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The transport and optical band gaps for the organic semiconductor tin (II) phthalocyanine (SnPc)

and the complete energy band profiles have been determined for organic-inorganic interfaces

between SnPc and III-V semiconductors. High throughput measurement of interface energetics

over timescales comparable to the growth rates was enabled using in situ and real-time

photoelectron spectroscopy combined with Organic Molecular Beam Deposition. Energy band

alignment at SnPc interfaces with GaAs, GaP, and InP yields interface dipoles varying from

�0.08 (GaP) to �0.83 eV (GaAs). Optical and transport gaps for SnPc and CuPc were determined

from photoelectron spectroscopy and from optical absorption using spectroscopic ellipsometry to

complete the energy band profiles. For SnPc, the difference in energy between the optical and

transport gaps indicates an exciton binding energy of (0.6 6 0.3) eV. VC 2013 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4823518]

I. INTRODUCTION

In many applications exploiting the electronic,1 energy

harvesting,2 spintronic,3 and bio-sensing4 properties of

multi-component structures based on conjugated organic

conductors, the performance-limiting factor is often the

energy band alignment at hetero-interfaces. For example, or-

ganic photovoltaics depend on a band edge discontinuity to

dissociate the excitons generated by light absorption and this

interface parameter is not always reliably predicted theoreti-

cally or using bulk material properties.2 Charge transfer and

polarization are commonly induced during heterointerface

formation even in van der Waals-bonded systems resulting

in dipole layers and band-bending that must be considered in

the overall energy band picture.5

Few experimental methods can provide all the interface

energy parameters and fewer still can be applied in situ dur-

ing fabrication. Here, we show how the complete energy

band profile for an organic-inorganic interface can be deter-

mined in situ and in real time using the single technique of

photoelectron spectroscopy. In situ measurement ensures

accurate determination of energy values and real-time mea-

surement provides the evolution of band offsets and band

bending as the interface is formed in addition to the interface

chemistry and thin film morphology. The interface parame-

ters are found to evolve at different rates during growth and

this has important consequences for device design and

operation.

The most direct methods for probing electronic states in

solid materials involve photo-excitation of electrons using

electromagnetic radiation resonant with initial and/or final

state energies. Optical sources probe states within and

around the band gap and larger energy UV and X-ray sources

induce additional transitions from deeper core states.

Refinement of techniques based on reflection, absorption,

and emission of radiation and electrons is driven by a need

to better understand increasingly complex materials systems.

Among these techniques, photoelectron spectroscopy is per-

haps the most direct and versatile in that it probes both bond-

ing and core states providing chemical, electronic and in

some cases morphological and structural information in a

single method. As an in situ materials characterization tech-

nique, it does, however, have limitations in comparison with

optical and electrical methods in that it conventionally

requires a vacuum environment and can be complex, expen-

sive, and slow. Nevertheless, such is the quality of informa-

tion available that considerable effort has been applied to

enable in situ measurement of, for example, ambient pres-

sure adsorbates on semiconductors,6 oxidation of surfaces,7

and high temperature interfaces.8

We have applied this approach to the fabrication of

organic-inorganic semiconductor interfaces in a modified

Organic Molecular Beam Deposition (OMBD) system that

enables in situ and real-time characterization of molecular

adsorption and incorporation into the evolving thin films. By

selecting appropriate incident photon energies, both core and

valence states are probed sequentially to provide parallel

chemical and electronic information. This method has been

applied to probe chemical and structural changes during the

adsorption of monolayers (MLs),9 inorganic films,10 and
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organic films11 and here is applied to determine the ener-

getics of semiconductor interfaces.

