
Aberystwyth University

Finding rough and fuzzy-rough set reducts with SAT
Jensen, Richard; Tuson, Andrew; Shen, Qiang

Published in:
Information Sciences

DOI:
10.1016/j.ins.2013.07.033

Publication date:
2014

Citation for published version (APA):
Jensen, R., Tuson, A., & Shen, Q. (2014). Finding rough and fuzzy-rough set reducts with SAT. Information
Sciences, 255, 100-120. https://doi.org/10.1016/j.ins.2013.07.033

General rights
Copyright and moral rights for the publications made accessible in the Aberystwyth Research Portal (the Institutional Repository) are
retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the Aberystwyth Research Portal for the purpose of private study or
research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the Aberystwyth Research Portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

tel: +44 1970 62 2400
email: is@aber.ac.uk

Download date: 09. Jul. 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aberystwyth Research Portal

https://core.ac.uk/display/326665594?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.ins.2013.07.033
https://doi.org/10.1016/j.ins.2013.07.033

Finding Rough and Fuzzy-Rough Set Reducts with SAT

Richard Jensen∗,a, Andrew Tusonb, Qiang Shena

aDepartment of Computer Science, Aberystwyth University, Aberystwyth, Ceredigion
SY23 3DB, Wales, UK.

bDepartment of Computing, School of Informatics, City University London,
Northampton Square, London EC1V 0HB, England, UK.

Abstract

Feature selection refers to the problem of selecting those input features that

are most predictive of a given outcome; a problem encountered in many

areas such as machine learning, pattern recognition and signal processing.

In particular, solution to this has found successful application in tasks that

involve datasets containing huge numbers of features (in the order of tens of

thousands), which would otherwise be impossible to process further. Recent

examples include text processing and web content classification. Rough set

theory has been used as such a dataset pre-processor with much success,

but current methods are inadequate at finding globally minimal reductions,

the smallest sets of features possible. This paper proposes a technique that

considers this problem from a propositional satisfiability perspective. In this

framework, globally minimal subsets can be located and verified.

Key words: rough sets, fuzzy rough sets, feature selection, boolean

satisfiability

∗Corresponding author: rkj@aber.ac.uk

Preprint submitted to Information Sciences June 13, 2013

1. Introduction

Many problems in machine learning involve high dimensional descrip-

tions of input features. It is therefore not surprising that much research has

been carried out on dimensionality reduction [11]. However, existing work

tends to destroy the underlying semantics of the features after reduction or

require additional information about the given data set for thresholding. A

technique that can reduce dimensionality using information contained within

the dataset and that preserves the meaning of the features (i.e. semantics-

preserving) is clearly desirable. Rough set theory (RST) can be used as

such a tool to discover data dependencies and to reduce the number of at-

tributes contained in a dataset using the data alone, requiring no additional

information [31, 33].

Over the past ten years, RST has indeed become a topic of great interest

to researchers and has been applied to many domains. Given a dataset with

discretized attribute values, it is possible to find a subset (termed a reduct)

of the original attributes using RST that are the most informative; all other

attributes can be removed from the dataset with very little information loss.

Therefore, there has been much research in the area of finding reducts, and

in particular, reducts with minimal cardinality.

Heuristic methods such as [8, 16, 23, 48], although useful and relatively

quick in locating reducts, are not able to guarantee such minimal reductions.

This led to the application of stochastic-based approaches to this domain,

such as Genetic Algorithms and extensions [44], Ant Colony Optimization

[7], Particle Swarm Optimization [42], discussed further in section 2. How-

ever, there is still no guarantee of finding the smallest reducts with these

methods. This motivates the work proposed in this paper. By reformulating

2

the rough set reduction task in a propositional satisfiability (SAT) frame-

work [12], solution techniques from SAT may be applied that should be able

to discover such subsets, guaranteeing their minimality.

Propositional satisfiability is one of the most studied NP-complete prob-

lems because of its significance in both theoretical research and practical

applications. Applications of SAT include computer-aided design, model

checking, planning and constraint satisfaction, and cryptography. Given a

boolean formula in conjunctive normal form, the SAT problem requires an

assignment of variables/features so that the formula evaluates to true, or

a determination that no such assignment exists. Search algorithms based

on the well-known Davis-Logemann-Loveland algorithm (DPLL) have been

emerging as representatives of the most efficient methods for complete SAT

solvers.

The issue of real-valued data is important and is central to real-world

applications. This paper also proposes a fuzzy extension to crisp discernibil-

ity matrices that is utilized for the purpose of fuzzy-rough feature selection

(FRFS) [18]. Additionally, the concepts in propositional satisfiability are

fuzzified for use in a DPLL-like search to find the globally optimal subset of

features.

Computational results on common machine learning benchmark prob-

lems indicate that the extended FRFS with SAT, denoted FRFS-SAT here-

after, produces no reduction in classification performance compared against

the original and heuristically reduced datasets. In addition, the computa-

tional requirements are not excessive, given the ability of the algorithm to

guarantee optimal data reductions.

The remainder of this paper is structured as follows. First the key con-

cepts that underpin RST are reviewed and the minimal reduct problem

3

formulated in the context of current solution methods. The extension of

rough set attribute reduction (RSAR) [8] with SAT, namely the RSAR-SAT

algorithm, is then proposed to optimally find discrete reducts. The result-

ing method is further extended to the continuous case by fuzzification via

formulating the concept of a fuzzy discernibility matrix. This leads onto

the corresponding reduct solver FRFS-SAT. Computational results are then

presented for both methods on appropriate benchmark data and conclusions

drawn.

2. Rough Set Theory

Rough set theory [31] is an extension of conventional set theory that

supports approximations in decision making. The rough set itself is the

approximation of a vague concept (set) by a pair of precise concepts, called

lower and upper approximations, which are a classification of the domain of

interest into disjoint categories. The lower approximation is a description of

the domain objects which are known with certainty to belong to the subset

of interest, whereas the upper approximation is a description of the objects

which possibly belong to the subset.

There are two main approaches to finding rough set reducts: those that

consider the degree of dependency and those that are concerned with the

discernibility matrix. This section describes the fundamental ideas behind

both approaches. To illustrate the operation of these, an example dataset

(Table 1) will be used.

2.1. Information and Decision Systems

An information system can be viewed as a table of data, consisting of

objects (rows in the table) and attributes (columns). In medical datasets, for

4

example, patients might be represented as objects and measurements such as

blood pressure, form attributes. The attribute values for a particular patient

is their specific reading for that measurement. Throughout this paper, the

terms attribute, feature and variable are used interchangeably.

An information system may be extended by the inclusion of decision

attributes. Such a system is termed a decision system. For example, the

medical information system mentioned previously could be extended to in-

clude patient classification information, such as whether a patient is ill or

healthy. A more abstract example of a decision system can be found in

Table 1. Here, the table consists of four conditional features (a, b, c, d), a

decision feature (e) and eight objects. A decision system is consistent if for

every set of objects whose attribute values are the same, the corresponding

decision attributes are identical.

Table 1: An example dataset

x ∈ U a b c d ⇒ e

0 S R T T R

1 R S S S T

2 T R R S S

3 S S R T T

4 S R T R S

5 T T R S S

6 T S S S T

7 R S S R S

More formally, I = (U,A) is an information system, where U is a non-

5

empty set of finite objects (the universe of discourse) and A is a non-empty

finite set of attributes such that a : U→ Va for every a ∈ A. Va is the set of

values that attribute a may take. For decision systems, A = {C∪D} where

C is the set of input features and D is the set of class or decision indices.

Here, a class index d ∈ D is itself a function d : U → {0, 1} such that for

a ∈ U, d(a) = 1 if a has class d and d(a) = 0 otherwise.

2.2. Indiscernibility

With any P ⊆ A there is an associated equivalence relation IND(P):

IND(P) = {(x, y) ∈ U2 | ∀ a ∈ P, a(x) = a(y)} (1)

Note that this corresponds to the equivalence relation for which two objects

are equivalent if and only if they have the same vectors of attribute values for

the attributes in P . The partition of U, determined by IND(P) is denoted

U/IND(P) or U/P , which is simply the set of equivalence classes generated

by IND(P):

U/IND(P) = ⊗{U/IND({a}) | a ∈ P}, (2)

where

A⊗B = {X ∩ Y | ∀X ∈ A, ∀Y ∈ B,X ∩ Y 6= ∅} (3)

If (x, y) ∈ IND(P), then x and y are indiscernible by attributes from

P . The equivalence classes of the indiscernibility relation with respect to P

are denoted [x]P , x ∈ U. For the illustrative example, if P = {b,c}, then

objects 1, 6 and 7 are indiscernible; as are objects 0 and 4. IND(P) creates

the following partition of U :

6

U/IND(P) = U/IND(b)⊗ U/IND(c)

= {{0, 2, 4}, {1, 3, 6, 7}, {5}}

⊗{{2, 3, 5}, {1, 6, 7}, {0, 4}}

= {{2}, {0, 4}, {3}, {1, 6, 7}, {5}}

2.3. Lower and Upper Approximations

Let X ⊆ U. X can be approximated using only the information contained

within P by constructing the P-lower and P-upper approximations of the

classical crisp set X:

PX = {x | [x]P ⊆ X} (4)

PX = {x | [x]P ∩X 6= ∅} (5)

It is such a tuple 〈PX,PX〉 that is called a rough set.

2.4. Feature Dependency and Significance

Let P and Q be equivalence relations over U, then the positive region is

defined as:

POSP (Q) =
⋃

X∈U/Q

PX (6)

The positive region comprises all objects of U that can be classified to

classes of U/Q using the information contained within attributes P. For

example, let P = {b,c} and Q = {e}, then

POSP (Q) =
⋃
{∅, {2, 5}, {3}} = {2, 3, 5}

7

This means that objects 2, 3 and 5 can certainly be classified as belonging

to a class in attribute e, when only considering attributes b and c. The rest

of the objects cannot be classified as the information that would make them

discernible is absent.

An important issue in data analysis is discovering dependencies between

attributes. Intuitively, a set of attributes Q depends totally on a set of

attributes P, denoted P ⇒ Q, if all attribute values from Q are uniquely

determined by values of attributes from P. If there exists a functional de-

pendency between values of Q and P, then Q depends totally on P. In rough

set theory, dependency is defined in the following way:

For P, Q ⊂ A, it is said that Q depends on P in a degree k (0 ≤ k ≤ 1),

denoted P ⇒k Q, if

k = γP (Q) =
|POSP (Q)|
|U|

(7)

where |S| stands for the cardinality of set S.

