow all

stimulus points equal status and so all stimuli give the same effect

as they would have at the centre point, thus: F (hi)~1. This gives

a step function with sharp edges to the fields and ignores the

location of the stimulus within the field.

Linear falloff. The response could be linearly reduced from

1.0 at the centre to zero at the field edge. Thus, the field signal is

simply F (hi)~hi. This gives a sharp, non-differentiable, peak at

the centre of the field.

Nonlinear falloff. The biologically undesirable discontinu-

ities of the above two cases can be removed with smooth,

continuous functions, e.g. F (hi)~(hi)
x. These can also give more

rapid falloff. We experimented with many forms and selected three

of the most interesting: a Gaussian response,

F (hi)~e{ (hi)
2

2c2
ð3Þ

a cosine function,

F (hi)~
1zcos(hip)

2

� �c

ð4Þ

and a sigmoid function,

F (hi)~
1

1zec(hi{0:5)
ð5Þ

In each case the coefficient c is used as the width control

parameter. Figure 7 illustrates the behaviour of these functions.

Some of our experiments introduced noise into these functions

so that the noise tolerance of the decoding technique can be

characterised. If hi is a response value, b is a noise coefficient and a
is a randomly generated value with Gaussian distribution scaled

Figure 6. Overlap examples. Field overlap on regular triangular mesh, 10610 fields, r~0:866 (left) and r~1:155 (right)
doi:10.1371/journal.pone.0084240.g006

Overlapping Structures
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such that values with 3 times the standard deviation (approxi-

mately 99.7%) range from 21 to 1, then the noisy response value

is:

hi
0~

hizba : if hizbaw~0

0 : otherwise

�
ð6Þ

Another illustration of field activity is provided by allowing only

one field to be active at a time. For this ‘‘single neuron’’ response

we select the field with its centre nearest to the stimulus point pi.

Field and link generation
Assume that a learning process generates stimulus points,

pi~(xi,yi), on a two-dimensional surface, S, which is initially

empty. If a stimulus point is already covered by a field on S, i.e. is

within the radius of some existing field, then no action is required.

But if pi is not covered then a new field must be generated for this

location. Fields may be structured or unstructured: either they can

be selected from a prior pattern or they can be generated

independently as they occur. In the former case, the field on the

grid with the nearest centre to the uncovered point pi is selected

and a link to M is created. In the latter case, a field is generated

with its centre located at the exact stimulus point pi. Eventually all

points should be covered by one or more fields. If the grid of fields

has low levels of overlap (rv1), for example as in figure 3 (left),

then there will always be places covered by only one field and so

eventually all fields in the grid will be used. Conversely, with large

overlap many of the possible fields will not need to be generated.

Figure 4 showed a complex field grid for a retina design, with a

great deal of overlap, but, in practice, only part of this may need to

be generated. Figure 8 shows this during a learning experiment;

fields are taken from the grid as needed and this covering process

stops when every possible stimulus point has been covered.

Decoding
When a stimulus point is covered by a field then that field is

activated according to the proximity of the stimulus to the field

centre. If a stimulus is covered by only one field then there will be

only one link activated and the associated value on M gives the

result. However, if a stimulus point is in a region of overlap then

several fields will be active and so several points on M must be

combined to give a single response value. This reverse process of

finding a single result from a set of variably excited points or

modules is known as decoding. Figure 9 illustrates decoding.

Figure 7. Nonlinear response functions. For each function, the
input (normalised distance from the field centre) is along the abscissa
and the output response is along the ordinate. Left shows a Gaussian
function with coefficient c~ 0.2, 0.26 and 0.6. Centre shows a cosine
function with c~ 0.5, 1.1 and 3.5. Right shows a sigmoid function with
c~ 0.5, 4.3 and 10.0. All values are normalised to 1.
doi:10.1371/journal.pone.0084240.g007

Figure 8. Partial population. Fields being generated from a
structured polar grid.
doi:10.1371/journal.pone.0084240.g008

Figure 9. The decoding problem. Three fields cover the stimulus
point and so three links are excited, each in accordance with their offset
distance, di . These values are transmitted to points on M , with the
thickness of the lines and the halos around the points indicates the
relative strengths of the signals. The values on M can then be
combined by various possible mechanisms to identify a new resultant
point p’i .
doi:10.1371/journal.pone.0084240.g009

Overlapping Structures
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The main methods proposed for neural decoding are based on

vector summation or vector averaging [22,23]. These are inspired

by large populations of active neurons [24], e.g. in the superior

colliculus, which encode a set of directional signals [25]. We adopt

this method whereby a set of points pi can be viewed as vectors,

from a common reference, and then a weighted vector average is

given by:

p’i~
P
F (hi)piP
F (hi)

ð7Þ

We also notice that trilateration or multilateration techniques

[26] could be used for decoding. Trilateration is a method of

locating an unknown point given its distances from three known

points and is the dual of triangulation. Trilateration is attractive

because theoretically it can provide an accurate evaluation on any

location within the region defined by the three (or more) reference

points. For trilateration to work properly it is important that the

reference points form a triangle and not a line. When necessary we

used Delaunay triangulation in our experiments to group the

points into triangles and avoid thin lines [27].