The aim of this study was to obtain the complete energy

band profile of organic-inorganic interfaces using, as an

example, the growth of metal phthalocyanine thin films on

III-V semiconductor surfaces. The optical properties of phtha-

locyanines (e.g., tin(II) phthalocyanine (SnPc)) are exploited

in efficient organic photovoltaic cells,12 and the electronic

properties of phthalocyanine-III-V interfaces feature in novel

spin valves13 and in modified Schottky diodes.14

For organic semiconductors, parameters such as the

energy band gap are not as well defined as for their inorganic

counterparts. The band gap is usually taken as the highest

occupied molecular orbital (HOMO)-lowest unoccupied mo-

lecular orbital (LUMO) separation derived from optical

absorption measurements. However, this does not uniquely

define this parameter as simply as for inorganic semiconduc-

tors due to the generation of a Frenkel exciton during the opti-

cal absorption process.15 Because of the weak screening and

strong electron-hole coulomb interaction, the band gap deter-

mined by optical absorption can be significantly less than the

transport gap, with the difference related to the exciton binding

energy that can be a significant fraction of the HOMO-LUMO

gap.16 A correlation has been found between the magnitude of

the exciton binding energy and the size of the excited molecule

for a number of p-conjugated molecules.17

It is important, therefore, to measure both the transport

and optical band gaps to determine the exciton binding

energy. The transport gap can be measured using the photo-

conductivity of the organic film18 and by a combination of

direct and inverse photoelectron spectroscopy.16,19 For cop-

per phthalocyanine (CuPc) thin films, it has been found that

the exciton binding energy is (0.6 6 0.4) eV,16 a typical

value for such films of ordered small conjugated molecules.

A further factor for organic semiconductor interfaces with

metals or inorganic semiconductors is a change in polariza-

tion that can lead to a transport gap at the surface that can be

larger than the bulk gap. Here, we show how both optical

and transport gaps can be derived using in situ and real-time

photoelectron spectroscopy to complete the energy band pro-

file for organic-inorganic semiconductor interfaces.

II. EXPERIMENTAL

Substrate surfaces were prepared by chemically etching

epi-ready (001)-oriented wafers of GaAs, GaP and InP using

dilute (0.1M) sulfur monochloride to produce partially passi-

vated, S-terminated surfaces.20 Ohmic back contacts were

prepared on the reverse of all samples prior to insertion into

the OMBD/analysis environment. Following in situ anneal-

ing to 450 �C to remove excess sulfur, ordered and oxygen-

free surfaces were confirmed by photoelectron spectroscopy

and the observation of characteristic 2� 1 Low Energy

Electron Diffraction (LEED) patterns. A consistent separa-

tion of (0.2–0.4) eV for the valence band edges for n- and p-

type materials relative to a reference metal Fermi level

resulted from partial electronic passivation of the surfaces.

Organic films were grown onto these surfaces by colli-

mated evaporation from Knudsen cells calibrated using a

quartz crystal oscillator placed close to the analysis position.

Photoelectron spectroscopy measurements were undertaken

using Mg Ka, He I, and soft x-ray synchrotron radiation. In

all cases, photoelectrons were energy analyzed using a hemi-

spherical analyzer coupled to a direct electron-counting array

detector.21 This device has 768 detection channels that enable

segments of the electron distribution curve (�6 eV) to be

recorded in around 2 s per spectrum using conventional x-ray

and UV sources and around 100 ms using synchrotron radia-

tion. The ideal arrangement for monitoring growth involves

selecting a photon energy that allows substrate and overlayer

core levels (e.g., Ga3d, As3d, and Sn4d) and the band edges to

be measured rapidly and sequentially with optimal surface sen-

sitivity. The overall recording time for such a sequence was

adequate for real-time monitoring of SnPc at growth rates of

around (0.01–1) nm min�1. The dynamic range of the array de-

tector enabled detection of both intense and weak features

without changing the operating voltage of the multichannel

plate. Photoelectron spectra were corrected for detector uni-

formity and incident flux intensity and each spectrum was

curve-fitted to extract peak positions and intensities. Data for

many growth runs were accumulated and compared.

Optical absorption in SnPc films was measured using a

variable-angle spectroscopic ellipsometer (Sopra Ltd) with a

Xe white light source to provide an estimate of the optical

band gap and higher HOMO-LUMO transitions. Density

functional theory (DFT) calculations were performed for iso-

lated SnPc molecules to determine their degree of non-

planarity and to provide the electron density distribution of

the HOMO and LUMO orbitals.