If k = 1, Q depends totally on P, if 0 < k < 1, Q depends partially (in a

degree k) on P, and if k = 0 then Q does not depend on P . In the example,

the degree of dependency of attribute {e} from the attributes {b,c} is:

γ{b,c}({e}) =
|POS{b,c}({e})|

|U|

= |{2,3,5}|
|{0,1,2,3,4,5,6,7}| = 3

8

By calculating the change in dependency when a feature is removed

from the set of considered possible features, an estimate of the significance

of that feature can be obtained. The higher the change in dependency, the

more significant the feature is. If the significance is 0, then the feature is

dispensible. More formally, given P,Q and a feature x ∈ P, the significance

of feature x upon Q is defined by

8

σP (Q, x) = γP (Q)− γP−{x}(Q) (8)

For example, if P = {a,b,c} and Q = e then

γ{a,b,c}({e}) = |{2, 3, 5, 6}|/8 = 4/8

γ{a,b}({e}) = |{2, 3, 5, 6}|/8 = 4/8

γ{b,c}({e}) = |{2, 3, 5}|/8 = 3/8

γ{a,c}({e}) = |{2, 3, 5, 6}|/8 = 4/8

Also, calculating the significance of the three attributes gives:

σP (Q, a) = γ{a,b,c}({e})− γ{b,c}({e}) = 1/8

σP (Q, b) = γ{a,b,c}({e})− γ{a,c}({e}) = 0

σP (Q, c) = γ{a,b,c}({e})− γ{a,b}({e}) = 0

From this it follows that attribute a is indispensable, but attributes b and c

can be dispensed with when considering the dependency between the deci-

sion attribute and the given individual conditional attributes.

2.5. Reducts

For many application problems, it is often necessary to maintain a concise

form of the information system. One way to implement this is to search for

a minimal representation of the original dataset. For this, the concept of a

reduct is introduced and defined as a minimal subset R of the initial attribute

set C such that for a given set of attributes D, γR(D) = γC(D). From the

literature, R is a minimal subset if γR−{a}(D) 6= γR(D) for all a ∈ R. This

means that no attributes can be removed from the subset without affecting

the dependency degree. Hence, a minimal subset by this definition may not

be the global minimum (a reduct of smallest cardinality). A given dataset

may have many reduct sets, and the collection of all reducts is denoted by

9

Rall = {X |X ⊆ C, γX(D) = γC(D);

γX−{a}(D) 6= γX(D), ∀a ∈ X} (9)

The intersection of all the sets in Rall is called the core, the elements of

which are those attributes that cannot be eliminated without introducing

more contradictions to the representation of the dataset. For many tasks (for

example, feature selection [11]), a reduct of minimal cardinality is ideally

searched for. That is, an attempt is to be made to locate a single element

of the reduct set Rmin ⊆ Rall:

Rmin = {X |X ∈ Rall, ∀Y ∈ Rall, |X| ≤ |Y |} (10)

2.6. Discernibility Matrix

Many applications of rough sets make use of discernibility matrices for

finding rules or reducts. A discernibility matrix [36] of a decision table

(U,C ∪ D) is a symmetric |U| × |U| matrix with entries defined by:

cij = {a ∈ C|a(xi) 6= a(xj)} i, j = 1, ..., |U| (11)

Each cij contains those attributes that differ between objects i and j.

For finding reducts, the decision-relative discernibility matrix is of more

interest. This only considers those object discernibilities that occur when the

corresponding decision attributes differ. Returning to the example dataset,

the decision-relative discernibility matrix is produced, as listed in Table 2.

For example, it can be seen from the table that objects 0 and 1 differ in each

attribute. Although some attributes in objects 1 and 3 differ, their corre-

sponding decisions are the same so no entry appears in the decision-relative

10

matrix. Grouping all entries containing single attributes forms the core of

the dataset (those attributes appearing in every reduct, which cannot be

removed without introducing inconsistencies). Here, the core of the dataset

is {d}.

Table 2: The decision-relative discernibility matrix

x ∈ U 0 1 2 3 4 5 6 7

0

1 a, b, c, d

2 a, c, d a, b, c

3 b, c a, b, d

4 d a, b, c, d b, c, d

5 a, b, c, d a, b, c a, b, d

6 a, b, c, d b, c a, b, c, d b, c

7 a, b, c, d d a, c, d a, d

From this, the concept of discernibility functions can be introduced.

This is a concise notation of how each object within the dataset may be

distinguished from the others. A discernibility function fD is a boolean

function of m boolean variables a∗1, ..., a
∗
m (corresponding to the membership

of attributes a1, ..., am to a given entry of the discernibility matrix), defined

as below:

fD(a∗1, ..., a
∗
m) = ∧{∨c∗ij |1 ≤ j ≤ i ≤ |U|, cij 6= ∅} (12)

where c∗ij = {a∗|a ∈ cij}. By finding the set of all prime implicants of the

discernibility function, all the minimal reducts of a system may be deter-

11

mined. From table 2, the decision-relative discernibility function is (with

duplicates removed):

fD(a∗, b∗, c∗, d∗) = (a∗ ∨ b∗ ∨ c∗ ∨ d∗) ∧ (a∗ ∨ c∗ ∨ d∗)

∧(b∗ ∨ c∗) ∧ (d∗) ∧ (a∗ ∨ b∗ ∨ c∗)

∧(a∗ ∨ b∗ ∨ d∗) ∧ (b∗ ∨ c∗ ∨ d∗)

∧(a∗ ∨ d∗)

Further simplification can be performed by removing those clauses that are

subsumed by others:

fD(a∗, b∗, c∗, d∗) = (b∗ ∨ c∗) ∧ (d∗)

The reducts of the dataset may be obtained by converting the above ex-

pression from conjunctive normal form to disjunctive normal form (without

negations) [32]. Hence, the minimal reducts are {b, d} and {c, d}. Although

this is guaranteed to discover all minimal subsets, it is a costly operation

rendering the method impractical for even medium-sized datasets.

For most applications, a single minimal subset is required for data reduc-

tion. This has led to approaches that consider finding individual shortest

prime implicants from the discernibility function. A common method is to

incrementally add those attributes that occur with the highest frequency in

the function, removing any clauses containing the attributes, until all clauses

are eliminated [28]. However, even this does not ensure that a minimal sub-

set is found - the search can proceed down non-minimal paths.

12

2.7. Techniques for Finding Reducts

In the rough set literature, a minimal reduct is defined as a subset of

features that have the same dependency as the full set of conditional features,

and also no proper subset of this exists such that the dependency remains

maximal. However, this terminology is slightly misleading in that a reduct

may not be minimal in the sense of having the smallest cardinality amongst

all reducts. In this section, rough set-based feature selection techniques are

classified into three categories: whether they find superreducts (i.e. they

find subsets that have maximal dependency but do not necessarily satisfy the

minimality condition), minimal reducts, or reducts of smallest cardinality.

The work in this paper attempts to tackle the most challenging of these

tasks, finding reducts of smallest cardinality.

2.7.1. Superreducts

The QuickReduct algorithm [8] attempts to determine reducts. It

starts off with an empty set and adds in turn, one at a time, those attributes

that result in the greatest increase in the rough set dependency metric,

until this produces its maximum possible value for the dataset. Other such

techniques may be found in [33].

In [48], a heuristic filter-based approach is presented based on rough set

theory. The algorithm begins with the core of the dataset and incrementally

adds attributes based on a heuristic measure. Additionally, a threshold value

is required as a stopping criterion to determine when a reduct candidate is

“near enough” to being a reduct. On each iteration, those objects that are

consistent with the current reduct candidate are removed (an optimization

that can be used with RSAR). As the process starts with the core of the

dataset, this has to be calculated beforehand. Using the discernibility matrix

13

for this purpose can be quite impractical for datasets of large dimensionality.

The Johnson Reducer is a simple greedy heuristic algorithm that is often

applied to discernibility functions to find a single reduct [29]. The algorithm

begins by setting the current reduct candidate, R, to the empty set. Then,

each conditional attribute appearing in the discernibility function is eval-

uated according to the heuristic measure. For the standard Johnson algo-

rithm, this is typically a count of the number of appearances an attribute

makes within the logical contexts termed clauses; attributes that appear

more frequently are considered to be more significant. The attribute with

the highest heuristic value is added to the reduct candidate and all clauses

in the discernibility function containing this attribute are removed. As soon

as all clauses have been removed, the algorithm terminates and returns the

reduct R. R is assured to be a (super)reduct as all clauses contained within

the discernibility function have been addressed. Variations of the algorithm

involve alternative heuristic functions in an attempt to guide search down

better paths [28, 41]. However, no perfect heuristic exists, and hence there

is still no guarantee of subset optimality.

Recent approaches to the problem include the work conducted in [20],

where a technique is detailed that breaks down large information systems

into a master table and several more manageable sub-tables (an approach

not dissimilar to that of finding dynamic reducts [2]). Reducts are then

calculated for the smaller tables and used to find reducts for the master

table in a more efficient manner. Additionally, there have been attempts

to accelerate the search for reducts within existing heuristic methods, e.g.

[34] where a framework is proposed based on positive approximations for this

purpose, and [45] where a condensing tree structure is used for optimization.

Also worth mentioning are the approaches reported in [3, 44] which use

14

genetic algorithms to discover optimal or close-to-optimal reducts. Reduct

candidates are encoded as bit strings, with the value in position i set if the

ith attribute is present. The fitness function depends on two parameters.

The first is the number of bits set. The function penalises those strings which

have larger numbers of bits set, driving the process to find smaller reducts.

The second is the number of classifiable objects given this candidate. The

reduct should discern between as many objects as possible (ideally all of

them).

Although this approach is not guaranteed to find minimal subsets, it

may find many subsets for any given dataset. It is also useful for situations

where new objects are added to or old objects are removed from a dataset

- the reducts generated previously can be used as the initial population for

the new reduct-determining process. The main drawback is the time taken

to compute the fitness of each bit string, which is O(a.o2), where a is the

number of attributes and o the number of objects in the dataset. The extent

to which this hampers performance depends on several factors, including the

population size.

Other applications of evolutionary algorithms to reduct finding include

Ant Colony Optimization [7, 17], Particle Swarm Optimization [42] and

Estimation of Distribution Algorithms [5]. Although all these methods have

been demonstrated to be successful in locating small subsets, the algorithms

cannot guarantee that the results found are minimal reducts.

2.7.2. Minimal reducts

A method based on QuickReduct, called ReverseReduct [17], has

been proposed where the strategy is the backward elimination of attributes

as opposed to the forward selection process used by QuickReduct. Ini-

15

tially, all attributes appear in the reduct candidate; the least informative

ones are incrementally removed until no further attribute can be elimi-

nated without introducing inconsistencies. This method results in minimal

reducts, as it will terminate when the removal of any feature results in a

decrease in dependency degree. Obviously, this method may be restrictive

if the number of the initial attributes is large.

