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Abstract

When for a difficult real-world optimisation problem no good problem-specific
algorithm is available often randomised search heuristics are used. They are
hoped to deliver good solutions in acceptable time. The theoretical analysis
usually concentrates on the average time needed to find an optimal or approx-
imately optimal solution. This matches neither the application in practice
nor the empirical analysis since usually optimal solutions are not known and
even if found cannot be recognised. More often the algorithms are stopped
after some time. This motivates a theoretical analysis to concentrate on the
quality of the best solution obtained after a pre-specified number of function
evaluations called budget. Using this perspective two simple randomised
search heuristics, random local search and the (1+1) evolutionary algorithm,
are analysed on some well-known example problems. Upper and lower bounds
on the expected quality of a solution for a fixed budget of function evalua-
tions are proven. The analysis shows novel and challenging problems in the
study of randomised search heuristics. It demonstrates the potential of this
shift in perspective from expected run time to expected solution quality.
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search, (1+1) EA, OneMax, LeadingOnes, Jump, Ridge

1. Introduction

Randomised search heuristics are a large class of heuristic search algo-
rithms that comprises evolutionary algorithms, particle swarm optimisers,
ant colony optimisation, artificial immune systems, local search, simulated
annealing, and many others. In the theoretical analysis of randomised search
heuristics it is most common to study the expected optimisation time, i. e.,
the average number of steps needed and sufficient to locate a global op-
timum [2]. Sometimes this is changed to study the expected approxima-
tion time, i. e., the average number of steps needed and sufficient to locate
a solution that approximates the quality of a global optimum with a pre-
specified approximation ratio (see e. g. [3]). It turns out that in this case
the type of results that is obtained does not change fundamentally. Even
more importantly, the very same methods developed to analyse the expected
optimisation time are applicable and useful when studying the expected ap-
proximation time. To simplify the discussion we refer to optimisation in the
following. However, all remarks apply equally to the case of approximation.

Both approaches share a common perspective that is in some sense odd
and not really fitting since randomised search heuristics are incomplete op-
timisers and the user never really knows when and if a global optimum (or a
solution of a certain approximation quality) has been found. Thus, from an
application point of view the interesting question is not how long one has to
wait on average until an optimal solution is found. It is much more common
that a solution needs to be found and the available time for the search is
limited.

The same is true when the performance of randomised search heuristics is
studied empirically. Unless known benchmark or example problems are used
the value of an optimal solution is not known and therefore other performance
measures need to be studied. One tool to do this are so called best-so-far
curves [4]. They display the function value of the best search point that
has been found in the first t steps of the algorithm (plotted as a function
of t). Since an optimal value is not available to decide when a run should
be terminated often algorithms are terminated after a fixed number of steps
and their results are evaluated.

This corresponds to a situation where we have a fixed budget of steps that
we may spend and we ask ourselves how good a solution we can expect to
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find with this budget. In particular, practitioners would like to know about
the impact a change in the budget can be expected to have. ‘If I double
my budget how will this affect the quality of the solution?’ Note that this
question is similar but not identical to the question how best to spend a fixed
budget, in one long or multiple short runs [5].

It makes a difference if one considers small or large budgets. If the budget
is large in comparison to the expected time needed to locate an optimum it
makes more sense to ask how close to 1 is the probability to have found
an optimum already. If the budget is small in comparison to that time it
makes more sense to investigate the expected quality of the solution. For
the case of a large budget results on the expected optimisation time deliver
some information. Even simple application of Markov’s inequality yields
some bounds. The case of a smaller budget presents us with new challenging
analytical problems and it is this case of small computational budgets that
we consider here.

We remark that the expected optimisation time is sometimes but not
always a good indicator for the time needed and sufficient to find an optimal
solution. The function

f(x) =

n− .5 if x = 0n
n∑
i=1

x[i] otherwise

is an example where this is the case. The unique global optimum of the
function is the all ones bit string with function value n. For almost all other
bit strings the function value also equals the number of 1-bits. Thus, it is easy
to follow a path of increasing numbers of 1-bits leading to the global optimum
quickly. The only exception is the all zeros bit string. It has function value
n − .5, the second best function value. If this bit string is found it may be
difficult to get away from it. For simple search algorithms like the (1+1) EA
this does indeed lead to the result that the expected optimisation time is
very large (in fact, it is Ω((n/2)n) for the (1+1) EA) while in practice the
global optimum is almost always found very efficiently (in time O(n log n)
for the same algorithm). However, for the example functions considered here
such pathological cases are avoided and the expected optimisation time is
an adequate measure for the time that is typically needed to find a global
optimum.

We concentrate on the more interesting case of smaller budgets and re-
strict our analysis to two very simple randomised search heuristics. It is sub-
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ject of future research to extend the analysis to more complete (and therefore
challenging) randomised search heuristics. We consider random local search
(RLS) where in each step exactly one bit is chosen uniformly at random and
is flipped. In addition, we consider the (1+1) EA where in each step each bit
is flipped independently with probability 1/n. We will see that the analysis
for the (1+1) EA is already much more difficult.

In the next section we give a formal description of our model, the con-
sidered algorithms and introduce the basic example functions. Moreover, we
motivate the choices we make, explain the perspective and outline challenges
for current and future research. Section 3 is concerned with the analysis for
random local search. The simple structure of this search heuristic facilitates
analysis. We present results in the form of upper and lower bounds on the
expected function value after a fixed budget of function evaluations for five
different example problems. All example problems are well-known and have
been studied before, they are not introduced to facilitate our analysis. We
accompany our bounds by the results of experiments to give an impression of
the quality of the obtained bounds. In Section 4 we consider the (1+1) EA
that uses mutations instead of neighbourhood search. We show that this
seemingly small change complicates things considerably. Finally, Section 5
summarises and points out open questions and topics for future research.