III. RESULTS AND DISCUSSION

A. Real-time photoelectron spectroscopy

The experimental approach is shown schematically in

Figure 1(a). Incident radiation excites photoelectrons in the

near-surface region that are collected continuously during

the growth of the organic layer. The surface sensitivity is

determined by the electron energy and, for a given core or

valence state, this can be varied by the choice of incident

photon energy. This is illustrated in Figure 1(b) by the

FIG. 1. (a) Schematic of SnPc growth on S:GaAs(001). The first layer is uni-

form with molecules arranged at an angle of 39� with respect to the sub-

strate. Subsequent layers are more clustered. (b) Attenuation of the Ga3d

photoemission peak intensity for incident photon energies of 105 eV (solid

symbols) and 1253 eV (open symbols) recorded in conventional mode.

123701-2 Evans et al. J. Appl. Phys. 114, 123701 (2013)



attenuation of the substrate (Ga3d) photoelectron peak inten-

sity for a GaAs(001) surface exposed to SnPc.

The attenuation rate for photoelectrons excited by a lab-

oratory x-ray source (open symbols) is slower than for photo-

electrons excited by a lower energy synchrotron radiation

source (solid symbols) due to the different surface sensitivity

(the electron escape depth for the laboratory x-ray source is

1.8 nm, compared with an escape depth of 0.4 nm for the

synchrotron x-ray source). The lower energy x-rays are,

therefore, preferable for studies of ML growth, while the

higher energies are better suited for studies of thicker films.

In both cases, there is a point of inflection in the attenuation

curve at a thickness of around 1 nm.

The data in Figure 1(b) were collected in conventional

scanned mode using channeltron detection, with each experi-

ment taking many hours and necessitating a stop-start growth

and measurement sequence. Errors in peak intensity and peak

position and the long data collection time introduce consider-

able and often unacceptable uncertainty in parameters

required for an accurate picture of the interface energetics and

the time evolution of growth. A real-time, in situ method has

therefore been applied, as illustrated in Figure 1(a).

For this interface, it has been found that the thickness of

the initial uniform layer is 0.9 nm and within this layer, the

molecules are aligned at an angle of 39� to the substrate.11,22

A sequence of As3d, Ga3d, and Sn4d photoelectron spec-

tra acquired in real-time with a fixed incident photon energy of

105 eV is presented in Figure 2. These data formed part of a

set of core and band edge spectra recorded during exposure of

the S:GaAs(001) surface to a flux of SnPc, and part of a wider

study of metal phthalocyanine growth on a range of substrates,

including III-V semiconductors. Snapshot spectra (open sym-

bols) are shown above each time sequence for the three core

levels in comparison with higher resolution scanned spectra

(closed symbols) and their fitted components (solid lines).

The Ga3d and As3d spectra are typical of the initial sur-

face where the additional Ga components at higher binding

energy correspond to two Ga-S bonding sites in the topmost

layer, whereas the As atoms are predominantly located

within the GaAs bulk.23 The Sn4d peak was recorded for the

final SnPc film and is largely made up of a single doublet

corresponding to the Sn2þ ion within the SnPc molecule.

There is a smaller additional component at higher binding

energy corresponding to higher oxidation states; this compo-

nent is not significant in this case, but can be prominent

when probing with higher intensity radiation.24 The substrate

peak components showed little change during exposure

(apart from energy broadening) indicating a chemically inert

interface25 and hence the main peak position can be used to

monitor changes in the substrate band-bending during inter-

face formation.

Initially, spectra were recorded without powering the

cell to confirm beam and spectrometer stability. At t¼ 500 s

(lower dashed horizontal line in Figure 2), the cell power

was increased and held at 5 W to provide a constant exposure

rate of 0.01 nm (min)�1. The cell power was switched off at

t¼ 11 000 s (upper dashed horizontal line in Figure 2) when

there were no further changes in peak position and intensity.

Spectra were recorded for a further 3500 s to monitor post-

growth changes in the substrate and overlayer spectra. The

use of soft x-ray excitation enabled all spectra to be recorded

with similar probing depth to ensure maximum surface sensi-

tivity (the minimum escape depth of k¼ 0.34 nm was meas-

ured for the As3d core level22). Bending magnet radiation

ensured minimal beam damage during exposure to the syn-

chrotron beam.24

Fitting of each spectrum in the sequence yields the bulk

peak positions and the energy shift of the Ga3d bulk peak is

plotted as a function of time and coverage (for the uniform

growth regime) in Figure 3. The time-evolution recorded in

real time (large closed symbols) is compared with data

recorded conventionally over a longer time period (inset of

Figure 3). These data do not match exactly and it appears

FIG. 2. Real-time core level photoelectron spectra recorded during the

growth of SnPc on a GaAs (001) surface. The upper panels show snapshot

spectra (open symbols) superimposed on higher resolution scanned spectra

and their fitted components. The horizontal lines in the 2-d projected real-

time data (lower panels) indicate the start and end of SnPc exposure.