In [41] an algorithm is proposed to find minimal reducts with user pref-

erences via the discernibility matrix. The matrix itself is transformed into a

set of subsets of attributes corresponding to the matrix elements. A reduct

is constructed through repeated application of absorption and grouping op-

erations. The complexity of this method is O(c2) where the discernibility

matrix has c clauses.

Another approach that determines minimal reducts by simplification of

the discernibility matrix is presented in [46]. A number of elementary matrix

operations are introduced that, by applying them a finite number of times,

result in a minimum discernibility matrix. The union of all elements in the

minimum matrix produces a minimal reduct.

A method for determining globally optimal reducts by first finding a

sub-optimal reduct for a decision system, and then examining all possible

sub-systems is proposed in [23]. However, its complexity is rather high,

and in fact, may not necessarily find the true globally optimal reduct, as

the reduct discovered by the heuristic process needs to be a superset of the

globally optimal reduct, which may not be the case.

2.7.3. Globally optimal reducts

As mentioned previously, for small datasets, reducts of smallest cardi-

nality may be found by calculating the prime implicants of the discernibility

16

function. This is typically achieved by converting the function to disjunctive

normal form - a costly operation, impractical for most datasets.

In [37, 38], a method for the generation of all reducts in an information

system by manipulating the clauses in discernibility functions is reported.

In addition to the standard simplification laws, the concept of strong com-

pressibility is introduced and applied in conjunction with an expansion al-

gorithm. Although the method can output a globally optimal reduct (as all

reducts are generated), it still exhibits a prohibitively high computational

complexity.

3. RSAR-SAT

The Propositional Satisfiability (SAT) problem [12] is one of the most

studied NP-complete problems because of its significance in both theoretical

research and practical applications. Given a boolean formula (typically in

conjunctive normal form (CNF)), the SAT problem requires an assignment of

variables/features so that the formula evaluates to true, or a determination

that no such assignment exists. In recent years, search algorithms based on

the well-known Davis-Logemann-Loveland algorithm (DPLL) [12] have been

emerging as representatives of the most efficient methods for complete SAT

solvers. Such solvers can either find a solution or prove that no solution

exists.

Stochastic techniques have also been developed in order to reach a so-

lution quickly. These pick random locations in the space of possible assign-

ments and perform limited local searches from them. However, as these

techniques do not examine the entire search space, they are unable to prove

unsatisfiability.

17

A CNF formula on n binary variables x1, ..., xn is the conjunction of m

clauses C1, ..., Cm each of which is the disjunction of one or more literals. A

literal is the occurrence of a variable or its negation. A formula denotes a

unique n-variable boolean function f(x1, ..., xn). Clearly, such a function can

be represented by many equivalent CNF formulas. The satisfiability problem

is concerned with finding an assignment to the arguments of f(x1, ..., xn)

that makes the function equal to 1, signalling that it is satisfiable, or proving

that the function is equal to 0 and hence unsatisfiable [47]. By viewing the

selection problem as a variant of SAT, with a bound on true assignments,

techniques from this field can be applied to reduct search.

3.1. Finding Rough Set Reducts

The problem of finding the smallest feature subsets using rough set the-

ory can be formulated as a SAT problem. This theory allows the generation

from datasets of clauses of features in conjunctive normal form. If after

assigning truth values to all features appearing in the clauses the formula

is satisfied, then those features set to true constitute a valid subset for the

data. The task is to find the smallest number of such features so that the

CNF formula is satisfied. In other words, the problem here concerns finding

a minimal assignment amongst the arguments of f(x1, ..., xn) that makes the

function equal to 1. There will be at least one solution to the problem (i.e.

all xi, i = 1, 2, ..., n, set to 1) for consistent datasets. Preliminary work has

been carried out in this area [1], though this does not adopt a DPLL-style

approach to finding solutions.

The DPLL algorithm for finding minimal subsets can be found in Figure

1, where a search is conducted in a depth-first manner. The key operation

in this procedure is the unit propagation step, unitPropagate(F), in lines

18

(6) and (7). Clauses in the formula that contain a single literal will only be

satisfied if that literal is assigned the value 1 (for positive literals). These

are called unit clauses. Unit propagation examines the current formula for

unit clauses and automatically assigns the appropriate value to the literal

they contain. The elimination of a literal can create new unit clauses, and

thus unit propagation eliminates variables by repeated passes until there

is no unit clause in the formula. The order of the unit clauses within the

formula makes no difference to the results or the efficiency of the process.

Branching occurs at lines (9) to (12) via the function selectLiteral(F).

Here, the next literal is chosen heuristically from the current formula, as-

signed the value 1, and the search continues. If this branch eventually results

in unsatisfiability, the procedure will assign the value 0 to this literal instead

and continue the search. The importance of choosing good branching lit-

erals is well known - different branching heuristics may produce drastically

different sized search trees for the same basic algorithm, thus significantly

affecting the efficiency of the solver. The heuristic currently used within

RSAR-SAT is to select the variable that appears in the most clauses in the

current set of clauses. Many other heuristics exist which may be used as

alternatives for this purpose [47], but these are not addressed here.

A degree of pruning can take place in the search by remembering the size

of the currently considered subset and the smallest optimal subset encoun-

tered so far. If the number of literals currently assigned the value 1 equals

the number of those in the presently optimal subset, and the satisfiability

of F is still not known, then any further search down this branch will not

result in a smaller optimal subset.

Although stochastic methods have been applied to SAT problems [15],

these are not applicable here as they provide no guarantee of solution min-

19

DPLL(F).

F , the formula containing the current set of clauses.

(1) if (F contains an empty clause)

(2) return unsatisfiable

(3) if (F is empty)

(4) output current assignment

(5) return satisfiable

(6) if (F contains a unit clause {l})

(7) F ′ ← unitPropagate(F)

(8) return DPLL(F ′)

(9) x ← selectLiteral(F)

(10) if (DPLL(F ∪ {x}) is satisfiable)

(11) return satisfiable

(12) else return DPLL(F ∪ {−x})

Figure 1: Definition of the DPLL algorithm

imality. The DPLL-based algorithm will always find the minimal optimal

subset. However, this will come at the expense of time taken to find it.

3.2. Example

The dataset given in table 1 is used here to illustrate the operation

of RSAR-SAT. The initial step is to generate the list of clauses, which is

equivalent to generating the decision-relative discernibility function:

20

fD(a∗, b∗, c∗, d∗) = (a∗ ∨ b∗ ∨ c∗ ∨ d∗) ∧ (a∗ ∨ c∗ ∨ d∗)

∧(b∗ ∨ c∗) ∧ (d∗) ∧ (a∗ ∨ b∗ ∨ c∗)

∧(a∗ ∨ b∗ ∨ d∗) ∧ (b∗ ∨ c∗ ∨ d∗)

∧(a∗ ∨ d∗)

As was discussed earlier, this can be simplified further. For the pur-

poses of this example, the simplification phase is skipped in order to better

illustrate the steps involved.

Clause (d) is a unit clause, and therefore must be assigned the value 1

(otherwise the set of clauses cannot be satisfied). This assignment is then

propagated through the other clauses, such that all clauses containing the

literal d are removed. The remaining clauses are:

(b∗ ∨ c∗) ∧ (a∗ ∨ b∗ ∨ c∗)

The algorithm recurses using this new set of clauses. The best literal is then

selected as there are no unit clauses; the frequency of occurrence is used

here as the heuristic for selection. As can be seen, there are two literals, b

and c, that appear in both clauses, whilst a only appears in one clause. The

algorithm then makes the arbitrary choice between b and c, and all clauses

have been satisfied. The final reduct is {b, d} or {c, d}, and these are the

reducts of minimal cardinality for this dataset.

4. Fuzzy Discernibility Matrices

The RSAR process above can only operate effectively with datasets con-

taining discrete values. There is also no way of handling noisy data. As

21

most datasets contain real-valued attributes, it is necessary to perform a

discretization step beforehand. This is typically implemented by standard

fuzzification techniques, enabling linguistic labels to be associated with at-

tribute values. However, membership degrees of attribute values to fuzzy

sets are not exploited in the process of dimensionality reduction. By using

fuzzy-rough sets [13], it is possible to use this information to better guide

feature selection; this already has been shown to be a highly useful technique

in reducing data dimensionality [17]. The technique outlined here was pro-

posed in [18], which also contains a walkthrough of the fuzzy-rough feature

selection process.

4.1. Fuzzy-Rough Approximations

Definitions for the fuzzy lower and upper approximations can be found in

[9, 35], where a T -transitive fuzzy similarity relation is used to approximate

a fuzzy concept X:

µRPX(x) = inf
y∈U

I(µRP
(x, y), µX(y)) (13)

µRPX
(x) = sup

y∈U
T (µRP

(x, y), µX(y)) (14)

Here, I is a fuzzy implicator, T is a t-norm and x ∈ U. RP is the fuzzy

similarity relation induced by the subset of features P :

µRP
(x, y) = Ta∈P {µRa(x, y)} (15)

µRa(x, y) is the degree to which objects x ∈ U and y ∈ U are similar for fea-

ture a. Many fuzzy similarity relations can be constructed for this purpose,

for example:

µRa(x, y) = exp(−(a(x)− a(y))2

2σa2
) (16)

22

µRa(x, y) = max(min(
(a(y)− (a(x)− σa))

(σa)
,

((a(x) + σa)− a(y))

(σa)
), 0)

(17)

where σa
2 is the variance of feature a. As these relations do not necessarily

display T -transitivity, the fuzzy transitive closure must be computed for

each attribute. The combination of feature relations in equation (15) has

been shown to preserve T -transitivity [40].

In a similar way to the original FRFS approach [17], the fuzzy positive

region can be defined as:

µPOSRP
(Q)(x) = sup

X∈U/Q
µRPX(x) (18)

The resulting degree of dependency is:

γ′P (Q) =

∑
x∈U

µPOSRP
(Q)(x)

|U|
(19)

A fuzzy-rough reduct R can be defined as a (locally minimal) subset

of features that preserves the dependency degree of the entire dataset, i.e.