Measurements
We analyse our system by measuring the errors incurred

through the processes of encoding, transformation and decoding of

stimulus points. We proceed by choosing a point pi that represents

a desired output, perform the necessary processing through the

mapping to find the actual output p’i and then plot these on a 2D

surface. This process is then repeated for a series of different pi. As

a measure of error over a series of points we use the expected absolute

deviation:

SDxi{m(x)D
n

ð8Þ

where xi~Dpi{pi
’D, n is the number of errors and m(x) is the error

mean: Sxi=n. This error measure is usually normalised in the

result plots by dividing by the field spacing. This was used as a

performance metric for all the results but we also ran worst case

examples too. The worst case results are not shown for space

reasons but they always followed the same pattern as for expected

absolute deviation but with increased magnitude.

Linear transforms
Linear mappings are those in which the transform between S

and M may be scaled or translated but are essentially linear in

their axes. To better understand the effect of the overlapping

processes involved we tested the encoding and decoding without

transformation, thus providing a good test of the accuracy of the

model by directly transmitting input to output. Ideally the output

should be identical to the input, thus any difference between a

single stimulus point, pi, on S, and resultant response point p’i, on

M gives an error measure that can be used for assessing the quality

of a mapping.

Structure noise tolerance
It is possible that spatial noise may be present in the assemblage

of a map of fields (both regular and unstructured). To examine this

we performed a linear transform mapping with varying amounts of

error in the field locations ranging from zero to half grid spacing.

Non-linear transforms
We also examine the performance of our mapping scheme for

non-linear spaces. In the linear transforms we effectively use

discrete points as targets on M but it is possible that M is also tiled

with fields and therefore the encoding process must take account

of the many possible fields that could define individual locations on

M. This is an extension from many-to-one structures to many-to-

many. In order to manage this process each link is assigned a

weight. These weights approximate the similarity in field locality

such that if a field in S exactly maps onto a field in M then the

weight is one. If the centre point of a field in S maps onto the edge

of a field in M then the weight would tend to zero. A learning

system could find these values but for our experiments the weights

are approximated by projecting the centre point of the field in S

onto the map M and then using the distance between the

projected point and the centre point of the linked field. We then

normalise the distance to the field radius and apply one of the

activation functions described earlier. More formally, let w be the

link weight, F be the chosen activation function, P be the

projected centre point in M, C be the centre point of the field in

M and r be its radius:

w~F DP{CD
r

� �
ð9Þ

Applying these weights to the activation values of the stimulated

fields in S we can stimulate the fields in M such that their signal is

proportional to their relationship with their fields in S. We can

then decode the stimulus using vector averaging. Let a be the

activation value of fields in S, w be the weight assigned to the link

and p be the linked field in M:

p’i~

P
i ai

P
j wjpjP

i ai

P
j wj

ð10Þ

We chose a range of fairly severe distortions as tests. First we

tested the case of the target map being compressed into a smaller

space than the source map. To examine this we created links

between fields using the following transform:

x’~
xzxy

2
y’~

yzxy

2
ð11Þ

where (x,y) are the coordinates of a field on S and (x’,y’) are the

corresponding coordinates on M. This gives a mapping that is

identical along the diagonal but tends to compress into half space

for off-diagonal elements, see figure 10 (centre left). Secondly, we

looked at transformed spaces that produce folds. To create this

effect we used the following transformation functions:

x’~
xzxy

2
y’~2(y{0:5)(x2{0:5)z0:5 ð12Þ

A third transform was based on a simplified robot arm design. It

consists of a rectangular retina (S) and a polar representation (M )

of a hand position that could move along radial and angular axes.

The transformation from eye to hand was defined as:
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x’~y sin (0:9x) y’~x cos (0:9y) ð13Þ

The above transformations are displayed graphically in

figure 10.

Estimating the number of fields and links
Our error values are quantified as a proportion of the regular

distance between the fields. Using these values we can create a

simple formula to calculate the distance required to achieve a

given error on any map. Let d be the unknown distance between

the fields, R be the expected deviation we want to achieve and x

be the proportional error achieved by the chosen topology:

d~
R

x
ð14Þ

It is important to note that the only proportional value is x. The

values d and R are defined according to the map space.

From the field distance we can approximate the number of

fields n in a triangular map. Let ax and ay define the map area, r

be a chosen radius, d be the known distance between the fields and

dy~0:866d be the adjusted distance in the vertical axis:

n~(
axz2rd

d
)(

ayz2rdy

dy

) ð15Þ

With a many to one mapping between S and M, the number of

links is equal to n. With a many to many mapping we can estimate

the number of links by multiplying n by the mean number of

overlaps for the given topology, presuming that the topologies of S
and M are the same.