FIG. 3. Substrate Ga3d core level shift before, during, and after exposure of

a p-GaAs(001) surface to SnPc. The time/coverage evolution of the real-

time data is different to the conventionally recorded data (inset). The SnPc

coverage scale, determined from a quartz microbalance calibration, is shown

for the region of uniform molecular flux at constant cell power.
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that the band-bending changes are linked to the morphologi-

cal changes occurring at the molecular level over timescales

comparable to the growth rates.11

The peak shift commences at t¼ 500 s, long before there

is a discernible decrease in peak intensity but continues even

beyond the end of exposure to the molecular beam at

t¼ 11 000 s. This is quite unlike the effect of metal over-

layers on such substrates where band-bending changes are

complete for sub-monolayer levels.26 The rate of change of

peak position is highest when the SnPc film thickness is in

the range of 0–0.5 ML, and the final band-bending position

is established for organic layers of thickness > 2 nm. It is im-

portant, therefore, to consider both the thickness and the

time when extracting peak positions from the data, and both

can be optimized for fast-throughput characterization of

interface energetics using this real-time approach.

A notable feature of the measured peak shifts for n-type

and p-type GaAs is that they occur in the same direction.

This leads to an increase in the depletion width of p-GaAs

while reducing it for n-GaAs. The Fermi level moves close

to the conduction band minimum in each case suggesting a

common pinning position determined by new interface states

generated at the organic–inorganic interface. It has been

shown in I-V measurements of modified n-GaAs-SnPc-Ag

diodes that this effect persists in the presence of the metal

contact resulting in the formation of almost ohmic contacts

when the organic interlayer reaches a thickness of 4 nm.14 It

is unusual for GaAs to form simple contacts with barrier

heights deviating far from mid-gap27 and this method offers

ways of both increasing and decreasing this important pa-

rameter between 0.3 and 1.1 V by changing the thickness of

the organic thin film.

In addition to quantifying band-bending changes in the

substrate, it is also necessary to identify changes in the

evolving organic film. This is illustrated in the time-

dependent series of Sn4d core level and band edge spectra

recorded in the same experiment as the substrate core level

spectra (Figures 2 and 4(a)). There is a discernible Sn4d

emission peak at an exposure of 4000 s corresponding to an

organic film thickness of 0.3 nm and this grows to saturation

at 8000 s corresponding to a thickness of 1.2 nm. At this

point, the probing depth of the experiment lies mainly in the

bulk of the organic overlayer. The projected 2-d Sn4d data

(Figure 2) reveal an energy shift that is different to that for

the substrate and hence there must also be a change in the or-

ganic energy levels with respect to the Fermi level during

thin film growth. Both substrate and overlayer band-bending

must, therefore, be considered when formulating the inter-

face band alignment.

B. Interface energetics

Having determined the thickness-dependent energy

changes on either side of the interface, the energy band

alignment at the interface is obtained by recording band-

edge photoelectron spectra during interface formation as

shown in Figure 4.

Real-time data collected within 5 eV of the Fermi level

(0 eV) in Figure 4(a) show how the valence band maximum

of GaAs evolves into the HOMO emission at the band edge

of SnPc during the growth of the interface. The peak at

1.6 eV, corresponding to the HOMO of the organic semicon-

ductor, first appears at 5000 s (0.5 nm) and is fully formed at

8000 s (1.2 nm). Due to the high surface sensitivity, this

characterization approach is thus efficient not only in the

speed of measurement but also in the small amount of mate-

rial required in test structures in comparison to the fabrica-

tion of entire devices. These real-time measurements inform

the selection of organic film thicknesses for further data col-

lection at higher energy resolution to obtain a more accurate

picture of the energy band alignment.