γ′R(D) = γ′C(D). Core features may be determined by considering the change

in dependency of the full set of conditional features when individual at-

tributes are removed:

Core(C) = {a ∈ C|γ′C−{a}(Q) < γ′C(Q)} (20)

4.2. Fuzzy Discernibility Matrix-based Feature Selection

As indicated previously, there are two main branches of research in crisp

rough set-based feature selection: those based on the dependency degree and

those based on discernibility matrices. The developments above are solely

concerned with the extension of the dependency degree to the fuzzy-rough

23

case. Hence, methods constructed based on the crisp dependency degree can

be employed for fuzzy-rough FS. By extending the discernibility matrix to

the fuzzy case, it is possible to employ approaches similar to those in crisp

rough set FS to determine fuzzy-rough reducts. A first step toward this

is presented in [6, 39] where a crisp discernibility matrix is constructed for

fuzzy-rough selection. Thresholding is used, breaking the rough set ideology

(which ensures that no information other than the dataset itself is needed

for reduct search), which determines which features are to appear in the

matrix entries. However, as membership degrees are not considered, search

based on the crisp discernibility may result in reducts that are not true

fuzzy-rough reducts.

4.2.1. Fuzzy Discernibility

The crisp discernibility matrix is herein extended by employing fuzzy

clauses. Entries in the fuzzy discernibility matrix is a fuzzy set, to which

every feature belongs to a certain degree. The extent to which a feature

a belongs to the fuzzy clause Cij is determined by the fuzzy discernibility

measure:

µCij (a) = N(µRa(i, j)) (21)

where N denotes fuzzy negation and µRa(i, j) is the fuzzy similarity of ob-

jects i and j, and hence µCij (a) is a measure of the fuzzy discernibility.

For the crisp case, if µCij (a) = 1 then the two objects are distinct for this

feature; if µCij (a) = 0, the two objects are identical. For fuzzy cases where

µCij (a) ∈ (0, 1), the objects are partly discernible. Note that the choice

of fuzzy similarity relation must be identical to that of the fuzzy-rough de-

pendency degree approach to find corresponding reducts. Each entry in the

24

fuzzy indiscernibility matrix is a set of attributes and their memberships:

Cij = {ax|a ∈ C, x = N(µRa(i, j))} i, j = 1, ..., |U| (22)

For example, an entry Cij in the fuzzy discernibility matrix might be:

{a0.4, b0.8, c0.2, d0.0}. This denotes that µCij (a) = 0.4, µCij (b) = 0.8, etc. In

crisp discernibility matrices, these values are either 0 or 1 as the underlying

relation is an equivalence relation. The example clause can be viewed as

indicating the significance value of each feature - the extent to which the

feature discriminates between the two objects i and j. The core of the

dataset is defined as:

Core(C) = {a ∈ C|∃Cij , µCij (a) > 0,

∀f ∈ {C− a} µCij (f) = 0}
(23)

For clauses generated via the decision-relative discernibility matrix (see

later), this is equivalent to equation (20).

4.2.2. Fuzzy Discernibility Function

As with the crisp approach, the entries in the matrix can be used to

construct the fuzzy discernibility function:

fD(a∗1, ..., a
∗
m) = ∧{∨ C∗ij |1 ≤ j < i ≤ |U|} (24)

where C∗ij = {a∗x|ax ∈ Cij}. The function returns values in [0, 1], which can

be seen to be a measure of the extent to which the function is satisfied for a

given assignment of truth values to variables. To discover globally minimal

reducts from the fuzzy discernibility function, the task is to find the minimal

assignment of the value 1 to the variables such that the formula is maximally

satisfied. By setting all variables to 1, the maximal value for the function

can be obtained as this provides the most discernibility between objects.

25

4.2.3. Decision-relative Fuzzy Discernibility Matrix

As with the crisp discernibility matrix, for a decision system the decision

feature must be taken into account for achieving reductions; only those

clauses with different decision values are included in the crisp discernibility

matrix. For the fuzzy version, this is encoded as:

fD(a∗1, ..., a
∗
m) = {∧{{∨ C∗ij} ← qN(µRq (i,j))

}|

1 ≤ j < i ≤ |U|}
(25)

for decision feature q, where ← denotes fuzzy implication. This allows the

extent to which decision values differ to affect the overall satisfiability of the

clause. If µCij (q) = 1 then this clause provides maximum discernibility (i.e.,

the two objects are maximally different according to the fuzzy similarity

measure). When the decision is crisp and crisp equivalence is used, µCij (q)

becomes 0 or 1.

5. FRFS-SAT

Reducts are calculated via the fuzzy clauses from the construction of

the fuzzy discernibility function above. Crisp discernibility matrices can

be adapted with suitable extensions. The aim here is to determine those

reducts that are minimal in the global sense (i.e., of smallest cardinality).

Thus, heuristic techniques are not applicable as the resulting reducts may

not satisfy this property, and there is no computationally efficient way of

determining this for a particular reduct. This section proposes a fuzzy ex-

tension to propositional satisfiability for the purpose of determining globally

minimal reducts.

26

5.1. Formulation

The degree of satisfaction of a clause Cij for a subset of features P is

defined as:

SATP (Cij) = Sa∈P {µCij (a)} (26)

for a t-conorm S. Returning to the example clause {a0.4, b0.8, c0.2, d0.0}, if

the subset P = {a, c} is chosen, the resulting degree of satisfaction of the

clause is

SATP (Cij) = S{0.4, 0.2} = 0.6

using the Lukasiewicz t-conorm, min(1, x+ y).

In traditional (crisp) propositional satisfiability, a clause is fully satisfied

if at least one variable in the clause has been set to true. For the fuzzy

case, clauses may be satisfied to a certain degree depending on which vari-

ables have been assigned the value true. By setting P = C, the maximum

satisfiability degree of a clause can be obtained:

maxSATij = SATC(Cij) = Sa∈C{µCij (a)} (27)

This is the maximal amount that clause Cij may be satisfied. The maxi-

mum satisfiability degree of the example clause is S(0.4, 0.8, 0.2, 0.0) which

evaluates to 1 if the Lukasiewicz t-conorm is used. Here it can be seen that,

depending on the t-conorm used, clauses may in fact be maximally satisfied

by the selection of several sub-maximal features. Using the max t-conorm,

the maximum satisfiability degree is 0.8, obtained only by the inclusion of

feature b in P .

In this setting, a fuzzy-rough reduct corresponds to a (minimal) truth as-

signment to variables such that each clause has been satisfied to its maximum

extent. See the appendix for a proof that fuzzy-rough reducts maximally

satisfy the set of clauses for a given dataset.

27

5.2. Algorithm

The DPLL-based algorithm for finding minimal subsets is given in Figure

2, where search is conducted in a depth-first manner. The key operation in

this procedure is the unit propagation step, unitPropagate(CL), in lines

(6) and (7). Clauses in the formula that contain a single literal will only

be satisfied if that literal is assigned the value true (unit clauses). Unit

propagation examines the current formula for unit clauses and assigns the

appropriate value to the literal they contain. The elimination of a literal

can create new unit clauses, and thus unit propagation eliminates variables

by repeated passes until there is no unit clause in the formula. The order

of the unit clauses within the formula makes no difference to the results or

the efficiency of the process.

Branching occurs at lines (10) to (14) via the function selectLiteral(CL).

Here, the next literal is chosen heuristically from the current formula, as-

signed the value true, and the search continues. If this branch eventually

results in unsatisfiability, the procedure assigns the value false to this lit-

eral instead and continues the search. Choosing good branching literals is

important - different branching heuristics may produce drastically different

sized search trees for the same basic algorithm, affecting the efficiency of the

solver.

One heuristic is to select the variable whose fuzzy discernibility is non-

zero in the most clauses of the current set of clauses. Alternatively, the sum

of the fuzzy discernibilities for a particular attribute across all clauses gives

a good indication of attribute importance. This is the heuristic adopted in

this work.

Pruning can be carried out in the search by remembering the size of the

currently considered subset d and the smallest optimal subset encountered

28

so far D. If the number of variables currently assigned the value true equals

the number of those in the presently optimal subset then any further search

down this branch will not result in a smaller optimal subset. Also, if an

empty clause is generated during Update-False, the algorithm stops the

search down this branch.

Line (3) is reached when all clauses have been maximally satisfied (namely,

a fuzzy-rough reduct has been reached) and the corresponding variable as-

signment is returned as the output. This finally returned variable assignment

is the globally minimal reduct.

Figure 3 shows the update of the current clause list if the variable x is

set to true. The updated clause list is stored in CL′ and returned upon

completion. Line (4) determines if the clause C will be maximally satisfied

if variable x is set to true. If not, the fuzzy clause is retained and added

to the updated clause list. Once a clause is maximally satisfied, it is not

considered further down this branch in the search.

When the chosen literal is assigned the value false (i.e., it does not ap-

pear in subsets beyond this branching point), the fuzzy clauses are updated

according to Figure 4. Each clause C in the current set of clauses is exam-

ined. In line (4), |C| denotes the number of literals in the clause that can

be set to true; if this is zero, then this clause cannot be satisfied. Line (4)

also checks to see if the clause is satisfiable, i.e. whether it could potentially

reach the maximum satisfiability degree if further literals are chosen. If not,

the current variable assignment cannot lead to a fuzzy-rough reduct, and so

search down this branch need not be considered any further.

29

5.2.1. Example

Table 3 illustrates the operation of FRFS-SAT, using an example dataset.

The fuzzy connectives used are the Lukasiewicz t-norm (max(x+ y − 1, 0))

Table 3: Example dataset

Object a b c q

1 -0.4 -0.3 -0.5 no

2 -0.4 0.2 -0.1 yes

3 -0.3 -0.4 -0.3 no

4 0.3 -0.3 0 yes

5 0.2 -0.3 0 yes

6 0.2 0 0 no

and the Lukasiewicz fuzzy implicator (min(1 − x + y, 1)). The use of this

implicator is recommended as it is both a residual and S-implicator.

Using the fuzzy similarity measure in (17), the resulting relations are as

follows for each feature in the dataset:

Ra(x, y) =

1.0 1.0 0.699 0.0 0.0 0.0

1.0 1.0 0.699 0.0 0.0 0.0

0.699 0.699 1.0 0.0 0.0 0.0

0.0 0.0 0.0 1.0 0.699 0.699

0.0 0.0 0.0 0.699 1.0 1.0

0.0 0.0 0.0 0.699 1.0 1.0

30

Rb(x, y) =

1.0 0.0 0.568 1.0 1.0 0.0

0.0 1.0 0.0 0.0 0.0 0.137

0.568 0.0 1.0 0.568 0.568 0.0

1.0 0.0 0.568 1.0 1.0 0.0

1.0 0.0 0.568 1.0 1.0 0.0

0.0 0.137 0.0 0.0 0.0 1.0

Rc(x, y) =

1.0 0.0 0.036 0.0 0.0 0.0

0.0 1.0 0.036 0.518 0.518 0.518

0.036 0.036 1.0 0.0 0.0 0.0

0.0 0.518 0.0 1.0 1.0 1.0

0.0 0.518 0.0 1.0 1.0 1.0

0.0 0.518 0.0 1.0 1.0 1.0

Next, the fuzzy discernibility matrix needs to be constructed on the basis

of the fuzzy discernibility given in equation (21). For objects 2 and 3, the

resulting fuzzy clause is {a0.301 ∨ b1.0 ∨ c0.964} ← q1.0.