2. Models and Notation

The framework we introduce is an alternative to the usual way of analysing
the performance of randomised search heuristics. We deliberately design the
framework similar to the usual perspective in order to allow for comparisons
and transfer of results as well as analytical methods.

In our framework as well as in the usual model the most crucial notion
is that of time. Usually, in computer science time denotes the number of
computation steps in a model of computation. However, almost always the
analysis of randomised search heuristics is simplified by not actually counting
the number of computation steps but instead counting the number of times
the objective function is evaluated. Randomised search heuristics are often
algorithmically simple and evaluating the objective function can be the by
far most costly operation. In such cases this simplification is justified and
useful. It holds often (but not always [6]) and we adopt this decision here,
too. Thus, a fixed budget b means that a randomised search heuristic may
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make in total b function evaluations to find a point in the search space that
is as good as possible.

Arbitrary randomised search heuristics can be analysed using this per-
spective of fixed budget searches. We consider two very simple examples that
have both been studied in great depth, namely random local search and the
(1+1) EA. In particular, comparisons between the two have been made [7].
We define both algorithms formally as Algorithm 1 and Algorithm 2, respec-
tively. In both algorithms we leave the initialisation open. We consider two
different variants: initialising uniformly at random and starting in a fixed
starting point.

Algorithm 1. Random Local Search (RLS)
1. t := 0. Select xt ∈ {0, 1}n. Evaluate f(xt).
2. While t+ 1 < b do
3. t := t+ 1. y := xt−1.
4. Select i ∈ {1, 2, . . . , n} uniformly at random. Flip i-th bit in y.
5. Evaluate f(y).
6. If f(y) ≥ f(xt−1) then xt := y else xt := xt−1.

Algorithm 2. (1+1) Evolutionary Algorithm ((1+1) EA)
1. t := 0. Select xt ∈ {0, 1}n. Evaluate f(xt).
2. While t+ 1 < b do
3. t := t+ 1. y := xt−1.
4. For each i ∈ {1, 2, . . . , n}: With probability 1/n flip i-th bit in y.
5. Evaluate f(y).
6. If f(y) ≥ f(xt−1) then xt := y else xt := xt−1.

Both algorithms use a ‘population’ of search points of size only 1 and
are elitist: f(xt) is a non-decreasing function of t. Therefore it is obvi-
ous what the expected function value after b function evaluations is. When
analysing an (evolutionary) algorithm with a larger population it will make
most sense to analyse the expected function value after a generation is com-
pleted. When interested in best-so-far curves one would always consider the
maximal function value encountered so far even if, for non-elitist algorithms,
the corresponding search point is no longer part of the population.

When analysing new algorithms, introducing new analytical techniques
or discussing new aspects it is customary in the theory of randomised search
heuristics to start with particularly simple example functions. Two of the
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best known of these simple example functions are OM (often called One-
Max) and LO (often called LeadingOnes) [6, 8, 9, 10]. Their simple struc-
ture facilitates analysis and exemplifies important points in a paradigmatic
way. For these reasons we also consider these functions and in addition some
others, namely Jk (usually called Jumpk[9]), R (often called Ridge [11]), and
P (short for Prefix). We give a precise formal definition for all functions
here.

Definition 3. Let n ∈ N and k ∈ {1, 2, . . . , n}. The following five functions
are all defined so that they map from {0, 1}n to N0.

• OM(x) =
n∑
i=1

x[i]

• LO(x) =
n∑
i=1

i∏
j=1

x[j]

• P(x) = n · LO(x)−OM(x)

• R(x) =

{
n+ i if x = 1i0n−i

n−OM(x) otherwise

• Jk(x) =

{
n−OM(x) if n− k < OM(x) < n

k + OM(x) otherwise

All functions have the all ones bit string as their unique global optimum.
The function OM yields as function value the number of 1-bits, the function
LO the number of consecutive 1-bits counting from left to right. The function
P is similar to LO but ‘insists’ on bit strings of the form 1i0n−i. Additional
spare 1-bits in the suffix of the function are punished by reducing the function
value by 1 for each such 1-bit. The function R is very similar but even stricter.
Any bit string that is not of the form 1i0n−i has a function value that is at
most n and is decreased by 1 for each 1-bit. The function Jk, finally, is
similar to OM but contains a gap between the all ones bit string (the global
optimum) and all bit strings with n− k 1-bits, making these local optima.

In the following section we analyse the performance of RLS on these
functions for a fixed budget b that is smaller than the expected optimisation
time, i. e., b < E (TRLS,f ) where E (TRLS,f ) denotes the expected optimisation
time of random local search on the objective function f . We prove results for
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E (f(xb)) using the notation from Algorithm 1. In Section 4 we go beyond
RLS and consider the (1+1) EA.

The model of fixed budget computation aims at delivering a theory that
is useful for practitioners. Thus, we must be able to answer questions about
the effects of having budget 2b instead of b. This implies that an asymptotic
analysis like E (f(xb)) = Θ(s(n)) is not sufficiently precise. We point out
that obtaining such precise results is also a current trend in the analysis of
expected optimisation times [12, 13].