The determination of interface energetics from photo-

electron spectroscopy requires the measurement of the ioni-

zation energy (or work function) in addition to the band

edges and band bending. This is needed to deduce the posi-

tion of the vacuum level with respect to the Fermi level on

either side of the junction and can be obtained by recording

the low kinetic energy onset of the photoelectron spectrum

in addition to the high kinetic energy band edge. Figure 4(b)

presents selected band edge and occupied molecular orbital

spectra for a 4 nm SnPc film recorded using excitation by a

FIG. 4. (a) Real-time evolution of the valence band edge during exposure of

a GaAs surface to SnPc. The incident photon energy was 105 eV. (b)

Valence band photoelectron spectra for a 4 nm SnPc film on S:GaAs along

with the secondary electron emission onset and the magnified band-edge

emission near the Fermi level at 0 eV. The secondary electron emission was

measured with a sample bias of �5 V. The photoelectrons were excited

using He I radiation.

123701-4 Evans et al. J. Appl. Phys. 114, 123701 (2013)



He I UV source. The valence band spectra, encompassing

the density of hybrid s and p states in the substrate and the

organic HOMO states, are dominated by overlayer features

at coverages above 0.9 nm (around one stacked molecular

layer22) and the secondary onset is also saturated by this

point. The main peaks in the spectrum (I-IV) are shown in

Figure 4(b). Most of the spectral features are common for

different metal phthalocyanines including PbPc that, like

SnPc, has an out-of-plane metal ion.28 Peaks III and IV have

been reported to have both C2p and N2p character.29,30 The

HOMO, peak I, has been identified as a p molecular orbital

with strong contributions from the carbon atoms bonded to

nitrogen on the macrocycle. Peak II is the most sensitive to

the central metal ion: it is not observed in PbPc28 or

Sn(IV)Pc but is present for both SnPc and CuPc.31 For SnPc,

there is a low intensity emission that extends beyond the

HOMO maximum to the Fermi level that is also observed for

CuPc but not for Sn(IV)Pc; both CuPc and SnPc overlayers

induce band bending in III-V substrates, while Sn(IV)Pc

does not.

The ionization energies of the GaAs surface and the

bulk-like SnPc overlayer were determined from the width of

the photoelectron spectra and these were combined with the

thickness-dependent band-bending to obtain the energy band

profile (energetics) at the interface as illustrated in Figure 5.

For the substrate (Figure 5(a)), the band-edge relative to

the Fermi level (Ev) is determined from measurement of a

reference metal Fermi level (EF) and the valence band edge

(EVBM), where Ev¼EF�EVBM. The ionization energy of

the substrate (IEsub) is obtained from the secondary electron

onset (Ese), the incident photon energy (h�), and the valence

band edge, where IEsub¼ h� � (Ese�EVBM). The HOMO

energy (EH) and ionization energy for the organic film

(IEorg) are obtained in a similar way to the substrate parame-

ters (Figure 5(b)). During growth, changes in band bending

on either side of the junction are obtained from the real-time

measurements and the combination of these values enables

the band offset (DEV) and the interface dipole (d) to be deter-

mined as shown in Figure 5(b). The conduction band mini-

mum for the inorganic substrate and the LUMO level for the

organic overlayer are not directly measured in photoelectron

spectroscopy; these are determined using the optical band

gaps. Since the transport and optical gap for the organic

semiconductor are very different, the LUMO level is shown

as a dotted line in Figure 5, and it is assumed that there is no

narrowing of the organic band gap near the interface.

Quantitative interface energetics measured using this

method for three different III-V substrates are presented in

Figure 6. In each case, there is a reduction in the substrate

n-type band bending (and increase in the p-type band-bending)

with the Fermi level pinned closer to the conduction band

minimum at the buried interface.

In addition to the band edge discontinuity, there is also

an offset in the vacuum level at each interface. This energy

imbalance has been the subject of much discussion and it is

often overlooked when deriving offsets at organic-organic

interfaces using alignment of the constituent bulk ionization

energies. For interfaces involving small conjugated

molecules,32–34 this offset is common and significant, and is

usually ascribed to an interfacial dipole layer at the interface

due to, for example, charge transfer across the interface,

redistribution of electron density, interface states, or interfa-

cial chemical reaction.