Vector reaching test
In order to examine how errors from overlap might affect a

motor application we implemented a vector based reaching

algorithm on a simulator for an iCub - a humanoid robot with an

anatomical structure similar to that of a young child [28]. To keep

the task simple and avoid problems with redundancy we chose a

vector based algorithm that is able to reach targets within a

reasonable frontal working area.

A 4 dimensional map of proprioceptive space for the first 4

joints in each arm on the iCub was created. The axes are in

degrees of rotation and we call this space P. Each field in P has a 4

dimensional centre point and is linked to a 3 dimensional point in

a Cartesian gaze space that’s relative to the base of the torso and is

measured in meters. The gaze point represents the position of the

hand experienced when the proprioceptive feedback matches the

centre of the field in P.

Each of these fields also contains a map that describes the

change in gaze space that the hand experiences when a motor

command is applied over a small distance. This map, V , contains

fields with a 4 dimensional centre point representing a motor

command and has a 3 dimensional vector that represents the

change in gaze space caused by the application of motor

command. Through a hand regard process of making small

movements from the field’s centre point the motor space is learned

by populating map V with the results.

When the maps have been learned sufficiently we can attempt

to move the hand from any reachable point to another using

vector averaging. First we derive a vector T by subtracting the

gaze point for the hand from the gaze point for the target. Then

we activate the fields in P according to the current proprioceptive

values using a Gaussian response function. For each active field

p[P we activate the fields v[V , also with a Gaussian function,

using the angle between the T and the gaze vector G in the V

fields. Instead of a field radius we use a maximum angle z and only

include fields within that angle. We can then find the response

function:

h~
z{ cos{1 TG

Tk k Gk k
z

ð16Þ

Using these activation values we can perform a weighted vector

averaging to estimate the local motor command that will move the

hand towards the target. Let m be the motor command, a be the

activation value of field p, b be the activation value of field v and C

be the motor command in field v:

m~

P
ai

P
bjCP

ai

P
bj

ð17Þ

By regularly recalculating the motor vector the hand will

eventually reach the target. Measuring the distance travelled by

the hand throughout the move produces a measure for the quality

of the reach action. We begin from a fixed start position and move

through a fixed set of target points. We then compare the distances

against the ideal straight line distances to establish the quality of m.

The test was performed multiple times using different field radii in

map P.

Position based reaching
The vector based reaching experiment demonstrates the use of

linear mappings and so another test is needed for non-linear

transformation features. We do not address the full robot solution

here; we avoid the issue of redundancy and focus on the mapping

between visual location and positional reach information.

We generated two maps: a 3 dimensional gaze map and a 4

dimensional proprioceptive arm map using the spaces described in

the last section. We then apply a simple learning algorithm that

create links between the maps to describe the positional

transformation. Learning was performed over a period of 10

minutes by moving the arms randomly whilst monitoring the gaze

point of the hand. As the hand moved through fields in the gaze

space then links were made to the currently activated arm fields

such that the value of link was set to match the activation in the

proprioceptive arm field. This value is only set when the activation

of the gaze field is the highest it has experienced so far. After

learning the links we then estimate the arm configuration needed

Figure 10. Space distortion. Distortion functions applied to a regular
grid of points (left) using a compression function (centre left) a folding
function (centre right) and a robot inspired transform (right).
doi:10.1371/journal.pone.0084240.g010
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to reach a point in gaze space using the weighted vector averaging

equation (10).

Results

Linear transforms
Error patterns. The simplest decoding of an input set is to

use the ‘‘single neuron’’ response from the most active field. This is

seen in figure 11 in the right column. The error clearly increases as

the stimulus moves away from the field centres and the maximum

error is at the equidistant points between fields on a triangular

grid. The left column of figure 11 shows vector averaging and it is

noticeable that this gives zero error in the equidistant regions in

the triangular structure (top left). We observe how errors can

increase in sparse regions of an unstructured map, and how the use

of the overlap by vector averaging markedly improves the results.

Figure 12 shows a set of input points forming a uniform grid and

three different outputs for increasing field radii. An ideal result

would show the output points to be in exactly the same positions as

the input points. It is important to note that each point is

computed separately — they are only combined in the display to

give a visualisation of the error pattern. For a radius of 1.0, in

figure 12 (top right), the underlying field structure is evident in the

error distribution (the field centres are at the cluster points), but

this disappears for r~1:1 which gives a very good match to the

input map. Perhaps surprisingly the error increases at r~1:2, as

can be seen in figure 12, (bottom right). This can be explained by

figure 13 which shows the total error over all points (as expected

absolute deviation/field spacing) against increasing radii. There is

a noticeable oscillation effect, which is seen in many of our results,

due to the subtly changing overlap patterns as the radii change.