3. Fixed Budget Results for Random Local Search

We consider the expected performance of random local search on the five
different example functions in an order that facilitates the analysis. It turns
out that the analysis for OM is particularly simple. This is not surprising
since the process is identical to the well known coupon collector scenario
(see, e. g., [14]). Note, however, that there the expected number of coupons
that needs to be bought to have a complete collection is analysed. This
corresponds to the expected optimisation time and is, of course, very different
from our perspective here.

3.1. Random Local Search on OM

We begin with RLS on OM. We start with the special case of deter-
ministic initialisation in the all zeros bit string 0n. This allows to get a
clearer picture of the performance of the algorithm that is not obscured by
the random effects of initialisation.

Theorem 4. With x0 = 0n, for all budgets b ∈ N

E (OM(xb)) = n ·

(
1−

(
1− 1

n

)b)

holds for RLS on OM.

Proof. We observe that all bits x[1], x[2], . . . , x[n] are initially set to 0 and
have the value 1 if and only if there is a point of time when this specific bit
is flipped. Let random variables Xi,t ∈ {0, 1} obtain the value 1 if and only

if xt[i] = 1. Using this definition OM(xb) =
n∑
i=1

Xi,b holds. We conclude that
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we have

E (OM(xb)) = E

(
n∑
i=1

Xi,b

)
=

n∑
i=1

E (Xi,b)

by linearity of expectation and E (OM(xb)) = n·E (X1,b) by symmetry. Since
X1,b is an indicator variable E (X1,b) = Prob (X1,b = 1) holds. It is easy to
see that we have X1,b = 0 if and only the first bit was never flipped in all b

steps. Thus, E (X1,b) = 1 − Prob (X1,b = 0) = 1 − (1− 1/n)b holds and we
obtain the claimed result.

For random initialisation things are only slightly more involved. It is
known that one expects to have half of the bits set to 1, initially. For the
remaining bits we have the same process as for initialisation 0n. This leads

to E (OM(xb)) = (n/2)+(n/2) ·
(

1− (1− 1/n)b
)

and it is not hard to prove

this to be correct rigorously.

Theorem 5. With x0 ∈ {0, 1}n uniformly at random, for all budgets b ∈ N

E (OM(xb)) =
n

2
+
n

2
·

(
1−

(
1− 1

n

)b)

holds for RLS on OM.

Proof. The main tool for the proof is the law of total probability. This yields

E (OM(xb)) =
n∑
i=0

Prob (OM(x0) = i) · E (OM(xb) | OM(x0) = i) .

Given that initially we have i 1-bits the expected function value after b func-
tion evaluations equals i+ (n− i)

(
1− (1− 1/n)b

)
so that

E (OM(xb)) =
n∑
i=0

Prob (OM(x0) = i) ·

(
i+ (n− i)

(
1−

(
1− 1

n

)b))
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Figure 1: Empirical results for OM, n = 1000, and deterministic initialisation in 01000:
average values together with their standard deviations (left) and with the theoretical
bounds (right).

follows. Plugging in Prob (OM(x0) = i) =
(
n
i

)
· 2−n we obtain

E (OM(xb)) =
n∑
i=0

(
n

i

)
2−n

(
i+ (n− i) ·

(
1−

(
1− 1

n

)b))

=

(
n∑
i=0

i

(
n

i

)
2−n

)
+

n∑
i=0

(n− i)
(
n

i

)
2−n ·

(
1−

(
1− 1

n

)b)

=
n

2
+
n

2
·

(
1−

(
1− 1

n

)b)
.

Since we have an exact result here there seems to be little value in pre-
senting empirical results. We still do this and by doing so get an impression
on the influence of random fluctuations when averaging over a finite number
of runs. Here and in the following we perform experiments for n = 1000
(a rather arbitrary choice for n that is neither extremely large nor partic-
ularly small) and present results from 100 runs. We display the results in
two diagrams, one that contains only the empirical results displaying the
average values together with their standard deviations. The second diagram
contains only the average values and for the purpose of comparison the theo-
retical bounds. The results for deterministic initialisation in 0n can be found
in Figure 1; the results for random initialisation are depicted in Figure 2.

We see in both figures in the left image that the standard deviation is re-
ally small. Therefore, it is acceptable to do the comparison of the theoretical
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Figure 2: Empirical results for OM, n = 1000, and random initialisation: average values
together with their standard deviations (left) and with the theoretical bounds (right).

result with the average, only. In both figures the empirical data matches the
exact curve of the expected result perfectly.

3.2. Random Local Search on Jk

Since Jk is similar to OM we consider Jk next. We restrict our interest
to the case of initialisation in the all zeros bit string 0n, here. This avoids
complications for very large values of k (like k ≥ n/2) where the initial bit
string may be in the region of the search space where the function value
decreases with an increasing number of 1-bits. When initialising in the all
zeros bit string we have OM(xt) ≤ n−k for the RLS on Jk at all times since
local search cannot get beyond the local optima of Jk. For all local optima
the function value equals k + (n− k) = n and we have

E (Jk(xb))

= E (Jk(xb) | OM(xb) = n− k) · Prob (OM(xb) = n− k)

+ E (Jk(xb) | OM(xb) < n− k) · Prob (OM(xb) < n− k)

= n · Prob (OM(xb) = n− k)

+
(
k + E (OM(xb) | OM(xb) < n− k)

)
· Prob (OM(xb) < n− k)

since Jk(x) = k+OM(x) holds for the bit strings RLS can encounter. Before
we tackle the problem of exact bounds we present a very simple upper and
a very simple lower bound.
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Theorem 6. With x0 = 0n,

k + (n− k) ·

(
1−

(
1− 1

n

)b)
≤ E (Jk(xb))

≤ min

{
n, k + n ·

(
1−

(
1− 1

n

)b)}

holds for RLS on Jk.

