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Modeling of parametrically excited vibrating screen

L I Slepyan1 and V I Slepyan2

1 School of Mechanical Engineering, Tel Aviv University, 69978 Tel Aviv, Israel
2 Loginov and Partners Mining Company, 2v Korolyova Avenue 03134 Kiev, Ukraine

E-mail: leonid@eng.tau.ac.il (Leonid Slepyan)

Abstract. The dynamic model of a RR-based rectangular vibrating screen is considered as

an initially stretched system of two equal masses connected by a linearly elastic spring. Due

to the geometric nonlinearity longitudinal oscillations of the masses and lateral oscillations of

the spring are coupled. Under certain conditions, when the masses are subjected by a self-

equilibrated periodic longitudinal action, the parametric resonance arises which amplitude is

bounded by the nonlinearity. The dynamic problem is reduced to a system of two ordinary

nonlinear equations. An exact analytical solution is found existing under some conditions. In

a general case, the dynamics of this system is considered numerically. The dissipation in this

process is estimated. A comparative analysis of the dynamics of conventional and PR-based

screeners is presented. Based on the analysis of the model a vibrating screen machine was

designed, built and set up in LPMC. The machine operated as predicted.

1. Introduction
The idea to create a PR-based oscillating screen came to us in 2007 while discussing drawbacks
of existing types of the machines. In 2009, Ukrainian patent was issued on the excitation method
of an oscillation screen and the corresponding structure of the latter [1]. A mathematical model
of the PR-based machine was developed. By means of numerical simulations parameters of
its structure and setting were determined, which ensure effective sustained PR-oscillation mode.
Note that while the parametric resonance was mainly considered as an undesirable phenomenon,
some attempts were made to use it to obtain a greater response to a moderate excitation [2], also
see [3-5]. In this paper, the following topics are briefly considered: The conventional vibrating
screen versus the PR-based screen. The PR-based screen mathematical model. Free and forced
oscillations of the system. An exact solution for a forced oscillation regime. Some results of
numerical simulations and, lastly, Estimation of the dissipation based on analysis of the collision
of a particle with some types of the sieve.

2. Conventional model with the lateral excitation of the sieve
We consider a plane problem for a flexible initially stretched sieve, −l < x < l, excited by lateral
harmonic oscillations of its edges. In the linear approximation, the sieve dynamics is described
by the wave equation for a string

T
∂2v(x, t)

∂x2
− ̺

∂2v(x, t)

∂t2
− α

∂v(x, t)

∂t
= 0 , (1)
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where v(x, t) is the lateral displacement, T is the tensile force per unit length of the sieve, ̺ is
the mass density per unit area and α is the respective viscosity number. For forced vibrations
with frequency ω the oscillation amplitude is found to be distributed as

U(ξ) = U0

√

cosh2(k1ξ)− sin2(k2ξ)

cosh2(k1)− sin2(k2)
, k1,2 =

1√
2

√

√

λ2
1
+ λ2

2
∓ λ1 , (2)

where λ1 = ̺l2ω2/T, λ2 = αl2ω/T, ξ = x/l.
Separation of wet granular materials, like sand or small-size gravel, meets a greater resistance

doe to the size-dependent surface effects. In the considered model, this reflects in increase of
the viscosity number, that is, in the increase of parameter λ2, and in decrease of the oscillation
amplitude. As a result, the conventional oscillation screens become inefficient. In contrast, the
longitudinal oscillations of the sieve meet a very low inelastic resistance, and the PR excitation
results in much greater amplitudes.The resonant regime corresponds to λ1 = π2/4. The results
as the output-to-input ratio, ΛU = U(0)/U0 for the conventional screen and the lateral-to-
longitudinal amplitude ratio for the PR-based screen, ΛP , for λ2 = 1 and λ2 = 2.5 are as follows:
ΛU = 3.137,ΛP = 21.2,ΛP/ΛU = 6.76 (λ2 = 1); ΛU = 1.245,ΛP = 13.3,ΛP/ΛU = 10.7 (λ2 =
2.5). This shows how the PR-based screen is efficient.