From this plot it can be seen that r~1:1 gives a lower error result

than either r~1:0 or r~1:2 for the cosine function. The

experiment was repeated for a Gaussian encoding and figure 14

shows the results. This case shows similar patterns but is less

revealing of the underlying structure. Although error distributions

are visible to the eye in these displays it should be noted that they

are actually very small individual displacements and the total error

measure is the important indicator. All the error values are very

low for rw1:0 and generally continue to reduce as r increases.

Figure 13 also shows that Gaussian, cosine and sigmoid functions

tend to produce largely similar results at large radii.

Trilateration and noise tolerance. In order to observe the

effects of trilateration we used a linear falloff response function and

applied this to just two and three fields. Figure 15 shows that for

the case of overlap between two fields we get zero error along the

line joining the field centres and for a three field overlap there is

also complete accuracy within the convex area defined by the

centres. By comparison, the decoding by vector averaging shows

full accuracy only at the field centres and at their equidistant

centre.

Figure 11. Benefits of overlap. Error map depicting triangular (top
row) and random (bottom row) topologies. The left column uses vector
averaging and the right column is a single field response. Each pixel on
the map is used as a stimulus point and the distance between the result
and original point is denoted by the colour of the pixel. Errors range
from 0 to 1 field radius.
doi:10.1371/journal.pone.0084240.g011

Figure 12. Cosine overlap visualisation. Input test data and output
arrays from experimental software. Each point from the input grid (top
left) is encoded using a cosine function and decoded using vector
averaging. The axes are scaled such that 50 units = one grid spacing.
The results show a field radius of 1.0 (top right), 1.1 (bottom left) and 1.2
(bottom right).
doi:10.1371/journal.pone.0084240.g012

Figure 13. Error plot for a linear transform. Both S and M maps
have identical triangular structure and a one to one transformation
space.
doi:10.1371/journal.pone.0084240.g013
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However, trilateration depends upon the signals being propor-

tionate to distance and therefore we can only expect high accuracy

for linear response functions. If we use smoother response

functions like Gaussian or cosine functions, [29], then the errors

can be reduced somewhat by performing the trilateration

calculation three times, changing the order of the points each

time and then averaging the results. Figure 16, seen earlier, shows

a precision comparison between such trigonometric based

trilateration and vector average decoding. The trigonometric

version is very accurate once all areas are covered by three fields,

but only for the linear coding function. The Gaussian response

with vector averaging performs well otherwise.

When noise is introduced this comparison is accentuated.

Figure 17 shows the results when noise is added to active fields. It

is clear from these figures that trilateration is of value only in the

specific case of linear response functions. Despite the high

accuracy possible (as seen in global localisation with GPS [26])

its use is not feasible for functions compatible with biological

situations. We notice that vector averaging improves in accuracy

with increasing input contributions, i.e. larger r. Thus, the

accuracy of the central area in figure 15 (right) will improve

further if more than three fields are included.

Vector averaging gives a reducing error trend, particularly with

Gaussian encoding and tolerates noise very well.

Response functions. In order to examine the behaviour of

different non-linear response functions we took a large set of

sample points and ran these through the mapping for increasing

radii. Figures 18, 19 and 20 show that all functions can display the

oscillating effect but there are coefficient values for each function

that give good performance. We selected the most effective

coefficients (Cosine 0.8, Gaussian 0.4 and Sigmoid 2.4) and used

these for the remainder of the experiments. It is worth noting that

these best selected coefficients for the encoding functions produce

very similar shapes, see figure 21.

Structure and boundary effects. We tested the effect of

structured field placement using a triangular grid and an

unstructured set of fields (random placement) using the same data

set and a range of encodings. Figure 22 shows the results and for

the regular grid the error rates decline quickly towards approx-

imately r~1. For irregular fields the errors are higher and we

found that all the different response functions gave very similar

results.

When overlaps become large (e.g. rw1) increasing error effects

will be noticed near the edges of the maps. This happens because

fields in the border region receive fewer contributions from the

side nearer to the edge. Figure 23 shows the errors (for a 10 by 10

Figure 14. Gaussian overlap visualisation. Input test data and
output arrays from experimental software. Each point from the input
grid (top left) is encoded using a Gaussian function and decoded using
vector averaging. The axes are scaled such that 50 units = one grid
spacing. The results show a field radius of 1.0 (top right), 1.1 (bottom
left) and 1.2 (bottom right).
doi:10.1371/journal.pone.0084240.g014

Figure 15. Small sample map. Error map depicting 2 fields with
trilateration decoding (left), 3 field trilateration (centre) and 3 fields
vector average decoding (right). The encoding function is linear for all
cases. Each pixel on the map is used as a stimulus point and the
distance between the result and original point is denoted by the colour
of the pixel. Errors range from 0 to 1 field radius.
doi:10.1371/journal.pone.0084240.g015