Proof. The upper bound min
{
n, k + n ·

(
1− (1− 1/n)b

)}
combines two sim-

ple observations. On the one hand, local search started in 0n cannot get to
any search point beyond the local optima that all have function value n. On
the other hand, the performance on Jk is not better than the performance
on OM. The addition of k takes care of the difference in function value k
between Jk and OM for all bit strings RLS may encounter.

For the lower bound we again use the performance of RLS on OM for
comparison. Different from the situation there the number of 1-bits cannot
increase beyond n − k. We model this by simply fixing k bits, say the first
k bits, and ignore any increase of the number of 1-bits there. This leads to

(n− k) ·
(

1− (1− 1/n)b
)

as bound and by adding the difference in function

value k as before we obtain the lower bound.

Since
(

1− (1− 1/n)b
)

is a probability we have
(

1− (1− 1/n)b
)
≤ 1 and

see that the difference between the upper and lower bound is bounded above
by k. The function Jk is usually considered for small, constant values of k
since typical evolutionary algorithms have optimisation time Ω

(
nk
)

without
crossover and Ω

(
22k
)

with uniform crossover on Jk [15]. Therefore the bounds
from Theorem 6 are actually already quite good.

We demonstrate this empirically and numerically in the diagrams below
where we compare the two bounds for n = 1000 and k = 5 with the re-
sults of experiments and the actual true values for E (Jk(xb)) that we obtain
numerically using the following ansatz.

We have E (Jk(xb)) =
n∑
i=k

i ·Prob (Jk(xb) = i) since we initialise in the all

zeros bit string (with Jk(0
n) = k) and local search can at best reach a local

optimum with n− k one bits and function value n.
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Due to our initialisation we have Prob (Jk(x0) = k) = 1 and consequently
Prob (Jk(x0) = i) = 0 for all i > k. In the first step RLS reaches some
bit string with precisely one 1-bit so that Prob (Jk(x1) = k + 1) = 1 and
Prob (Jk(x1) = i) = 0 for all i 6= k+ 1 follows. For all t > 1 and all i < n we
have

Prob (Jk(xt) = i) = Prob (Jk(xt−1) = i− 1) · n− (i− 1− k)

n

+ Prob (Jk(xt−1) = i) · i− k
n

since Jk(xt) = i can only hold if one of the following two was the case at time
step t− 1. Either we have Jk(xt−1) = i− 1 and one of n− (i− 1− k) 0-bits
flipped (so that the number of 1-bits in xt is increased by 1 in comparison to
xt−1), or we have Jk(xt−1) = i and one of the i− k 1-bits is flipped (so that
xt = xt−1 holds after selection (line 6 in Algorithm 1)). Finally, for all t > 1
and i = n we have

Prob (Jk(xt) = n) = Prob (Jk(xt−1) = n− 1) · k + 1

n
+ Prob (Jk(xt−1) = n)

since the situation for Jk(xt) = n is very similar to the case i < n. The
only difference is that once we have Jk(xt−1) = n this is guaranteed never to
change again.

This recursive system of equations can easily be solved numerically for
any value of n, k, and b (in time O(nb) and space O(n)). The results for
n = 1000 and k = 5 exemplify that the upper bound is close to the truth
while J5(xt) is still clearly smaller than n− 5 and again once it is very close
to n − 5 (Figure 3). The detailed view in Figure 4 exhibits that only for
a short phase in between the upper bound deviates from the actual values.
Note that the minor overshooting of the empirical results in Figure 4 is very
limited and appears exaggerated due to the different scaling in this figure.

3.3. Random Local Search on P

We continue our analysis with RLS on the LO-like function P. This
prepares us for the analysis on LO. Again we consider initialisation in the
all zeros bit string 0n.
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Figure 3: Empirical results for J5, n = 1000, and deterministic initialisation in 01000:
average values together with their standard deviations (left) and with the theoretical
bounds (right).

Theorem 7. Let the budget b ≤ (1− ε)n2 for some positive constant ε < 1.
With x0 = 0n,

b

(
1− 1

n

)
− e−Ω(n) ≤ E (P(xb)) ≤ b

(
1− 1

n

)
holds for RLS on P.

Proof. Since we start with x0 = 0n and RLS is an elitist algorithm we have
that all xt have the form 1i0n−i for different values of i ∈ {0, 1, . . . , n}.
This implies that we have a bijection between P and the number of leading
1-bits. We consider the number of leading 1-bits for notational simplicity
and investigate E (LO(xb) | x0 = 0n). Note that this is quite different from
analysing RLS on LO (something we do in Section 3.4). We call a step a
success if the number of leading 1-bits increases. In step t we start with xt−1

and generate xt. We have Prob (success in step t+ 1 | LO(xt) < n) = 1/n
and Prob (success in step t+ 1 | LO(xt) = n) = 0.

For each t ∈ N we have that E (LO(xt) | x0 = 0n) equals the number of
successes in the first t steps. Let St be a random variable with

St =

{
1 if LO(xt) > LO(xt−1),

0 otherwise.
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Figure 4: Empirical results for J5, n = 1000, and deterministic initialisation in 01000:
average values together with the theoretical bounds.