Following the custom for the adsorption and desorption

of molecules on metal surfaces, the difference in the vacuum

level, or dipole (d), is positive when the vacuum level is

raised by adsorption of the molecule. For SnPc interfaces

with III-V semiconductors, d varies from �0.08 eV for GaP

(Figure 6(b)) to �0.83 for GaAs (Figure 6(a)). The resultant

energetics for the three substrates are very different with a

staggered profile for GaAs and InP and a straddled profile

for GaP. The hole injection barrier is smaller than the elec-

tron injection barrier in each case and is almost zero for InP

(Figure 6(c)).

C. Optical and transport gap

The HOMO-LUMO gap is not normally obtainable in

direct photoelectron spectroscopy and diagrams such as

Figures 5 and 6 are completed by positioning the LUMO

level according to gaps deduced optically19,35,36 or using

probes of unoccupied electron states in addition to occupied

states.16,19 However, it is possible to extract estimates of the

FIG. 5. Energy band diagrams for (a) the S:GaAs(001) surface and (b) the

S:GaAs(001)/SnPc interface. Values for the Fermi level (EF), substrate

valence band edge (Ev), the HOMO edge of the organic layer (EH), and the

ionisation energies for each (IEsub and IEorg) are obtained from photoelec-

tron spectroscopy measurements. The valence band offset (DEV) and inter-

face dipole (d) are derived from these measured values.

FIG. 6. Energy band profiles for SnPc heterojunctions with (a) GaAs, (b)

GaP, and (c) InP.
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band gap from photoelectron spectroscopy if the HOMO-

LUMO transitions in organic materials give rise to internal

shake-up transitions. Electronic transitions coincident with

the main photo-ionization event result in lower kinetic

energy satellite peaks in addition to the main photoelectron

emission peaks, and these have been reported for many poly-

mers and small organic molecules.31,37–39 The energy differ-

ence between the core level and its associate shake-up

satellite provides an estimate of the energy of the internal

electronic transition although the absorption/emission pro-

cess is more complex than that of optical transitions induced

by UV/visible/IR photons of energy close to the band gap.

Photoelectron emission spectra for the C1s and N1s core

levels in a thin film of SnPc are shown in Figure 7. The mini-

mum number of fit components for the C1s core-level spec-

trum is four, while only two components are required for the

fitting of the N1s spectrum. The results of the fitting are simi-

lar to those previously reported for other metal-phthalocya-

nines.29,31,39,40 The two main components in the C1s

spectrum are due to zero-loss excitations from the core-

levels, one due to carbon atoms in the outer benzene ring (C-

C/C-H), marked I in Figure 7, and the other due to the carbon

atoms in the pyrrole group (C-N), marked II. The other two

peaks in the spectrum are the shake-up peaks related to each

of the two carbon species. The intensity ratio of the C-N to

the C-C components is 3:1 in agreement with the elemental

ratio in the SnPc molecule.

The intensity of the C-N shake-up peak relative to the

main emission peak is higher than the corresponding relative

intensity of the C-C shake-up peak and this can be explained

with reference to the calculated charge density for the lowest

unoccupied and highest occupied molecular orbitals (Figure 7).

These orbitals are more localized on the inner C-N ring and

hence a HOMO-LUMO transition is more likely during photo-

excitation of carbon atoms located in this part of the molecule

than those in the outer benzene rings. The N1s core level spec-

trum (Figure 7) also contains a shake-up peak at lower kinetic

energy, with a lower relative intensity and different energy

position in comparison with the C1s components.

The energies of the internal transitions determined from

all core level shake-up features are summarized in Table I,

along with corresponding measurements for thin films of

CuPc prepared in the same way. There is a significant spread

in values that are greater than the limits of experimental error

(60.12 eV). The principal source of uncertainty is the energy

resolution and fitting procedure; the values obtained are sim-

ilar for both SnPc and CuPc. The values are also consistent

with those measured by other workers although Cho et al.
report no difference in energy separation for the 1s compo-

nents (1.9 eV) for CuPc on ITO.39 Our data suggest that there

is a difference in the energy separation between the satellite

peaks and their parents with the largest value (around 2 eV)

measured for the C1s C-N component and the smallest

(around 1.6 eV) measured for the N1s C-N component.