The fuzzy discernibility of objects 2 and 3 for attribute a is 0.301, indi-

cating that the objects are partly discernible for this feature. The objects

are fully discernible with respect to the decision feature, indicated by q1.0.

The set of clauses is:

31

C12 : {a0.0 ∨ b1.0 ∨ c1.0} ← q1.0

C13 : {a0.301 ∨ b0.432 ∨ c0.964} ← q0.0

C14 : {a1.0 ∨ b0.0 ∨ c1.0} ← q1.0

C15 : {a1.0 ∨ b0.0 ∨ c1.0} ← q1.0

C16 : {a1.0 ∨ b1.0 ∨ c1.0} ← q0.0

C23 : {a0.301 ∨ b1.0 ∨ c0.964} ← q1.0

C24 : {a1.0 ∨ b1.0 ∨ c0.482} ← q0.0

C25 : {a1.0 ∨ b1.0 ∨ c0.482} ← q0.0

C26 : {a1.0 ∨ b0.863 ∨ c0.482} ← q1.0

C34 : {a1.0 ∨ b0.431 ∨ c1.0} ← q1.0

C35 : {a1.0 ∨ b0.431 ∨ c1.0} ← q1.0

C36 : {a1.0 ∨ b1.0 ∨ c1.0} ← q0.0

C45 : {a0.301 ∨ b0.0 ∨ c0.0} ← q0.0

C46 : {a0.301 ∨ b1.0 ∨ c0.0} ← q1.0

C56 : {a0.0 ∨ b1.0 ∨ c0.0} ← q1.0

Due to the properties of implicators, all clauses with q0.0 may be removed

without influencing the final outputted reduct, hence the clause list can be

reduced to (with duplicates removed):

C12 : {a0.0 ∨ b1.0 ∨ c1.0} ← q1.0

C14 : {a1.0 ∨ b0.0 ∨ c1.0} ← q1.0

C23 : {a0.301 ∨ b1.0 ∨ c0.964} ← q1.0

C26 : {a1.0 ∨ b0.863 ∨ c0.482} ← q1.0

C34 : {a1.0 ∨ b0.431 ∨ c1.0} ← q1.0

C46 : {a0.301 ∨ b1.0 ∨ c0.0} ← q1.0

C56 : {a0.0 ∨ b1.0 ∨ c0.0} ← q1.0

32

The DPLL-Solve algorithm is then used to determine the minimal

reduct. Clause C56 is a unit clause (here feature b is a core attribute), so

variable b is set to true. The Update-True procedure is then executed,

removing all clauses that are now maximally satisfied as a result of this as-

signment:

C14 : {a1.0 ∨ 0.0 ∨ c1.0} ← q1.0

C26 : {a1.0 ∨ 0.863 ∨ c0.482} ← q1.0

C34 : {a1.0 ∨ 0.431 ∨ c1.0} ← q1.0

Next, line (12) of the algorithm is executed. There are no unit clauses,

so line (10) is reached and the variable a is chosen as the sum of its fuzzy

discernibilities is greater than that of c. With a set to true, all clauses have

been maximally satisfied and {a, b} is returned. The algorithm terminates

at this point, as the choice of setting b to false is unavailable because b was

chosen via a unit clause (and hence must be set to true).

5.3. Simplification

Crisp discernibility matrices are simplified by removing duplicate entries

and clauses that are supersets of others. This can be achieved for fuzzy

discernibility matrices: duplicate clauses can be removed as a subset that

satisfies one clause to a certain degree will always satisfy the other to the

same degree. Also, clauses whose decision component is zero can also be

removed due to the inherent properties of fuzzy implication.

A further degree of simplification is obtained by an extension of the crisp

approach where clauses that are supersets of others are removed (termed

absorption), for the fuzzy case:

33

S(Cij , Ckl) =

∑
a∈C T (µCij (a), µCkl

(a))∑
a∈C µCij (a)

(28)

If S(Cij , Ckl) = 1 then clause Ckl is subsumed by clause Cij and can be

removed. Of course, further simplification techniques from the literature

[37] on crisp discernibility matrices and functions could be extended and

applied, but only fuzzy absorption is considered here.

Returning to the example, the original set of clauses used as input to

DPLL-Solve are:

C12 : {a0.0 ∨ b1.0 ∨ c1.0} ← q1.0

C14 : {a1.0 ∨ b0.0 ∨ c1.0} ← q1.0

C23 : {a0.301 ∨ b1.0 ∨ c0.964} ← q1.0

C26 : {a1.0 ∨ b0.863 ∨ c0.482} ← q1.0

C34 : {a1.0 ∨ b0.431 ∨ c1.0} ← q1.0

C46 : {a0.301 ∨ b1.0 ∨ c0.0} ← q1.0

C56 : {a0.0 ∨ b1.0 ∨ c0.0} ← q1.0

The fuzzy absorption simplification process compares each pair of clauses

and removes those that are subsumed. For example, clauses C46 and C23:

S(C46, C23) =

∑
a∈C T (µC46(a), µC23(a))∑

a∈C µC46(a)

=
T (0.301, 0.301) + T (1, 1) + T (0, 0.964)

1.301

In this case, S(C46, C23) = 1 so clause C23 can be removed. Any assignment

of truth values to variables such that C46 is maximally satisfied also implies

that C23 is maximally satisfied. The reverse is not true, so C23 provides

no further information than that already possessed by C46. Applying this

34

process to all clauses results in:

C14 : {a1.0 ∨ b0.0 ∨ c1.0} ← q1.0

C26 : {a1.0 ∨ b0.863 ∨ c0.482} ← q1.0

C56 : {a0.0 ∨ b1.0 ∨ c0.0} ← q1.0

The number of clauses has been reduced to 3 from the original 7, and the

DPLL search from this point is straightforward, resulting in the reduct

{a, b}. The subset {b, c} is also a reduct, as discovered by the original FRFS

algorithm [18]. Again, use of the Lukasiewicz t-conorm can lead to a clause

being maximally satisfied with the choice of several sub-maximal features.

In this case, S(0.863, 0.482) = 1, so {b, c} is a valid fuzzy-rough reduct.

This simplification process is effective, but computationally expensive:

the process must compare each clause with every other clause in the clause

list. For the worst case, c = (n2 − n)/2 clauses are generated initially,

so (c2 − c)/2 clause comparisons are to be made. This can be reduced

by integrating the simplification into the discernibility matrix construction

process; as clauses are generated, they are checked for fuzzy absorption

against existing clauses and vice versa.

Another simplification method for crisp discernibility matrices is to ex-

ploit local strong compressibility [38]. If a subset of attributes is simultane-

ously present or absent in the set of clauses, then they can be replaced by a

single representative attribute (since all attributes in this class possess ex-

actly the same information, then with one of the attributes selected, the rest

are redundant). Figure 5 shows the extension of this concept to the fuzzy

case, where attribute a1 is tested to see if it is redundant in the presence of

attribute a2.

35

5.4. Unsupervised selection

The use of rough and fuzzy-rough sets for unsupervised feature selection

has also been investigated [30]. This is achieved in this framework by setting

all decision components to 1, specifying that all pairs of objects must be

distinguishable.

6. Evaluation

This section presents the initial experimental evaluation of the proposed

method on nominal and real-valued benchmark datasets from [4] and [17].

For the statistical comparisons, paired t-testing was used (with significance

level 0.05) and the test base is the first algorithm in each table.

JRip [10] was employed for the purpose of evaluating the resulting sub-

sets. JRip learns propositional rules by repeatedly growing rules and pruning

them. During the growth phase, features are added greedily until a termi-

nation condition is satisfied. Features are then pruned in the next phase

subject to a given pruning metric. Once the ruleset is generated, a fur-

ther optimization is performed where classification rules are evaluated and

deleted based on their performance on randomized data. For the experi-

ments themselves, 10×10-fold cross validation was performed, where each

feature selection algorithm is applied to the training folds and then the

resulting subsets used to reduce the test fold each time.

6.1. Crisp Datasets

The considered feature selection methods are: the proposed method

(RSAR-SAT), standard rough set attribute reduction (RSAR), a bound-

ary region-based method that employs hillclimbing (BR), a discernibility

function-based method (Disc), RSAR employing a genetic algorithm for

36

search (GA), RSAR employing Particle Swarm Optimization for search

(PSO), and finally the Johnson Reducer using the clauses generated from

the calculation of the discernibility matrix (JR)1. For the GA, the param-

eters empirically selected for use were: 50 generations, population size of

100 individuals, probability of mutation 0.033, probability of crossover 0.6.

For the PSO search method, the parameters used were: 50 generations, 100

particles.

The nominal-valued datasets used in the experimentation for this section

are given in Table 4.

Table 4: Number of features possessed by each dataset

Dataset Features Objects

M-of-n 14 1000

Exactly 14 1000

Exactly2 14 1000

Heart 14 294

Vote 17 300

Credit 21 1000

LED 25 2000

Derm 35 366

Derm2 35 358

WQ 39 521

Lung 57 32

The average subset sizes found over all folds in the cross validation pro-

cedure can be seen in Table 5; the average times of the execution of the

algorithms are presented in Table 6. Those methods employing a greedy

1All evaluation measures described in this paper have been implemented in Weka [43].

The program can be downloaded from http://users.aber.ac.uk/rkj/

37

hill-climbing strategy (i.e., RSAR, BR, Disc and JR) often fail to find the

optimal reducts. For RSAR, there is only one dataset for which it always

finds the optimal subset, demonstrating the inadequacy of this method in

returning the smallest subsets. Of the hill-climbing methods, Disc and JR

appear to utilise more informed heuristics.

Perhaps surprising is the relatively poor performance of the GA-based

method. This may be due to the complexity of the problem of trying to find

optimal subsets. A larger number of generations and population size would

help, however this would greatly affect the time taken (which is already

significantly greater than that for RSAR-SAT overall). PSO performs much

better for this task.

Interestingly, RSAR-SAT is often faster than the other algorithms com-

pared here. This is both surprising and pleasing in that the algorithm not

only has to locate the optimum but then, unlike competitor methods, com-

pletes the search to prove optimality. Note that the time taken for the

method includes the construction of the discernibility matrix and simplifi-

cation of the resulting clauses using the techniques described in this paper,

as well as the search itself.

Table 7 shows the resulting average classification accuracies across all

folds. As can be seen from this table, the reduction methods perform com-

parably. This shows that, in general, the smallest reducts possess similar

amounts of information as larger ones. This is an interesting finding in

further support of the argument presented in [19].