This implies

E (LO(xb) | x0 = 0n)

=
b−1∑
t=0

Prob (St+1 = 1)

=
b−1∑
t=0

Prob (St+1 = 1 | LO(xt) < n) · Prob (LO(xt) < n)

+ Prob (St+1 = 1 | LO(xt) = n) · Prob (LO(xt) = n)

=

b−1∑
t=0

Prob (LO(xt) < n)

n
.

With Prob (LO(xt) < n) ≤ 1 we have E (LO(xb) | x0 = 0n) ≤
b−1∑
t=0

1/n = b/n

as an immediate consequence.
We consider a sequence of b completely independent random variables

S∗1 , S
∗
2 , . . . , S

∗
b ∈ {0, 1} with Prob (S∗i = 1) = 1/n for all i ∈ {1, 2, . . . , b}. For

a given t we consider the first t of these random variables, S∗1 , S
∗
2 , . . . , S

∗
t .

The probability to have S∗i = 1 less than n times in this sequence equals
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Prob (LO(xt) < n). Thus,

Prob (LO(xt) < n) =
n−1∑
i=0

(
t

i

)(
1

n

)i(
1− 1

n

)t−i
.

Together this yields

E (LO(xb) | x0 = 0n) =
1

n

b−1∑
t=0

n−1∑
i=0

(
t

i

)(
1

n

)i(
1− 1

n

)t−i
.

We consider the case b ≤ (1 − ε)n2 for some positive constant ε <
1. For a lower bound on E (LO(xb) | x0 = 0n) we need a lower bound on
Prob (LO(xt) < n) for all t ≤ b. Instead we consider an upper bound on

Prob (LO(xt) ≥ n) for all t ≤ b. Remember that LO(xt) =
t∑
i=1

Si.

We see that the S∗i and Si fulfil the conditions of Lem. 1.20 in [16]. Thus

Prob (LO(xt) ≥ n) ≤ Prob

(
t∑
i=1

S∗i ≥ n

)
holds. Since the S∗i are completely

independent we can apply Chernoff bounds [17]. Note that Prob

(
t∑
i=1

S∗i ≥ n

)
is monotonically increasing in t. Thus, we replace t by t∗ := max {t, n2/2}.
This yields

Prob (LO(xt) ≥ n) ≤ Prob

(
t∑
i=1

S∗i ≥ n

)

= Prob

(
t∑
i=1

S∗i ≥
(

1 +

(
n2

t
− 1

))
t

n

)
≤ e−(t∗/n)·((n2/t∗)−1)

2
/3

≤ e−(n/2)·((1/(1−ε))−1)2/3

= e−Θ(n)

and E (LO(xb) | x0 = 0n) ≥ (b/n)·
(
1− e−Ω(n)

)
follows. Together this implies

the result when converting from LO(xb) back to P(xb).

As before we present empirical results for n = 1000 over 100 runs. The
results for deterministic initialisation in 0n are depicted in Figure 5. Since
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Figure 5: Empirical results for P, n = 1000, and deterministic initialisation in 01000:
average values together with their standard deviations (left) and with the theoretical
bounds (right).

we have n = 1000 terms of order e−Ω(n) have no influence on the numerical
values and we simply omit them. Thus, the upper and lower bound we have
are actually equal. We see that for R the variance increases with increasing
budget. With respect to the average values we again have a perfect match
with the theoretical bounds.

3.4. Random Local Search on LO

After this preparation we consider RLS on LO where the initial bit
string x0 is generated uniformly at random. At any time step i ∈ N0 we
have that the bits xi[v + 2] xi[v + 3] · · ·xi[n] are distributed uniformly at
random in {0, 1}n−v−1 where LO(xi) = v. For standard bit mutations this
was already stated in [9]. Before we prove our main result, we show that this
also holds for RLS.

Lemma 8. Consider RLS on LO. Let v := LO(xi) for some i ∈ N0, xi ∈
{0, 1}n. Then, the bits xi[v + 2] xi[v + 3] · · ·xi[n] are distributed uniformly
at random in {0, 1}n−v−1.

Proof. We prove the lemma by induction over i. For i = 0 it holds since the
initial bit string is generated uniformly at random. Assume that it holds for i.
Let LO(xi+1) = v, let x′i+1 = xi+1[v+2]xi+1[v+3] · · ·xi+1[n], let x′i = xi[v+2]
xi[v + 3] · · ·xi[n]. If LO(xi) 6= LO(xi+1) the bits in x′i and x′i+1 are identical
and thus the distribution does not change. If LO(xi) = LO(xi+1) the bits
in x′i may be subject to mutation. Let mut(z′) denote the result of applying

16



mutation to z′. For any y′ ∈ {0, 1}n−v−1 we have

Prob
(
x′i+1 = y′

)
=

∑
z′∈{0,1}n−v−1

Prob ((x′i = z′) ∧ (mut(z′) = y′)) .

Furthermore,∑
z′∈{0,1}n−v−1

Prob ((x′i = z′) ∧ (mut(z′) = y′))

=
∑

z′∈{0,1}n−v−1

Prob (x′i = z′) · Prob (mut(z′) = y′)

since mutation is carried out independently of the bit string. By assumption
we have Prob (x′i = z′) = 2−(n−v−1) for all z′. Moreover, Prob (mut(z′) = y′) =
Prob (mut(y′) = z′) for all y′, z′ is a property of the mutation operator. To-
gether this yields for all y′ ∈ {0, 1}n−v−1 that Prob

(
x′i+1 = y′

)
= 2−(n−v−1) ·∑

z′∈{0,1}n−v−1

Prob (mut(y′) = z′) = 2−(n−v−1) holds since

∑
z′∈{0,1}n−v−1

Prob (mut(y′) = z′) = 1

as it describes a probability distribution.