3. The PR-based screen model
The model considered here consists of two equal masses, M , connected by a spring of the mass
density ̺ per unit length, the length 2l and the stiffness in tension k/2. Each of the masses
is also connected with the rigid foundation by a side spring, which stiffness κ ≪ k, Fig. 1.
The springs are initially stretched; the initial tensile force is denoted by T0. The symmetric
motion is considered, in which the masses can oscillate moving only along the initial spring
line (horizontally), while the central spring (the sieve) can oscillate in normal direction. The
oscillations are excited by vibrators acting synchronically on the left and the right masses in
opposite horizontal directions. The amplitude and frequency of the action are denoted by P
and ω, respectively. The lateral oscillation amplitude is assumed to be much less than the
spring length. Also it is assumed that the inequalities c =

√

kl/̺ ≫ ωl,M ≫ ̺l are valid.
This allows us to assume that the tensile force in spring, T , is independent of the coordinate
x, whereas the spring inertia can be taken into account only in the lateral motion. So, if there
is no dissipation the main natural longitudinal and lateral frequencies for small amplitudes are
ΩL =

√

k/M,ΩT = π/(2l)
√

T0/̺.
Under oscillations of the sieve the granular material separated mainly hangs at a distance

from the sieve. We assume that the material-sieve interaction results in a force equal to the
material weight and in dissipation, which is presented as linear viscosity.

Figure 1. The PR-based oscillating screen model: the spring (the sieve) - 1, the edge mass - 2,
the vibrator - 3, the side spring - 4 and the foundation - 5.

If ω is close enough to 2ΩT and P is large enough, the parametric resonance arises under
which the amplitude of the lateral oscillations is bounded by the geometric nonlinearity. We
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based on nonlinear dynamic equations with respect to the longitudinal and lateral oscillations

M
d2u(t)

dt2
+ β

du(t)

dt
+ T1(t) = P cosωt ,

̺
∂2v(x, t)

∂t2
+ α

∂v(x, t)

∂t
− T (t)

∂2v(x, t)

∂x2
= q(x, t) , (3)

which are coupled by the tensile force, T1(t), depending on both the displacement of the masses,
±u(t) (x = ±l) and the displacement of the spring, v(x, t)

T (t) = T0 + T1(t) , T1(t) = k

[

u(t) +
1

2

(
∫ l

0

√

1 + (v′(x, t))2 dx− l

)]

, (4)

where v′(x, t) = ∂v(x, t)/∂x. In addition, in Eq. (3), α and β are the viscosity numbers and
the averaged value of q is the treated material weight per unit length. Expression (4) is valid,
however, if it defines a nonnegative tensile force; otherwise, T (t) = 0.

The left side of the second equation in (3) with the boundary conditions, v(±l, t) = 0, admits
the variables separation. For the main term of the series, v(x, t) = w(t) cos(πx/2l) we obtain

̺
d2w(t)

dt2
+ α

dw(t)

dt
+
π2

4l2
T (t)w(t) = q0(t) =

1

l

∫ l

−l
q(x, t) cos

πx

2l
dx ,

M
d2u(t)

dt2
+ β

du(t)

dt
+ T1(t) = P cosωt , T1(t) = k

(

u(t) +
π2

16l
w2(t)

)

. (5)

4. Free oscillations
The total energy of the oscillations as the sum of the kinetic and potential energies is

E =M [ du(t)/ dt]2 +
1

2
̺l[ dw(t)/ dt]2 + T0

π2

8l
w2(t) +

1

k
T 2

1 . (6)

It can be considered consisting of longitudinal and lateral parts as follows (note that this
separation is in a sense conditional) :

E = Eu + Ew ,

Eu =M [ du(t)/ dt]2 +
1

k
T 2

1 (t) (longitudinal part) ,

Ew =
1

2
̺l[ dw(t)/ dt]2 +

π2

8l
T0w

2(t) ( transversal part) . (7)

From this and the dynamic equations with P = q = α = β = 0 we find the energy exchange rate
between the longitudinal and transversal parts

dEu
dt

= − dEw
dt

=
π2

4l
T1w(t)

dw(t)

dt
. (8)

Another system of two-mode nonlinear oscillations with the PR-related ratio of frequencies,
a spring pendulum, was considered long ago in [6] (also see [7]) and then in [8] assuming the
angle amplitude small enough. In some respects, this system is similar to the oscillating screen,
and we briefly consider it. The pendulum model consists of the point mass, M , connected to a
fixed point by a massless spring of stiffness k. Let the initial spring length be l0, l(t) = l0 + u(t)
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and α(t) be the angle (α = 0 is statics). In the exact formulation, with no restrictions on values
of the angle and the spring elongation, the energy is

E = Π+K , Π =
1

2
ku(t)2 +Mgl(t)[1− cosα(t)] , K =

1

2
M [u̇2(t) + l2(t)α̇2(t)] , (9)

where g is the gravity acceleration. The dynamic equations follow from (6) as

Mü(t) + ku(t) +Mg[1− cosα(t)]−Ml(t)α̇2(t) = 0 ,

l(t)α̈+ g sinα(t) + 2l̇(t)α̇(t) = 0 . (10)