To allow a comparison between the energy of these in-

ternal photoelectron transitions and those induced optically,

absorption spectra measured using spectroscopic ellipsome-

try are shown in Figure 7 for SnPc and CuPc. The spectra are

similar for both films with strong absorption at the Q-band at

around 1.8 eV and at higher energy bands at around 3.5 eV

(B-band) and 4.5 eV (V-band).36 In films of conjugated poly-

mers and small molecules, the lowest energy p ! p*

(HOMO-LUMO) transition is usually taken as the maximum

of the Q-band19,41 and these are the values used for the opti-

cal gap of SnPc and CuPc in Table I. For SnPc, the maxi-

mum has a value of 1.77 eV, while CuPc has a value of

1.72 eV. These are in good agreement with values reported

for SnPc in its vapor phase (1.80 eV (Ref. 42)) and in a thin

film of a-type SnPc (1.77 eV (Ref. 43)). For CuPc, the

Q-band shows a more pronounced splitting, with the shape

and energy positions consistent with other ellipsometry

measurements (peak maximum at 1.76 eV (Ref. 19)) and

with optical absorption measurements (peak maximum at

1.79 eV (Ref. 36)). The shape of the Q-band appears to be

FIG. 7. C1s and N1s core level emission spectra for a SnPc film on

GaAs(001) (left hand panels). Hollow circles are the measured data and the

solid lines represent the fitted peak components, their shake-up satellites,

and the sum of all the components. Calculated molecular orbitals for the

LUMO and HOMO states (upper right hand panel) of the isolated molecule

reveal stronger localization at the inner pyrrole rings (II) rather than the

outer benzene rings (I). The Q-band in the optical absorption spectra of

SnPc and CuPc determined by spectroscopic ellipsometry (lower right

panel) provides the optical band gap.

TABLE I. Relative peak shifts for the main components and shake-up satel-

lites for the C1s and N1s core level photoelectron spectra and the optical

band gaps for SnPc and CuPc.

Energy (eV) SnPc CuPc

C1s (C-C) 0 0

Shake-up (C-C) �1.76 �1.79

C1s (C-N) �1.21 �1.23

Shake-up (C-N) �1.99 �2.09

N1s 0 0

Shake-up �1.59 �1.55

Optical band gap 1.78 1.72
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more sensitive to the central metal ion than the higher energy

bands; this is a general observation for metal phthalocya-

nines19 and is consistent with valence band photoelectron

spectroscopy where the states closest to the Fermi level

show most sensitivity to the metal ion.

It is perhaps surprising that the shake-up energies are

close to the values determined optically since in photoemis-

sion, the final state involves a core hole in addition to the

exciton. The C1s shake-up components are close to the

Q-band energies for SnPc and CuPc, although all are consis-

tently around 0.1 eV higher. The N1s shake-up component is

somewhat lower and may be associated with a lower inten-

sity optical transition associated with the low energy

shoulder in optical absorption spectra. For example, Farag

reports a band-gap of 1.55 eV for CuPc based on optical

absorption measurements of thin films on quartz.36

Within the experimental uncertainty, the energy position

of the shake-up components relative to the main peaks is

closer to the optical band gap energies than the transport gap

energies. The transport gap can be determined using a com-

bination of photoelectron spectroscopy and inverse photo-

electron spectroscopy and is found for films of conjugated

organic molecules to be significantly larger than the optical

gaps. For CuPc, values of 2.2 eV (Ref. 16) and 2.3 eV

(Ref. 19) in comparison to optical gaps of 1.72 eV and

1.78 eV (Table I). This corresponds to an exciton binding

energy for both molecules of around 0.6 eV. Similar values

have been measured for other phthalocyanine and perylene

derivatives.16,19 Cho et al., in a core level photoelectron

spectroscopy study of CuPc on ITO, reported a C1s shake-up

energy of 1.9 eV and ascribed this to the transport gap rather

than the optical gap.39 Our data suggest a closer alignment

with the optical gaps, especially for the shake-up peak asso-

ciated with N1s core level and main C-C component of the

C1s core level. There remains, therefore, some doubt due to

the spreads and uncertainties in the measured values, and it

is possible that the measured shake-up peaks are associated

with different internal transitions. There is clearly a need to

improve the accuracy of photoelectron spectroscopy meas-

urements, for example, using higher energy resolution,

improved instrumentation and real-time measurement.

A further method for determining the transport gap

using photoelectron spectroscopy is possible when energetics

data are available for molecular films on different substrates.