We are now ready to prove our main result for LO. We consider a budget
b = (1−β)n2 for any β with (1/2)+β′ < β < 1 where β′ is a positive constant.
Note that any budget b ≤ (1− ε)n2 (ε a positive constant) can be expressed
this way since β is not assumed to be a constant. We prove a lower bound
that is Θ(1) for any budget b = O(n). For any budget b = ω(n) we have an
expected function value of 1 + (2b/n)− o(1).

Theorem 9. Let the budget b = (1−β)n2 for any β with (1/2) +β′ < β < 1
where β′ is a positive constant. With x0 ∈ {0, 1}n uniformly at random,

1 +
2b

n
− 2−Ω((1−β)n) ≤ E (LO(xb)) ≤ 1 +

2b

n
− 2−n

holds for RLS on LO.
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Proof. Let St := LO(xt+1)− LO(xt) for t < b. We have

E (LO(xb)) = E

(
LO(x0) +

b−1∑
t=0

St

)
= E (LO(x0)) +

b−1∑
t=0

E (St) .

We observe that

E (St) = E (St | LO(xt) < n) · Prob (LO(xt) < n)

+ E (St | LO(xt) = n) · Prob (LO(xt) = n)

= E (St | LO(xt) < n) · Prob (LO(xt) < n)

= Prob (LO(xt) < n) ·
n−1∑
i=0

Prob (LO(xt) = i) · E (St | LO(xt) = i)

holds where the last equation makes use of the law of total expectation. To
compute E (St | LO(xt) = i) we note that in order to have an increase in
the number of leading 1-bits the left-most 0-bit must flip (probability 1/n).
The increase equals j if the following j − 1 bits all are 1-bits and the jth

bit is a 0-bit, if there are at least j subsequent bits. In case there are only
j − 1 subsequent bits it suffices if these are all 1-bits. Since the bits are
uniformly distributed (Lemma 8) we have probability (1/2)j for the first
case and (1/2)j−1 = (1/2)n−i−1 in the second case. This implies

E (St | LO(xt) = i) =

(
n−i−1∑
j=1

j · 1

n
·
(

1

2

)j)
+ (n− i) · 1

n
·
(

1

2

)n−i−1

=
2− (1/2)n−i−1

n

where the first summand in the first equality covers the cases of at least j
subsequent bits and the second summand covers the remaining case of j − 1
subsequent bits.
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Plugging this in yields

E (St) = Prob (LO(xt) < n) ·
n−1∑
i=0

Prob (LO(xt) = i) · 2− (1/2)n−i−1

n

=

(
2

n
· Prob (LO(xt) < n) ·

n−1∑
i=0

Prob (LO(xt) = i)

)

− Prob (LO(xt) < n) ·
n−1∑
i=0

Prob (LO(xt) = i) · (1/2)n−i−1

n

=

(
2

n
· Prob (LO(xt) < n)2

)
− Prob (LO(xt) < n) ·

n−1∑
i=0

Prob (LO(xt) = i) · (1/2)n−i−1

n

=
2

n
· Prob (LO(xt) < n)

·

(
Prob (LO(xt) < n)−

n−1∑
i=0

Prob (LO(xt) = i) ·
(

1

2

)n−i)
.

We observe that E (St) ≤ 2/n and

E (LO(xb)) = E (LO(x0)) +
b−1∑
t=0

E (St) ≤ E (LO(x0)) +
2b

n

follows. We have

E (LO(x0)) = n · 2−n +
n−1∑
i=1

i · 2−(i+1) = 1− 2−n

and have E (LO(xb)) ≤ 1 + 2b/n− 2−n as a direct consequence.
For a lower bound we need a lower bound on

b−1∑
t=0

E (St) =
b−1∑
t=0

2

n
· Prob (LO(xt) < n)

·

(
Prob (LO(xt) < n)−

n−1∑
i=0

Prob (LO(xt) = i) ·
(

1

2

)n−i)
.
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To this end we want to prove for some positive constant δ < 1 a lower
bound on Prob (LO(xt) < (1− δ)n). We claim that Prob (LO(xt) < (1− δ)n)
= 1− 2−Ω((1−β)n) holds for any constant δ < 1 and any β with (1/2) + β′ <
β < 1 where β′ is a positive constant. We formulate this claim as Lemma 10
and prove this later. Note that this bound implies Prob (LO(xt) < n) =
1− 2−Ω((1−β)n). Moreover, we obtain

n−1∑
i=0

Prob (LO(xt) = i)

(
1

2

)n−i

=

(1−δ)n∑
i=0

Prob (LO(xt) = i) 2i−n +
n−1∑

i=(1−δ)n+1

Prob (LO(xt) = i) 2i−n

≤

(1

2

)n−(1−δ)n (1−δ)n∑
i=0

Prob (LO(xt) = i)


+

1

2
·

n−1∑
i=(1−δ)n+1

Prob (LO(xt) = i)


≤ 2−δn +

1

2
· Prob (LO(xt) > (1− δ)n)

= 2−Ω((1−β)n)

and have

b−1∑
t=0

E (St) =
b−1∑
t=0

2

n
· Prob (LO(xt) < n)

·

(
Prob (LO(xt) < n)−

n−1∑
i=0

Prob (LO(xt) = i) ·
(

1

2

)n−i)

≥
b−1∑
t=0

2

n

(
1− 2−Ω((1−β)n)

) ((
1− 2−Ω((1−β)n)

)
− 2−Ω((1−β)n)

)
=

2b

n

(
1− 2−Ω((1−β)n)

)
=

2b

n
− 2−Ω((1−β)n)

as a direct consequence. Together with our result about initialisation,
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E (LO(x0)) = 1− 2−n, we obtain E (LO(xb)) ≥ 1 + (2b/n)− 2−Ω((1−β)n) and
the result follows.