6.2. Comparison with Leading Feature Selectors (I)

In order to further assess the utility of this work, RSAR-SAT was com-

pared against three leading feature selectors: a correlation-based filter method

38

Table 5: Average number of features selected

Dataset RSAR-SAT RSAR BR Disc GA PSO JR

M-of-n 6.00 7.00 ◦ 7.00 ◦ 6.00 7.16 ◦ 6.00 6.00

Exactly 6.00 8.08 ◦ 8.08 ◦ 7.02 ◦ 8.34 ◦ 6.00 6.00

Exactly2 10.00 10.00 10.00 10.44 ◦ 10.68 ◦ 10.00 10.00

Heart 5.78 6.72 ◦ 6.72 ◦ 5.80 6.66 ◦ 6.00 6.24 ◦

Vote 7.84 9.12 ◦ 9.12 ◦ 8.46 ◦ 8.16 7.90 7.84

Credit 8.00 8.54 ◦ 8.54 ◦ 8.08 10.20 ◦ 9.40 ◦ 9.70 ◦

LED 5.00 6.00 ◦ 5.00 17.68 ◦ 8.44 ◦ 5.10 8.02 ◦

Derm 5.32 6.86 ◦ 5.64 5.66 9.62 ◦ 8.42 ◦ 5.80 ◦

Derm2 7.86 9.96 ◦ 9.78 ◦ 8.22 12.56 ◦ 9.92 ◦ 8.38 ◦

WQ 11.04 14.10 ◦ 12.84 ◦ 12.42 ◦ 15.54 ◦ 13.56 ◦ 12.84 ◦

Lung 3.22 3.72 ◦ 3.72 ◦ 3.38 13.00 ◦ 4.72 ◦ 3.38

Average 6.91 8.19 7.86 8.47 10.03 7.91 7.65

•, ◦ statistically significant improvement or degradation

(CFS) [14], a consistency-based method (Cons) [24], and Relief-F [21]. The

results can be seen in Table 8 and Table 9. RSAR-SAT often finds the small-

est subsets for the datasets whilst retaining classification performance when

JRip is applied. The approach performs particularly well for the Exactly

dataset, improving the classification accuracy from 69.26% to 99.40%. For

the datasets Derm and Derm2 the performance is quite poor, however the

method selects fewest features for these datasets.

6.3. Real-valued Datasets

The algorithms were applied to the datasets given in Table 10. The

number of conditional features ranges from 10 to 39 over the datasets. The

methods used in the comparison were the fuzzy dependency (FRFS), fuzzy

boundary region (FBR) and fuzzy discernibility (FD) [18] measures, all using

39

Table 6: Selection time (ms)

Dataset RSAR-SAT RSAR BR Disc GA PSO JR

M-of-n 2881.96 7897.68 ◦ 9646.90 ◦ 3972.98 ◦ 25926.44 ◦ 75330.68 ◦ 2914.36

Exactly 2857.82 8423.10 ◦ 10373.86 ◦ 4399.76 ◦ 25433.90 ◦ 68913.04 ◦ 2890.56

Exactly2 2845.74 9969.76 ◦ 14951.06 ◦ 4995.08 ◦ 24076.52 ◦ 74388.24 ◦ 2870.34

Heart 266.10 655.46 ◦ 1319.96 ◦ 280.72 2281.16 ◦ 5701.30 ◦ 262.54

Vote 333.08 1383.76 ◦ 1576.32 ◦ 506.68 ◦ 3370.54 ◦ 10297.40 ◦ 340.88

Credit 4781.34 17215.16 ◦ 59061.88 ◦ 6823.10 ◦ 38544.66 ◦ 127809.42 ◦ 4756.32

LED 32921.90 66590.60 ◦ 57996.62 ◦ 115483.32 ◦ 218065.26 ◦ 689636.42 ◦ 32078.72

Derm 1542.76 3616.42 ◦ 13042.28 ◦ 1849.54 ◦ 6077.22 ◦ 21198.08 ◦ 1170.86 •

Derm2 2170.14 5145.22 ◦ 11643.22 ◦ 2409.72 5419.88 ◦ 19217.94 ◦ 1158.00 •

WQ 54131.96 16157.84 • 92534.58 ◦ 7795.88 • 14440.94 • 51416.74 3032.88 •

Lung 169.54 29.16 • 30.26 • 9.08 • 9.72 • 204.48 24.98 •

Average 9536.58 12462.20 24743.36 13502.35 33058.75 104010.34 4681.86

•, ◦ statistically significant improvement or degradation

a greedy hill-climbing search process. Again, two alternative search methods

were used with the fuzzy dependency measure, genetic algorithms (GA)

and particle swarm optimization (PSO), in order to search for the smallest

subsets. Additionally the Johnson Reducer (JR) was applied, using the fuzzy

clauses generated by the construction of the fuzzy discernibility matrix.

The three measures that employ a hill-climbing search strategy all locate

reducts of a small size, though not necessarily globally optimal. The bound-

ary region measure and discernibility measure appear to be more informed

heuristics. The difficulty of finding globally minimal reducts can be seen in

the results for the more advanced search strategies (GA and PSO). Neither

method consistently finds such reducts: PSO always finds the global mini-

mum for two datasets (Australian and Glass), the GA approach only finds

40

Table 7: Classification accuracy

Dataset Unreduced RSAR-SAT RSAR BR Disc GA PSO JR

M-of-n 97.88 99.12 98.88 98.88 99.12 99.04 99.12 99.12

Exactly 69.26 99.40 ◦ 92.18 ◦ 92.18 ◦ 95.46 ◦ 90.48 ◦ 99.40 ◦ 99.40 ◦

Exactly2 73.52 73.66 73.66 73.66 73.50 73.82 73.66 73.66

Heart 80.64 76.44 80.14 80.14 76.80 77.83 77.75 76.18

Vote 94.67 94.40 94.40 94.40 94.40 94.33 94.33 94.40

Credit 70.78 70.32 70.52 70.52 70.64 69.96 71.40 70.80

LED 100.00 100.00 100.00 100.00 96.99 100.00 100.00 100.00

Derm 90.28 64.97 • 80.60 • 59.41 • 59.96 • 82.27 • 68.83 • 64.15 •

Derm2 88.78 68.12 • 90.23 89.43 69.89 • 84.91 72.96 • 65.03 •

WQ 68.75 65.52 66.64 66.79 66.07 66.76 66.52 65.65

Lung 76.83 79.33 73.67 73.67 84.17 82.17 83.00 84.17

Average 82.85 81.03 83.72 81.73 80.64 83.78 82.45 81.14

◦, • statistically significant improvement or degradation

the minimum for the Glass dataset. Overall the PSO method outperforms

the GA approach. However, the reducts found by these methods are not

guaranteed to be minimal.

The average time taken by the algorithms when performing selection can

be found in Table 12. The timings for FRFS-SAT include the time taken to

calculate the fuzzy discernibility matrix as well as the search itself. It can

be seen that, in general, FRFS-SAT can find globally optimal reducts in a

similar amount of time to the other methods. However, as the dimensionality

increases an increasing amount of time is spent verifying that the discovered

reduct is indeed globally optimal, which is the case for the Water datasets.

Though in principle methods that guarantee optimality would not scale

as well as methods that do not, it does not appear to be a problem for

41

Table 8: Average number of features selected

Dataset RSAR-SAT CFS Cons Relief-F

M-of-n 6.00 7.42 ◦ 4.96 6.86 ◦

Exactly 6.00 5.66 13.00 ◦ 7.92 ◦

Exactly2 10.00 4.64 • 13.00 ◦ 12.98 ◦

Heart 5.78 5.70 7.56 ◦ 12.42 ◦

Vote 7.84 2.54 • 7.72 15.94 ◦

Credit 8.00 3.30 • 9.60 ◦ 19.98 ◦

LED 5.00 12.94 ◦ 5.00 16.38 ◦

Derm 5.32 19.20 ◦ 5.84 ◦ 33.94 ◦

Derm2 7.86 18.64 ◦ 9.46 ◦ 34.00 ◦

WQ 11.04 21.04 ◦ 13.70 ◦ 38.00 ◦

Lung 3.22 7.28 ◦ 3.60 ◦ 44.96 ◦

Average 6.91 9.85 6.13 22.13

•, ◦ statistically significant improvement or degradation

benchmark datasets that are representative of practical problems.

The resulting classification accuracies for JRip can be found in Table

13. From this, it can be seen that FRFS-SAT finds the globally optimal

reduct for each dataset without a statistically significant loss in classification

accuracy.

6.4. Comparison with Leading Feature Selectors (II)

Here, the fuzzy approach is compared with the leading feature selectors

whose details can be found in Section 6.2. The results can be seen in Table 14

and Table 15. Again, the method often produces the smallest subsets across

the datasets with no statistically significant loss of classification accuracy.

42

Table 9: Classification accuracy

Dataset Unreduced RSAR-SAT CFS Cons Relief-F

M-of-n 97.88 99.12 96.02 93.40 98.78

Exactly 69.26 99.40 ◦ 67.14 68.80 93.08 ◦

Exactly2 73.52 73.66 75.60 ◦ 75.80 ◦ 73.80

Heart 80.64 76.44 81.51 80.64 80.15

Vote 94.67 94.40 94.27 94.40 94.53

Credit 70.78 70.32 72.90 71.66 70.96

LED 100.00 100.00 100.00 100.00 100.00

Derm 90.28 64.97 • 89.78 72.89 • 89.89

Derm2 88.78 68.12 • 90.39 85.41 89.16

WQ 68.75 65.52 67.72 67.22 68.06

Lung 76.83 79.33 81.50 79.83 79.33

Average 82.85 81.03 83.35 80.91 85.25

◦, • statistically significant improvement or degradation

7. Conclusion and Discussion

This paper has presented a new DPLL-based technique for locating and

verifying minimal subsets in the rough set, and fuzzy rough contexts. The

experimentation presented here has shown that the approach performs well

in comparison to a number of existing methods, which often fail to find

the smallest subsets. Additional investigations to be carried out include

evaluating the proposed work against further well established heuristic-based

approaches to reduct finding; typical methods can be found in [16, 22, 28, 37].

This paper has also presented an extension of the discernibility matrix

to the fuzzy case, allowing features to belong to entries to a certain degree.

Based on this, the propositional satisfiability problem has been extended

to allow SAT-style search of the resulting fuzzy clauses. From these, the

43

Table 10: Number of features possessed by each dataset

Dataset Features Objects

Australian 15 690

Cleveland 14 297

Glass 14 214

Heart 10 270

Ionosphere 35 230

Olitos 26 120

Water 2 39 390

Water 3 39 390

Wine 14 178

globally minimal reduct for a dataset can be calculated. This generalisation

extends the applicability of the underlying approach from discrete datasets

to those with continuous variables.