Figure 16. Accuracy without noise. Error plot for increasing field
radius showing the difference between vector average and trilateration
methods. The Gaussian responses have a coefficient of 0.4.
doi:10.1371/journal.pone.0084240.g016

Figure 17. Accuracy with noise. Error plot for increasing field radius
showing the effect of noise on the vector average and trilateration
methods. The Gaussian responses have a coefficient of 0.4 and the
noise coefficient b~0:1.
doi:10.1371/journal.pone.0084240.g017
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array of fields) increase dramatically as increasing overlap

encroaches on the boundary, thus reducing the effective working

area. For interest, we notice that trigonometric trilateration does

not suffer from this problem.

Field and link density. Using the results provided by

figures 18, 19 and 20 we can calculate the distance between the

fields and therefore estimate the field and link count needed to

achieve a given error using the equations 14 and 15.

The performance of an algorithm that uses the map will

potentially be effected by the number of fields in the map and the

number of fields and links included in encoding and decoding.

Reducing encoding errors by increasing the overlap can reduce

the number of fields needed to cover an area but it increases the

number of links in the map and the number of fields used in an

encoding.

Figure 24 plots the total number of fields required for an

expected deviation of less than 1 percent of the map area, using

increasing field radii. Various values for the response functions

were tested and we selected the values that achieved the smallest

number of fields at some point in the radius range. We see that the

number of fields actually increases as the overlap increases over 1

radius because extra fields are needed at the borders of the area.

Figure 25 multiplies the number of fields required by the mean

number of overlaps in the given topology to provide a simple

estimation of the number of potential links between two similar

maps with a linear transform.

Structural noise tolerance. Structural noise can be defined

as the errors due to field centres being displaced off-grid in a

structured lattice. As fields become increasingly displaced so they

move from structured to unstructured. Looking at figure 26 we can

see that some structural noise can be tolerated but we note that at

0.5 placement error the resulting map would no longer resemble a

triangular structure; it would appear random, and these results

confirm those of figure 22 that a structured grid seems beneficial.

To compare the results with real neuron arrays we digitised the

locations of the cell centres from a sample of a cat retinal structure

(figure 5 in [30]) and then measured the variance from the ideal

regular structure by triangulating the points and performing a

standard deviation measurement on the distances apart. This gave

gave a standard deviation of 0.22 for the cat retina. By performing

the same test on generated structures with various degrees of error

placement we looked for a result with a similar standard deviation.

Figure 27 compares the triangulation for the real neuron case (left)

and a generated set with matching parameters (right). The

randomly generated case was analysed and gave a placement

error of 0.35 which is a reasonable compromise between exact grid

placement and random locations. It is interesting that the

biological structure, while unable to produce a perfect lattice

nonetheless gives a very even and effective coverage.

Non-linear transforms
Using the three non-linear transforms for the mapping

(equations 11, 12 and 13), we tested a range of response functions

and found the results to be comparable. The most significant

influence on the errors is the degree of distortion of the space itself.

Figure 28 shows the results for a Gaussian (0.4) function processed

through the three transformed spaces as shown in figure 10.

Figure 29 shows the results of the same process but with the

reverse transform, i.e. mapping from the distorted space to the

regular grid. The reverse cases produce even more severe

distortions and this is clearly reflected in the error results. These

results indicate that larger fields with many overlaps do not

increase accuracy for non-linear regions because they incorporate

more contributions from fields that obscure the detail of the

distortion. This suggests that there is little to be gained by having

more overlapping than that provided by r~1:5. Figure 30 shows

the reverse mapping for the robot example and the result can be

seen to be very acceptable for regions with well spaced fields — the

errors arise where the input fields are compressed into a small

area.

As a comparison of many-to-one mappings with many-to-many

we ran experiments with a fixed field arrangement for S while

Figure 18. Cosine performance. Error plot for a range of cosine
encoders using vector average decoding tested over a range of radii.
doi:10.1371/journal.pone.0084240.g018

Figure 19. Gaussian performance. Error plot for a range of Gaussian
encoders using vector average decoding tested over a range of radii.
doi:10.1371/journal.pone.0084240.g019

Figure 20. Sigmoid performance. Error plot for a range of Sigmoid
encoders using vector average decoding tested over a range of radii.
doi:10.1371/journal.pone.0084240.g020
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varying the parameters of M. Figure 31 shows the results for

spacing distance, field radius and field centre error when

transforming points from one map to another with the compres-

sion transform. The many-to-one structure provides the best

possible result if the centre point of the field in S precisely

transforms to the center point of the linked field in M. When this is

not the case then using a weighted, many to many process can

produce better results.