We are left with the proof of the lower bound on Prob (LO(xt) < (1− δ)n)
for some positive constant δ < 1.

Lemma 10. Consider RLS on LO. Let t ≤ (1 − β)n2 for any β with
(1/2) + β′ < β < 1 where β′ is a positive constant. Moreover, let δ < 1 be a
constant. Then,

Prob (LO(xt) < (1− δ)n) = 1− 2−Ω((1−β)n)

holds.

Proof. We call a step a leap if the number of leading 1-bits leaps forward,
i. e., LO(xi) < LO(xi+1). As above we have that for any number of steps t
the expected number of leaps is bounded above by t/n. Moreover, using
Chernoff bounds, we can bound the probability to have at least (1 + α)t/n
leaps by e−α

2t/(3n) for any positive constant α ≤ 1.
For any time step t there are two different sources for 1-bits contributing

to LO(xt). One is the number of leading 1-bits that are present initially, i. e.,
LO(x0). The second is the number of bits added to the leading 1-bits in a
leap. We first consider the latter source.

Consider the random process x0, x1, x2, . . . generated by RLS on LO.
Recall that we call a step a leap if the number of leading 1-bits leaps forward,
i. e., LO(xi) < LO(xi+1). In such a leap the number of leading 1-bits is
increased by a random number N with N ∈ {1, 2, . . . , n − LO(xi)}. Since
the bits xi[j] with j > LO(xi) + 1 are distributed uniformly at random (see
Lemma 8) we know the precise distribution of N . We are interested in the
distribution of the sum of these random variables N for the first l leaps,
N1 +N2 + · · ·+Nl. To this end consider an infinite bit string y = y[1]y[2] · · ·
where each bit is chosen independently with equal probability from {0, 1}.
Let vi be the function value before the i-th leap, so that in the i-th leap the
function value is increased from vi to vi + Ni = vi+1. In the i-th leap we
consider Ni bits at position vi + 2, vi + 3, . . . , vi +Ni + 1 and map these to

the bits

(
i−1∑
j=1

Nj

)
+ 1,

(
i−1∑
j=1

Nj

)
+ 2, . . . ,

(
i−1∑
j=1

Nj

)
+Ni in the infinite bit

string. This is illustrated in Figure 6.
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1 0 1 0 1 1 0 0 1

1st leap

v1 = 1
N1 = 2

1 1 1 0 1 1 0 0 0

2nd leap

v2 = 3
N2 = 3

· · · 1 1 1 1 1 1 0 0 0

lth leap

vl = 6
Nl = 1

1 0 1 1 0 0 1 0 1 1 1 1 0 0 1 0 0 1 1 0 0 1 0 1 1 0 0 0 1 0 · · ·

(2 + ε)l bits

Figure 6: Illustration of mapping of random bits to bound increase in function value.

Consider the first
l∑

i=1

Ni bits in y for any l ∈ N. The number of 0-bits in

these bits equals l since among the Ni bits there is always exactly one 0-bit,
the final bit in the sequence. We observe that for any l, k ∈ N we have

Prob

(
l∑

i=1

Ni ≥ k

)
= Prob

(
k∑
i=1

y[i] ≥ k − l

)

since
k∑
i=1

y[i] denotes the number of 1-bits in the first k bits of y and having

at least k − l 1-bits corresponds to having at most l 0-bits. Using that the
bits in y are independently and uniformly distributed, the following holds for
any ε > 0 and any l by application of Chernoff bounds:

Prob

(
l∑

i=1

Ni ≥ (2 + ε)l

)
= Prob

(2+ε)l∑
i=1

y[i] ≥ (1 + ε)l


= Prob

(2+ε)l∑
i=1

y[i] ≥
(

1 +
ε

2 + ε

)
·
(

1 +
ε

2

)
l


≤ e−(1+ε/2)(ε/(2+ε))2l/3

= e−(ε2/(12+6ε))l

We need a lower bound on Prob (LO(xt) < (1− δ)n) and instead prove an
upper bound on Prob (LO(xt) ≥ (1− δ)n). Let A denote the event LO(xt) ≥
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(1 − δ)n, let B denote the event LO(x0) ≥ (1 − γ)(1 − δ)n, let C denote
the event that the increase in the number of leading 1-bits in t genera-
tions is at least γ(1 − δ)n for some constant γ < 1. Clearly, Prob (A) ≤
Prob

(
B ∨

(
B ∧ C

))
≤ Prob (B ∨ C) ≤ Prob (B) + Prob (C) holds. We have

Prob (B) =
n∑

i=(1−γ)(1−δ)n

Prob (LO(x0) = i)

≤
n∑

i=(1−γ)(1−δ)n

(
1

2

)i
< 21−(1−γ)(1−δ)n

and need an upper bound Prob (C). We consider t ≤ (1 − β)n2 steps (for
some positive β < 1) and have that with probability 1−e−α2t/(3n) the number
of leaps is bounded above by (1 + α)t/n for any positive constant α < 1. In
at most (1 +α)t/n leaps the number of leading 1-bits is increased by at most

(2 + ε)(1 + α)t/n with probability at least 1 − e−(ε2/(12+6ε))(1+α)t/n for any
positive constant ε.