DPLL resorts to chronological backtracking if the current assignment of

variables results in the unsatisfiability of F . Much research has been carried

out in developing solution techniques for SAT that draws on related work in

solvers for constraint satisfaction problems (CSPs) [26, 27]. Indeed the SAT

problem can be translated to a CSP by retaining the set of boolean vari-

ables and their {0, 1} domains, and to translate the clauses into constraints.

Each clause becomes a constraint over the variables in the constraint. Unit

propagation can be seen to be a form of forward checking.

In CSPs, more intelligent ways of backtracking have been proposed such

as backjumping, conflict-directed backjumping and dynamic backtracking

[25]. Many aspects of these have been adapted to the SAT problem solvers.

In these solvers, whenever a conflict (dead-end) is reached, a new clause is

recorded to prevent the occurrence of the same conflict again during the

44

Table 11: Average number of features selected

Dataset FRFS-SAT FRFS FBR FD GA PSO JR

Australian 12.66 12.90 12.90 12.84 12.74 12.66 12.94

Cleveland 7.56 7.64 7.68 7.64 8.10 ◦ 7.84 7.78

Glass 8.36 9.00 ◦ 8.36 8.36 8.36 8.36 8.36

Heart 7.00 7.06 7.06 7.10 7.50 ◦ 7.04 7.40 ◦

Ionosphere 6.00 7.04 ◦ 7.04 ◦ 7.08 ◦ 9.52 ◦ 7.26 ◦ 7.66 ◦

Olitos 4.98 5.00 5.00 5.00 6.04 ◦ 5.08 5.14

Water 2 5.82 6.00 6.00 5.98 7.00 ◦ 6.72 ◦ 6.30 ◦

Water 3 5.88 6.00 6.00 5.98 7.42 ◦ 6.98 ◦ 6.08

Wine 4.48 5.00 ◦ 4.84 ◦ 4.86 ◦ 5.06 ◦ 4.96 ◦ 4.76

Average 6.97 7.29 7.21 7.20 7.97 7.43 7.38

•, ◦ statistically significant improvement or degradation

subsequent search. Non-chronological backtracking backs up the search tree

to one of the identified causes of failure, skipping over irrelevant variable

assignments.

With the addition of intelligent backtracking, it is expected that the

method will be able to deal with datasets containing larger numbers of fea-

tures. As seen in the results presented, the bottleneck in the process is the

verification stage - the time taken to confirm that the subset is indeed mini-

mal. This requires an exhaustive search of all subtrees containing fewer vari-

ables than the current best solution. Much of this search could be avoided

through the use of more intelligent backtracking. Assuming the scale of im-

provements seen in the SAT solver literature, e.g. [47], this would result in

a selection method that can cope with many thousands of features, whilst

guaranteeing resultant subset minimality - something that is particularly

sought after in feature selection and would scale beyond current heuristic

45

Table 12: Selection time (ms)

Dataset FRFS-SAT FRFS FBR FD GA PSO JR

Australian 4228.10 8043.88 ◦ 21868.92 ◦ 3588.94 • 15009.24 ◦ 40615.10 ◦ 4169.14

Cleveland 731.88 1042.94 ◦ 3709.02 ◦ 596.90 • 2838.26 ◦ 6949.82 ◦ 681.94 •

Glass 459.50 370.54 • 1450.74 ◦ 230.12 • 777.18 ◦ 2554.00 ◦ 445.74

Heart 614.46 822.62 ◦ 1758.84 ◦ 388.80 • 2362.04 ◦ 5709.64 ◦ 528.30 •

Ionosphere 19200.42 2127.30 • 3944.62 • 913.96 • 2329.36 • 11055.88 • 1430.36 •

Olitos 2299.84 281.28 • 867.04 • 160.74 • 136.22 • 1813.42 • 343.18 •

Water 2 87519.50 5592.50 • 12539.02 • 1804.68 • 1080.50 • 23721.64 • 5395.90 •

Water 3 107178.90 5590.70 • 15276.54 • 2049.82 • 2808.04 • 23233.98 • 5410.94 •

Wine 649.58 302.06 • 741.34 ◦ 153.48 • 903.24 ◦ 2166.72 ◦ 402.90 •

Average 24764.69 2685.98 6906.23 1098.60 3138.23 13091.13 2089.82

•, ◦ statistically significant improvement or degradation

methods.

Active research regarding the fuzzified method includes further experi-

mental investigation, including analysis of the impact of the choice of rela-

tions and connectives. Additionally, the development of fuzzy discernibility

matrices here allows the extension of many existing crisp techniques for the

purposes of finding fuzzy-rough reducts. In particular, other SAT solution

techniques may be applied that should be able to discover such subsets,

guaranteeing their global minimality. The performance may also be im-

proved through simplifying the fuzzy discernibility function further. This

could be achieved by considering the properties of the fuzzy connectives and

removing clauses that are redundant in the presence of others.

A. FRFS Reducts are Fuzzy-Rough Reducts

Theorem 1. FRFS-SAT reducts are fuzzy-rough reducts. Suppose that P ⊆

46

Table 13: Classification accuracy

Dataset Unreduced FRFS-SAT FRFS FBR FD GA PSO JR

Australian 85.16 84.93 85.16 85.16 85.28 84.93 84.09 85.22

Cleveland 54.03 54.21 54.62 54.68 54.75 54.75 53.48 54.01

Glass 67.17 65.25 67.17 65.25 65.25 65.25 65.25 65.25

Heart 72.96 72.22 74.15 74.15 74.15 74.74 72.07 73.78

Ionosphere 87.57 85.48 87.74 87.74 85.22 83.04 87.48 86.09

Olitos 68.50 61.00 62.83 63.67 62.50 60.83 69.50 60.83

Water 2 82.15 82.00 83.28 83.28 82.00 83.18 79.08 82.00

Water 3 82.72 81.18 81.23 81.23 81.95 81.44 74.82 • 81.44

Wine 93.54 90.24 91.46 92.56 90.42 90.33 90.08 90.37

Average 77.09 75.17 76.41 76.41 75.72 75.39 75.09 75.44

◦, • statistically significant improvement or degradation

C, a is an arbitrary conditional feature that belongs to the dataset and q is

the decision feature. If P maximally satisfies the fuzzy discernibility function

then P is a fuzzy-rough reduct.

Proof. The fuzzy positive region for a subset P is

µPOSRP
(Q)(x) = sup

X∈U/Q
inf
y∈U
{µRP

(x, y)→ µX(y)}

The dependency function is maximized when each x belongs maximally to

the fuzzy positive region. Hence,

inf
x∈U

sup
X∈U/Q

inf
y∈U
{µRP

(x, y)→ µX(y)}

is maximized only when P is a fuzzy-rough reduct. This can be rewritten

as the following:

inf
x,y∈U

{µRP
(x, y)→ µRq(x, y)}

47

Table 14: Average number of features selected

Dataset FRFS-SAT CFS Cons Relief-F

Australian 12.66 6.46 • 12.72 13.12 ◦

Cleveland 7.56 7.86 10.06 ◦ 13.00 ◦

Glass 8.36 6.30 • 6.78 • 9.00 ◦

Heart 7.00 7.70 10.26 ◦ 12.98 ◦

Ionosphere 6.00 11.16 ◦ 7.64 ◦ 33.00 ◦

Olitos 4.98 15.02 ◦ 10.00 ◦ 25.00 ◦

Water 2 5.82 9.06 ◦ 12.38 ◦ 37.10 ◦

Water 3 5.88 10.80 ◦ 10.54 ◦ 38.00 ◦

Wine 4.48 10.84 ◦ 4.48 13.00 ◦

Average 6.97 9.47 9.43 21.58

•, ◦ statistically significant improvement or degradation

when using a fuzzy similarity relation in the place of crisp decision concepts,

as µ[x]R = µR(x, y) [13]. Each µRP
(x, y) is constructed from the t-norm of

its constituent relations:

inf
x,y∈U

{Ta∈P (µRa(x, y))→ µRq(x, y)}

This may be reformulated as

inf
x,y∈U

{Sa∈P (µRa(x, y)→ µRq(x, y))} (29)

Considering the fuzzy discernibility matrix approach, the fuzzy discerni-

bility function is maximally satisfied when

{∧{{∨ C∗xy} ← qN(µRq (x,y))
}|1 ≤ y < x ≤ |U|}

is maximized. This can be rewritten as:

Tx,y∈U(Sa∈P (N(µRa(x, y)))← N(µRq(x, y)))

48

Table 15: Classification accuracy

Dataset Unreduced FRFS-SAT CFS Cons Relief-F

Australian 85.16 84.93 86.87 84.70 84.70

Cleveland 54.03 54.21 54.09 55.23 54.08

Glass 67.17 65.25 65.24 67.02 65.67

Heart 72.96 72.22 73.33 74.67 75.11

Ionosphere 87.57 85.48 88.17 86.26 87.22

Olitos 68.50 61.00 69.00 67.83 67.67

Water 2 82.15 82.00 83.44 83.38 83.28

Water 3 82.72 81.18 83.69 83.33 82.56

Wine 93.54 90.24 92.34 90.80 92.09

Average 77.09 75.17 77.35 77.03 76.93

◦, • statistically significant improvement or degradation

because each clause Cxy is generated by considering the fuzzy similarity of

values of each pair of objects x, y. Through the properties of the fuzzy

connectives, this may be rewritten as:

Tx,y∈U(Sa∈P (µRa(x, y)→ µRq(x, y))) (30)

When this is maximized, (29) is maximized and so the subset P must be a

fuzzy-rough reduct.

References

[1] A.A. Bakar, M.N. Sulaiman, M. Othman, M.H. Selamat. IP algorithms

in compact rough classification modeling, Intelligent Data Analysis, vol.

5, no. 5, pp. 419–429. 2001.

49

[2] J. Bazan, A. Skowron, P. Synak. Dynamic reducts as a tool for ex-

tracting laws from decision tables. In Z. W. Ras, M. Zemankova (Eds.),

Proceedings of the Eighth Symposium on Methodologies for Intelligent

Systems, Lecture Notes in Artificial Intelligence 869, Springer-Verlag,

pp. 346–355, 1994.

[3] A.T. Bjorvand and J. Komorowski. Practical applications of genetic al-

gorithms for efficient reduct computation, In Proceedings of the 15th

IMACS World Congress on Scientific Computation, Modelling and Ap-

plied Mathematics, vol. 4, pp. 601–606, 1997.

[4] C.L. Blake and C.J. Merz. UCI Repository of machine

learning databases. Irvine, University of California, 1998.

http://www.ics.uci.edu/~mlearn/.