Park et al. studied Perylene-3,4,9,10-tetracarboxylic dianhy-

dride (PTCDA) films on differently treated n-GaAs surfa-

ces34 and proposed that the measured interface dipoles can

be used to determine the transport gap. The dipole energies

were calculated from the difference in the measured electron

affinities of the substrate and the organic overlayer

(Dv¼ vsub� vorg), and these were plotted against vsub for the

range of substrates. The transport gap is then determined by

extrapolating this linear relationship to d¼ 0.

The interface dipoles calculated for the SnPc interfaces

with III-V semiconductors measured here (Figure 6) are plot-

ted against the substrate electron affinity vsub in Figure 8.

The dipole is linearly dependent on v and extrapolation of

the linear fit to the data yields vsub ¼ 2.45 eV for d¼ 0 eV. If

Dv is the driving mechanism for the dipole formation, then

vsub¼ vorg when d¼ 0 eV. This provides a value for the elec-

tron affinity for the SnPc, vSnPc¼ 2.45 eV from which the

LUMO energy can be deduced. Assuming that the energy

levels of the SnPc films extend up to the interface without

energy shifts the transport (HOMO-LUMO) gap can be esti-

mated to lie in the range of 2.3 eV to 2.5 eV.

Taking the transport gap to be (2.4 6 0.2) eV and the op-

tical gap for SnPc to be 1.8 eV (Ref. 35) leads to an exciton

binding energy of (0.6 6 0.3) eV. This value is similar to

that reported for metal phthalocyanines and other small con-

jugated molecular films.44 The transport gap for SnPc meas-

ured here is significantly larger than the shake-up energies in

the core level spectra (Table I) and hence our data suggest

that the latter are a closer estimate of the optical gap than the

transport gap. An even higher value for the transport gap

(3.4 eV) has been reported by Walzer and Hietschold in a

scanning tunneling spectroscopy study of a single monolayer

of SnPc on HOPG.45 This discrepancy could be due to the

measurement methodology or the different growth condi-

tions. For the PTCDA/S:GaAs interface,46 a similar band

gap difference was attributed to the interaction between the

STM tip and the organic layer and it was also found that the

magnitude of the measured band gap was sensitive to the tip-

substrate distance.

Inclusion of the transport gap in the energy diagrams for

SnPc on GaAs, GaP, and InP leads to some important conse-

quences. For GaAs and InP, there is an increase in the elec-

tron transport barrier, while for GaP there is a closer

alignment of both band edges. This junction, therefore, offers

a new and efficient injection method for both holes and

electrons.

IV. CONCLUSIONS

Complete energy band profiles for organic-inorganic

interfaces have been determined using a single in situ and

real-time method by combining photoelectron spectroscopy

with organic molecular beam deposition. SnPc adsorption

and incorporation into thin films on III-V semiconductor

surfaces result in the formation of chemically inert but elec-

tronically active interfaces where the organic film induces

FIG. 8. Interface dipoles calculated for SnPc junctions with n-type III-V

semiconductors as a function of measured electron affinity of the substrates.

The electron affinity extrapolates to 2.45 eV when the interface dipole¼ 0.
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band bending in both n-type and p-type (001) single crystals

that have been partially passivated by S-termination. For p

and n GaAs, a pinning position for the Fermi level close to

the conduction band of GaAs explains the formation of

ohmic contacts for GaAs-Ag diodes modified with thin SnPc

interlayers and offers the ability to locate the Fermi level at

any point between mid-gap and the band edge for both dop-

ing types, controlling the barrier in GaAs diodes using the

entire band gap. Real-time measurements reveal a slow evo-

lution of the band bending over timescales comparable to

molecule arrangement within the films and to the organic

semiconductor growth rates. For SnPc interfaces with GaAs,

GaP, and InP, energy band alignment results in band offsets

that are not determined by alignment of bulk ionization ener-

gies of the organic and inorganic materials. This results in

the presence of interface dipoles of between �0.08 eV (for

GaP) and �0.83 eV (for GaAs). Both optical and transport

gaps have been determined from core and valence level spec-

tra to provide the complete interface energetics and their

energy difference indicates an exciton binding energy of

(0.6 6 0.3) eV for this organic semiconductor.
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