Robot reaching
Figure 32 shows the effect of field radius on the vector based

reaching algorithm. We see that, as predicted by figures 22 and 23,

the accuracy of the results improves as the radius increases up to a

point. Our algorithm does not compensate for borders around the

map and so we expect errors to dramatically increase when the

radius is so big that samples at the edges become imbalanced. We

see exactly this effect at a radius of 4:0. We note that in figure 22

the irregular topology provides an argument for using radii of

more than 1.0 as opposed to the triangular topology which

provides little benefit after 1.0. The results in figure 32 are

consistent with this: error reduction for 1:0vrv2:0 is much less

for the grid based case. It is also worth noting that this

demonstrates the applicability of the results when using more

than 2 dimensions.

Figure 33 shows the effect of field radius using a non-linear

transformation for position based reaching. We see that after a

radius of 1.0 that accuracy of the reach diminishes. Looking back

at figure 28 we note that errors are likely to increase after r~1:0
for this kind of distortion. We also note that because the arm has

redundant degrees of freedom some deterioration in vector

averaging could be expected. This could be remedied by filtering

the activations but this is beyond the scope of this paper. Even so,

the relationship in the results between accuracy and overlap

remain true to the earlier results.

Discussion

Topographic maps are ubiquitous in the brain [14] but making

long connections between such maps is costly [31] so some method

of reducing the number of long distance connections, whilst

maintaining a high enough quality of information transmission, is

necessary for large neural systems. Various ideas, such as small

world networks [32], have been suggested for this problem and our

results show that overlapping fields can also offer solutions in

reducing the required number of links between maps to achieve a

given spatial performance.

We focus on the question of how overlap affects locational

accuracy in topographic arrays and on transformational mappings

between arrays. That is, given a stimulus point on a map S and a

transformed map M, what influences the accuracy of the location

of the response on M? Through software simulation we explored

the behaviour of circular overlapping fields, examining the

variables and comparing differing stimulus response functions

and decoding methods. We found there are two main variables:

field radius, which determines degree of overlap; and field

structure, ranging from strict lattice formation to random

placement.

The results in figure 11 show a clear benefit for using overlap

where much greater overall accuracy is achieved for encoding.

Specifically, when used with vector averaging, overlap shows

greatest improvement in the areas of highest error in the single

response map. In considering any detrimental effects we looked at

the cost of decoding in terms of complexity against varying levels

of overlap. Complexity reduced as the radii increased until it

reached r~1, the common spacing between the fields. We also

note that very large overlaps, when used with vector averaging,

reduce the accuracy around the edges of the maps. A first

summary of these points would be that some overlap provides

increased accuracy but very large overlaps are detrimental.

Considering field structure, we find a regular grid has

advantages over an unstructured array of fields. Structural noise,

that is, variation away from the ideal triangular lattice, was seen to

introduce error (figures 11 and 22) and this is particularly

noticeable for maps with little or no overlap. For such (small)

fields, relatively large errors occur as the grid lattice breaks down

and approaches random field placements. Regarding unstructured

field distribution, independent field generation ensures that the

maps are accurately shaped by early experience. However when

the maps are fully populated it is possible that the differences

become marginal. We observe that grid-based placement can be

Figure 21. Response curve comparison. Response curves for
Cosine 0.8, Gaussian 0.4 and Sigmoid 2.4. The input is along the abscissa
and the response is along the ordinate.
doi:10.1371/journal.pone.0084240.g021

Figure 22. Topology structure comparison. Error results for a
Gaussian response function with a coefficient of 0.4 and a vector
average decoding. The test is performed with increasing radius using
triangular and random topologies.
doi:10.1371/journal.pone.0084240.g022

Figure 23. Border effects. Encoding accuracy graph showing the
effect of large overlaps at the borders, for 10610 array.
doi:10.1371/journal.pone.0084240.g023
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useful in situations where some external structure must be taken

into account. Genetic constraints on field size and placement can

be built into such structures. Of course, in many cases the target

map will be generated from experience and will relate to irregular

spaces that can not be grid-based beforehand.

The location of a stimulus can be encoded in various ways and

we tested response functions that are commonly found in neural

network studies (step, Gaussian and sigmoid), and functions that

are interesting for their trigonometric properties (uniform, linear

and cosine). We found that the non-linear functions, cosine,

Gaussian and sigmoid, were the most effective, with the Gaussian

being slightly better behaved over all situations. However, the

functions are very similar for the values we eventually selected as

best: 0.2, 0.4, and 0.8 for the cosine, Gaussian and sigmoid

respectively. It seems that the fine detail of the curve shape is not

highly critical.

For the decoding of spatial locations we experimented with two

decoding methods: trilateration and vector averaging. Trilatera-

tion was very accurate with linear encoding and strictly regular

grids but without these two conditions performance is consistently

worse than vector averaging. Non-linear encoding functions have

the effect of smoothing errors and this increases with contributions

from more fields, hence large overlap is desirable and very

effective with vector averaging. This is confirmed by work on

averaging and combinations of estimators [33]. Thus the

combination of vector averaging decoding with non-linear

encoding functions gives good tolerance to noise, both signal

noise and structural error.