We define the energy of longitudinal and tangential oscillations to be

Eu =
1

2
ku(t)2 +

1

2
Mu̇2(t) , Eα =Mgl(t)[1− cosα(t)] +

1

2
Ml2(t)α̇2(t) , (11)

respectively. Using the dynamic equations (10) we find the rate of the energy exchange between
these parts of the total energy

Ėu = −Ėα =
[

l(t)α̇2(t)− g(1− cosα(t))
]

Mu̇(t) . (12)

5. Forced oscillations
Consider equations (5) with α = q = 0. There exists a periodic solution, in which the tensile
force preserves its initial value, T1(t) ≡ 0

u(t) = − P

ω(M2ω2 + β2)

(

Mω cosωt− β sinωt+
√

M2ω2 + β2
)

,

w(t) = A cos
ωt

2
+B sin

ωt

2
, T1(t) = 0 ,

A =

√

(

√

M2ω2 + β2 +Mω
)

ψ , B =

√

(

√

M2ω2 + β2 −Mω
)

ψ ,

ψ =
16lP

π2ω(M2ω2 + β2)
, (−u)max =

2P

ω
√

M2ω2 + β2
, wmax =

√

A2 +B2 =
4

π

√

−lumax . (13)

Numerical calculations based on the dynamic equations (5) evidence that, in some range of
the parameters, this solution is stable. It corresponds to the established regime for transient
solutions with T1(0) 6= 0.

For some other ranges of the parameters, including those with α 6= 0, q 6= 0, other stable-
oscillation regimes are revealed. An example is presented in Fig. 2

6. Dissipation
To estimate the energy consumption in screening we consider the collision of a particle with the
sieve. The latter is represented in two models: an infinite elastic beam (the sieve consists of
series of initially stretched parallel beams connected by weak links) and an elastic plate model.
Using integral transforms, from the beam equation

DwIV (x, t)− Tw′′(x, t) + ̺ẅ(x, t) = −mẅ(0, t)δ(x)H(t) , (14)

where D is the bending stiffness and m is the particle mass, we have found the acceleration

ẅ(τ) = − 2v0a(s0 + 1)

a+ 2
√
s0 + 1

es0τ +
v0a

π

∫

−1

−∞

s
√
−s− 1

s2 − a2(s+ 1)
esτ ds , − 1 < s0 < 0, a > 0 , (15)
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Figure 2. Forced PR-oscillations. The transversal oscillation at the center, w(t); M = 100, k =
250, T0 = l = ̺ = 1, α = 0.3, β = 0.05;w(0) = 0.1, u(0) = u̇(0) = ẇ(0) = 0.

where v0 is the collision speed, τ is a nondimensional time. It can be seen that for 0 < t <∞ both
terms are negative. This evidences that the collision is perfectly inelastic with zero restoration
coefficient.

As the 2D model consider an infinite elastic plate stretched in x-direction and possessing the
bending stiffness only corresponding to flexure in the (y, z)-plane. The dynamic equation is

(

D
∂4

∂y4
− T

∂2

∂x2
+ ̺

∂2

∂t2

)

w(x, y, t) = −m∂2w(0, 0, t)

∂t2
δ(x)δ(y)H(t) , (16)

From this equation the acceleration and the speed are found in the form

ẅ(τ) = v0b
2/3W (τ) , ẇ(τ) = v0

(

1 +

∫ τ

0

W (x) dx

)

(b > 0) ,

W (τ) = −4

3
exp

(

−1

2
τ

)

cos

(

π

3
−

√
3

2
τ

)

+
1

π

∫

x3/2

x3 + 1
exp(−xτ) dx . (17)

It can be seen that, in this model, the speed and the nondimensional acceleration have unique
expressions, which are independent of the plate and particle parameters. In this 2D case, the
restoration coefficient is equal to 0.303 (see Fig. 3), that is, only 9% of the kinetic energy of the
collision remains. Taking into account other possible factors of inelasticity, it can be concluded
that the energy of perfectly inelastic collision represents the lower bound of the dissipation.

7. Conclusions
Based on the above considerations the dynamic equations were developed to reflect additional
factors important for the PR-based screen setting. In particular, this concerns the sieve-material
inelastic interaction, where the collisions were assumed to take place only under upward directed
speed of the screen. Also note that in the vicinities of the end masses, where the sieve curvature
is considerably large, the bending stiffness must be taken into account. This is important for the
estimation of the sieve strength under the high-amplitude oscillations. The corresponding edge-
effect solution was constructed to satisfy the clamped boundary condition end and to correspond
to the mass-string solution ’at infinity’. With respect to the prospective research note that the
exact analytical solution presented here is valid under certain conditions. In a more general
case, analytical results can be obtained using harmonic analysis, that we are going to do.
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Figure 3. Collision of a particle with a plate: The nondimensional speed, ẇ(τ)/v0, based on
(17).
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