[5] Y. Caballero, R. Bello, D. Alvarez, and M.M. Garca. Two new feature

selection algorithms with Rough Sets Theory, IFIP AI 2006, pp. 209–

216, 2006.

[6] D. Chen, L. Zhang, S. Zhao, Q. Hu, and P. Zhu. A Novel Algorithm of

Finding Reducts with Fuzzy Rough Set, IEEE Transactions on Fuzzy

Systems, vol. 20, no. 2, pp. 385-389, 2012.

[7] Y. Chen, D. Miao and R. Wang. A rough set approach to feature se-

lection based on ant colony optimization, Pattern Recognition Letters,

vol. 31, no. 3, pp.226-233, 2010.

[8] A. Chouchoulas and Q. Shen. Rough set-aided keyword reduction for

text categorisation, Applied Artificial Intelligence, vol. 15, no. 9, pp.

843–873, 2001.

50

[9] M. De Cock, C. Cornelis, and E.E. Kerre. Fuzzy Rough Sets: The

Forgotten Step, IEEE Transactions on Fuzzy Systems, vol. 15, no. 1,

pp. 121–130, 2007.

[10] W.W. Cohen. Fast effective rule induction, In Proceedings of the 12th

International Conference on Machine Learning, pp. 115–123, 1995.

[11] M. Dash and H. Liu. Feature Selection for Classification. Intelligent

Data Analysis, vol. 1, no. 3, pp. 131–156, 1997.

[12] M. Davis, G. Logemann and D. Loveland. A machine program for the-

orem proving, Communications of the ACM, vol. 5, pp. 394–397, 1962.

[13] D. Dubois and H. Prade. Putting Rough Sets and Fuzzy Sets Together,

Intelligent Decision Support, pp. 203–232, 1992.

[14] M.A. Hall, L.A. Smith. Practical feature subset selection for machine

learning, Australian Computer Science Conference, pp. 181–191, 1998.

[15] H.H. Hoos and T. Stützle. Towards a characterisation of the behaviour

of stochastic local search algorithms for SAT, Artificial Intelligence, vol.

112, pp. 213–232, 1999.

[16] R. Jensen and Q. Shen. Semantics-preserving dimensionality reduction:

rough and fuzzy-rough based approaches, IEEE Transactions on Knowl-

edge and Data Engineering, vol. 16, no. 12, pp. 1457–1471, 2004.

[17] R. Jensen and Q. Shen. Computational Intelligence and Feature Selec-

tion: Rough and Fuzzy Approaches, Wiley-IEEE Press, 2008.

[18] R. Jensen and Q. Shen. New approaches to fuzzy-rough feature selec-

51

tion, IEEE Transactions on Fuzzy Systems, vol. 17, no. 4, pp. 824–838,

2009.

[19] R. Jensen and Q. Shen. Are more features better? A response to at-

tributes reduction using fuzzy rough sets, IEEE Transactions on Fuzzy

Systems, vol. 17, no. 6, pp. 1456–1458, 2009.

[20] N. Jiao, D. Miao and J. Zhou. Two novel feature selection methods

based on decomposition and composition. Expert Systems with Appli-

cations: An International Journal, vol. 37, no. 12, pp. 7419–7426, 2010.

[21] I. Kononenko, E. Simec and M. Robnik-Sikonja. Overcoming the My-

opia of Inductive Learning Algorithms with RELIEFF, Applied Intelli-

gence, vol. 7, pp. 39-55, 1997.

[22] M. Kryszkiewicz. Comparative Study of Alternative Types of Knowl-

edge Reduction in Inconsistent Systems, International Journal of Intel-

ligent Systems, vol. 16, no. 1, pp. 105–120, 2001.

[23] T.Y. Lin, P. Yin. Heuristically Fast Finding of the Shortest Reducts,

Rough Sets and Current Trends in Computing, Lecture Notes in Com-

puter Science, vol. 3066/2004, pp. 465–470, 2004.

[24] H. Liu and R. Setiono. A probabilistic approach to feature selection - A

filter solution, In: 13th International Conference on Machine Learning

(ICML’96), pp. 319–327, 1996.

[25] I. Miguel and Q. Shen. Dynamic Flexible Constraint Satisfaction, Ap-

plied Intelligence, 13(3), pp. 231–245, 2000.

[26] I. Miguel and Q. Shen. Solution Techniques for Constraint Satisfaction

52

Problems: Foundations, Artificial Intelligence Review, 15(4), pp. 243–

267, 2001.

[27] I. Miguel and Q. Shen. Fuzzy rrDFCSP and Planning, Artificial Intel-

ligence, 148(1-2), pp. 11–52, 2003.

[28] H.S. Nguyen and A. Skowron. Boolean Reasoning for Feature Extrac-

tion Problems, In Proceedings of the 10th International Symposium on

Methodologies for Intelligent Systems, pp. 117–126, 1997.

[29] A. Øhrn. Discernibility and Rough Sets in Medicine: Tools and Appli-

cations, Department of Computer and Information Science. Trondheim,

Norway, Norwegian University of Science and Technology: 239, 1999.

[30] N. Mac Parthaláin and R. Jensen. Unsupervised Fuzzy-Rough Set-

based Dimensionality Reduction, submitted to Information Sciences.

[31] Z. Pawlak. Rough Sets: Theoretical Aspects of Reasoning About Data,

Kluwer Academic Publishing, Dordrecht. 1991.

[32] Z. Pawlak and A. Skowron. Rough sets and Boolean reasoning, Infor-

mation Sciences, vol. 177, no. 1, pp. 41–73, 2007.

[33] L. Polkowski. Rough Sets: Mathematical Foundations, Advances in Soft

Computing, Physica Verlag, Heidelberg, Germany, 2002.

[34] Y. Qian, J. Liang, W. Pedrycz, C. Dang. Positive approximation: An

accelerator for attribute reduction in rough set theory, Artificial Intel-

ligence, vol. 174, pp. 597–618, 2010.

[35] A.M. Radzikowska and E.E. Kerre. A comparative study of fuzzy rough

sets, Fuzzy Sets and Systems, vol. 126, no. 2, pp. 137–155, 2002.

53

[36] A. Skowron and C. Rauszer. The discernibility matrices and functions

in Information Systems, In: R. Slowinski (Ed.), Intelligent Decision

Support, Kluwer Academic Publishers, Dordrecht, pp. 331–362. 1992.

[37] J.A. Starzyk, D.E. Nelson, and K. Sturtz. Reduct Generation in Infor-

mation Systems, Bulletin of the International Rough Set Society, vol.

3, no. 1–2, pp. 19–22. 1999.

[38] J.A. Starzyk, D.E. Nelson, and K. Sturtz. A Mathematical Foundation

for Improved Reduct Generation in Information Systems, Knowledge

and Information Systems, vol. 2, no. 2, pp. 131–146, 2000.

[39] G.C.Y. Tsang, D. Chen, E.C.C. Tsang, J.W.T. Lee, and D.S. Yeung.

On attributes reduction with fuzzy rough sets, IEEE International Con-

ference on Systems, Man and Cybernetics, vol. 3, pp. 2775–2780, 2005.

[40] M. Wallace, Y. Avrithis and S. Kollias. Computationally efficient sup-

t transitive closure for sparse fuzzy binary relations, Fuzzy Sets and

Systems, vol. 157, no. 3, pp. 341–372, 2006.

[41] J. Wang, J. Wang. Reduction algorithms based on discernibility ma-

trix: the ordered attributes method, Journal of Computer Science and

Technology, vol. 16, pp. 489-504, 2001.

[42] X. Wang, J. Yang, X. Teng, W. Xia, and R. Jensen. Feature Selec-

tion based on Rough Sets and Particle Swarm Optimization, Pattern

Recognition Letters, vol. 28, no. 4, pp. 459-471, 2007.

[43] I. H. Witten and E. Frank, Data Mining: Practical machine learning

tools with Java implementations, Morgan Kaufmann Publishers, San

Francisco, 2000.

54

[44] J. Wróblewski. Finding minimal reducts using genetic algorithms, In

Proceedings of the 2nd Annual Joint Conference on Information Sci-

ences, pp. 186–189, 1995.

[45] M. Yang and P. Yang. A novel condensing tree structure for rough set

feature selection, Neurocomputing, vol. 71, nos. 4-6, pp. 1092–1100,

2008.

[46] Y. Yao and Y. Zhao. Discernibility matrix simplification for construct-

ing attribute reducts, Information Sciences, vol. 179, no. 7, pp. 867–882,

2009.

[47] L. Zhang and S. Malik. The Quest for Efficient Boolean Satisfiabil-

ity Solvers, Proceedings of the 18th International Conference on Auto-

mated Deduction, pp. 295–313, 2002.

[48] N. Zhong, J. Dong and S. Ohsuga. Using Rough Sets with Heuristics

for Feature Selection, Journal of Intelligent Information Systems, vol.

16, no. 3, pp. 199–214, 2001.

55

DPLL-Solve(d, CL, D).

d, the current depth of search;

CL, the current list of clauses;

D, the depth of the best reduct found so far (initially |C|).

(1) if (d ≥ D) or (CL == null)

(2) // Further search down this branch is unnecessary

(3) else if (CL.size() == 0) and (d < D)

(4) D ← d

(5) output current assignment

(6) else if (CL contains a unit clause {l})

(7) CL′ ← unitPropagate(CL)

(8) DPLL-Solve(d+ 1,CL′,D)

(9) else

(10) x ← selectLiteral(CL)

(11) CL′ ← Update-True(CL, x)

(12) DPLL-Solve(d+ 1,CL′,D)

(13) CL′ ← Update-False(CL, x)

(14) DPLL-Solve(d,CL′,D)

Figure 2: The DPLL-Solve algorithm

56

Update-True(CL, x).

CL, the current clause list;

x, the variable to be set to true.

(1) CL′ ← ∅

(2) foreach C ∈ CL

(3) if (!isSatisfied(C))

(4) CL′ ← CL′ ∪ C

(5) return CL′

Figure 3: The Update-True algorithm

Update-False(CL, x).

CL, the current clause list;

x, the variable to be set to false.

(1) CL′ ← ∅

(2) foreach C ∈ CL

(3) if (|C|==0) or (!isSatisfiable(C))

(4) return null //Further search is pointless

(5) else CL′ ← CL′ ∪ C

(6) return CL′

Figure 4: The Update-False algorithm

57

Fuzzy-Compressibility(CL, a1, a2).

CL, the current clause list;

a1,a2, conditional attributes.

(1) foreach C ∈ CL

(2) if (S(µC(a1), µC(a2)) > µC(a2))

(3) return false

(4) return true

Figure 5: The Fuzzy-Compressibility algorithm

58