The tests on distorted transforms used fairly extreme cases in

order to examine worst case trends. There is a clear relation

between deterioration of the mapping and the severity of the

distortion; regions of folding and tight clustering produce much

worse errors than smoothly varying non-linear distortions. From

this it follows that smaller field radii should be used in regions of

severe distortion because otherwise the decoding averaging

operates over increasingly incompatible contributions and so

errors increase considerably. In some earlier experiments we

varied the field sizes, within a map, according to the degree of

local non-linearity found during learning [34]. For an uncovered

stimulus the learning mechanism causes a new field to be created

precisely centred on the stimulus, with the size of the field

determined to maximally fill the gap between the nearby fields.

From the results we can suggest an optimum degree of overlap.

Most of the results for linear or slowly varying non-linear

transforms suggest that the degree of overlap for best performance

should be in the range r~1:0 to 2:0. Overlaps involving many

fields (e.g. r~2:0) give good tolerance to placement error.

However for very non-linear transforms such large values cause

detail to be lost and r~1:5 was found to be an upper limit. We

consider r~1:0 to 1:5 to be an appropriate range for most

situations, and this gives areas of 3 fold to 7 fold overlap in the field

structure.

We can summarise our findings as follows:

N Overlapping fields can provide distinct benefits in reducing the

number of connections between topographic arrays when

representing complex spatial transforms. For a representation-

al accuracy of 1% in an array of size 100 units square, then

only 50 fields (and hence 50 to 200 connections depending on

the link topology) are more than sufficient if the transformation

is not too severe.

N Very large degrees of overlap become increasingly detrimental

as non-linearities in the mapping increase. This is because fine

detail can be lost and resolution reduces.

N The choice of encoding function is not critical. More

important is the coefficient used; the main criterion being a

smooth falloff over the whole field radius.

N The size (radii) of fields should be larger for noisy systems, as

increased overlap takes in more contributions and thus

increases accuracy.

N Conversely, field sizes should be small for maps in regions of

severe distortion or rapid structural change. The details of such

severe non-linearities are better captured by increased density

Figure 24. Field count versus error. The number of fields required
to provide an error of less than 1 percent of the map’s area, plotted
against field radius, using a range of functions on a regular triangular
grid.
doi:10.1371/journal.pone.0084240.g024

Figure 25. Link count versus error. Combined mean overlap and
field counts required to provide an expected deviation of 1 percent of
the map’s area. This approximates the number of links between maps
of similar density.
doi:10.1371/journal.pone.0084240.g025

Figure 26. Transformation with placement error. The accurracy of
a triangular structure with various levels of error added to the grid
placement of the fields. The compression transform is used and the
response and link functions are Gausian (0.4).
doi:10.1371/journal.pone.0084240.g026
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of fields in such regions rather than being lost in large overlaps.

N For a given error level the number of fields required, and

potentially the number of links between maps, reduces as

overlap increases up to r~1:0. Generally there is little

advantage in field sizes rw1:0 as there will be redundancy

in the number of links.

N Regarding the incremental learning of mappings, the length of

learning is proportional to the number of links that need to be

established for total coverage. To reduce the density of links,

larger fields can be traded off against fewer fields (i.e. by

increased spacing). This speed up in learning will reduce

accuracy but could be an important developmental technique;

when a gross but complete map has been established then

accuracy can be increased (with additional smaller fields) in

areas of special interest.

N Another useful feature for learning is that an incomplete

mapping can be used while it is being learned. As soon as a link

has been established it can be used, and so a developing system

may show some heavily used regions together with under-

mapped regions, according to experience.

N Considering all the results we find that r~1:0 to 1:5 gives

sufficient degree of overlap to provide effective mappings for

many sensory-motor applications in robotics. The lower end of

this range is appropriate for regular triangular grid spacing and

non-linear transforms while the higher end can reduce density

and compensate for grid irregularities and noise.

Conclusions

We approached the issue of overlap from an engineering

perspective; we have previously used overlapping fields to produce

successful sensory-motor mappings in robotic systems [10] and we

wish to understand the reasons for their performance and the

parameters for designing such mechanisms. From this perspective

the findings in the above section give some general conclusions

about our abstract model. We can now turn to the neuroscience

literature to look for any relevant studies that might complement

our results from a biological viewpoint.

Examples of overlapping field effects can be found extensively in

the brain; for example, in the retina [35], in the superior colliculus

[8], and in sensory and motor cortical areas [36]. The fields are

not physical entities like synapses but are formed through the

cellular organisation. Hence, in the retina [37] the relationship

between the (physical) dendritic structure and the (effective)

receptive field structure can vary considerably, but this is not

reflected in the degree of field overlap, which is more consistent.

Lehky and Sereno [38] have examined the phenomenon of

overlap in the context of population coding, however, their study

focused on intrinsic spatial representations whereas our maps are

strongly grounded in the extrinsic coordinates of the sensory-

motor systems. Also, many papers consider a given field size and

report results against variable spacing between fields, whereas we

fix the field centres and vary the field radii; this means conversion

calculations may be required when comparing results.

Figure 27. Real and model placement error structures.
Triangulation of an array of cat retinal cells (left) and generated fields
(right) for spatial comparison. The generated set has the same standard
deviation (approximately 0.21) and was produced with a placement
error of 0.35. The neuron array is digitised from figure 5 in [30]
doi:10.1371/journal.pone.0084240.g027

Figure 28. Transformation errors. Error plots for the different
distortion transforms with increasing radii. A Gaussian (0.4) response
function was used for encoding.
doi:10.1371/journal.pone.0084240.g028

Figure 29. Reverse transformation errors. Error plots for the
different distortion transforms processed in reverse. A Gaussian (0.4)
response function was used for encoding.
doi:10.1371/journal.pone.0084240.g029

Figure 30. Transformation information loss. A reverse transform
using the robot distortion space, i.e. from the points in hand space (left)
to eye space (right). The ideal result would be a regular grid of points.
The errors in the bottom rows of the square grid are caused by the
distortion squeezing points into the polar centre in the bottom left
corner.
doi:10.1371/journal.pone.0084240.g030
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Regarding optimum overlap, we find considerable agreement

with our estimates for field size and spacing. For example, [39]

report retinal ganglion cells as sharing about 40% between pairs,

with 3-fold overlap and 2s spacing between field centres. This

refers to the practice of fitting a Gaussian to a field where the field

size is defined as s, the standard deviation of the Gaussian. To

compare this with our result we notice that our Gaussian encoding

function terminates at about 2:5s. This means when r~1:0 then

the spacing between centres is 2:5s. Increasing r has the same

effect as reducing the spacing and we find for r~1:2 the spacing is

2s. The figure of 3–4 fold overlap is quite commonly cited [30], as

is the equivalent spacing of 2s [40]. Thus our results match these

overlap figures very closely.

Liu, Stevens and Sharpee [35] support our finding that perfect

grid placement would give the best spatial resolution, but such

precision is not found in biological cell arrays. They showed that

the natural variation from the ideal grid location of field centres

can be compensated by using irregular field shapes. Elliptical fields

can have a more efficient packing density than circles and may be

well suited for covering an array of irregular fields. By these

means, irregular grids have been arranged to gain up to 92% of

perfect placement.

For increasing overlap, several authors agree that a trade-off

exists between better accuracy (and signal-to-noise performance)

and redundancy, in that more connections are needed between

maps, e.g. [39].

Regarding decoding from populations it is known that

interpolation effects seem to be employed in the brain [41] and

accurate spatial locations can be derived from the combination of

firing grid cells [42]. Vector methods are widely advocated for this

situation [42] but there is little significant data to guide the

modeller on the performance and fidelity that can be achieved,

especially when considering mapping transformations. There is

some preference for linear vector summation methods [43] over

Figure 31. Transformation error comparisons. Error plots of cross
modal maps using a compression transformation function and varying:
distance (top), radius (middle) and placement error (bottom). The
results compare the behaviours of the many-to-one and the weighted
link many-to-many method. In each graph the transmitting map S is
fixed at r~1:0, distance spacing ~1 and zero placement error, whilst
the receiving map is adjusted as described in the abscissa.
doi:10.1371/journal.pone.0084240.g031

Figure 32. Vector based reaching performance. Shows the average percentage of extra distance travelled over the ideal distance whilst moving
the hand of the robot through a set of points in the gaze space. Each bar demonstrates the change in performance with increasing field radius R. The
experiment was performed with random (left) and rectangular based grid (right) topologies.
doi:10.1371/journal.pone.0084240.g032

Figure 33. Position based reaching performance. Shows the
average reach error experienced with field radii 0:8,1:0 and 1:5. The
experiment was performed with a rectangular based grid topology.
doi:10.1371/journal.pone.0084240.g033
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vector averaging [22] but this is not yet resolved. Chaisan-

guanthum and Lisberger [36] support vector averaging as a

simple, generic method that has been used successfully in various

models. They performed a comparison of vector averaging with an

inter-spike interval technique and with a maximum likelihood

analysis; with all giving very similar results. They argue that a

degree of sub-optimality in decoders is acceptable because neural

systems already contain significant amounts of correlated noise

that inevitably lowers precision. Hence, highly optimised perfor-

mance will have diminishing returns in this area.

It is encouraging that these various relevant investigations

strongly agree with our results, even though our approach is from

a quite different, non-biological, perspective. This gives support to

the existence of some general principles that will advance both

robotic applications and neural modelling and understanding.
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