Remember that St = LO(xt+1) − LO(xt). Thus, the increase in the

number of leading 1-bits in t steps equals
t−1∑
i=0

Si. Recall that C is the event

that
t−1∑
i=0

Si ≥ γ(1 − δ)n. For any constants 0 < α < 1, ε > 0 and any

t ≤ (1− β)n2 with 0 < β < 1 we have

Prob

(
t−1∑
i=0

Si ≥ (2 + ε)(1 + α)t/n

)
≤ e−((ε2(1+α))/(12+6ε))·(t/n).

We observe that the probability Prob

(
t−1∑
i=0

Si ≥ k

)
is monotonically increas-

ing in t for any fixed k. Thus,

Prob

(
t−1∑
i=0

Si ≥ (2 + ε)(1 + α)(1− β)n

)
≤ e−((ε2(1+α))/(12+6ε))·(1−β)n

for any t ≤ (1− β)n2 with 0 < β < 1. For estimating Prob (C) we need

(2 + ε)(1 + α)(1− β)n = γ(1− δ)n. (1)
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Figure 7: Empirical results for LO, n = 1000, and random initialisation: average values
together with their standard deviations (left) and with the theoretical bounds (right).

The above holds for arbitrary constants 0 < α, γ < 1 and ε > 0. We set
α := ε and γ := 1 − ε. For a given 1/2 < β < 1 we solve equation (1) for ε
and obtain

ε =
4− 3β − δ −

√
12− 12β + β2 − 12δ + 10βδ + δ2

2(β − 1)
.

For β > (1 + δ)/2 we observe 0 < ε < 1 for δ < 1.
We summarise what we have and obtain

Prob (LO(xt) < (1− δ)n) ≥ 1− 21−ε(1−δ)n − e−((ε2(1+ε))/(12+6ε))·(1−β)n

= 1− 2−Ω((1−β)n)

with ε as above for any t ≤ (1− β)n2 with β > (1 + δ)/2.

As before we present empirical results for n = 1000 over 100 runs. The
results for random initialisation are depicted in Figure 7. We see that the
variance is even more increased than it is for R (compare Figure 8). Since
with n = 1000 we can safely omit terms of order e−Ω(n) we have matching
upper and lower bounds. Again we have a perfect match of the empirical
values with the theoretical bounds.

3.5. Random Local Search on R

For random local search we can draw on our results on OM and P. After
random initialisation RLS will behave like it does on OM with probability
very close to 1. After finding a search point of the form 1i0n−i for the first
time it behaves like it does on P. Taking this into account it is not difficult
to come up with an upper bound for the expected performance.
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Theorem 11. Let the budget b ≤ (1− ε)n2 for some positive constant ε < 1.
With x0 ∈ {0, 1}n uniformly at random,

E (R(xb)) ≤
n

2
+
n

2

(
1−

(
1− 1

n

)b)
+
b

n
+ e−Ω(n)

holds.

Proof. Once RLS has found a search point of the form 1i0n−i all subsequent
search points will have the same form. For such search points RLS behaves
on R in the same way as on P. Thus, we can re-use results from the proof of
Theorem 7. For such search points the number of 1-bits equals the number
of leading 1-bits. We have R (1i0n−i) = n+ i and P (1i0n−i) = n · i− i.

If RLS is started in 0n, we have E (P (xb) | x0 = 0n) ≤ b−(b/n) from The-
orem 7. Under the same condition this translates to E (R (xb) | x0 = 0n) ≤
n+ b/n here.

Note that here we are concerned with an initial search point that is
selected uniformly at random from {0, 1}n. We have Prob (R(x0) > n) =
n · 2−n. Therefore, this contributes n · 2−n · 2n = e−Ω(n) to the expected
function value.

In order to reach the ridge (i. e., the sequence of points 0n, 10n−1, 110n−2,
. . . , 1n) the (n − OM)-part of R needs to be optimised. Using the result

on OM (Theorem 5) we can replace this by (n/2) + (n/2)
(

1− (1− 1/n)b
)

.

This yields the claimed upper bound.

A lower bound is more difficult to obtain. Let T be the random point
of time when the ridge is first encountered. Up to this point the expected
function value is given as for OM. After this time it is at least n + (b/n)−
e−Ω(n) like on P. We use precisely this idea to derive the following lower
bound.

Theorem 12. Let the budget b ≤ (1− ε)n2 for some positive constant ε < 1.
With x0 ∈ {0, 1}n uniformly at random,

E (R(xb)) ≥ max

{
n

2
+
n

2

(
1−

(
1− 1

n

)b)
,

max

{
0, 1− 1

n(t/(n lnn))−1

}
·
(
n+

b− t
n
− e−Ω(n)

)}

25



holds for any t ≤ b.

Proof. The term ((n/2) + (n/2)
(

1− (1− 1/n)b
)

in the maximum is correct

since RLS performs on R no worse than on OM. Therefore, we concen-
trate on the other part of the maximum. Let p(t) denote a lower bound on
the probability that the ridge is encountered after at most t steps. Then
p(t) ·

(
n+ ((b− t)/n)− e−Ω(n)

)
is a lower bound on the expected function

value after a total of b steps due to our result on P (Theorem 7). With ran-
dom initialisation the expected number of steps needed to locate the ridge is
smaller than the expected number of coupons needed to obtain a complete
set of coupons in the coupon’s collector problem (see [14] for the problem
and the bound we use in the following). Therefore, we can use the well-
known bound n−β+1 on the probability to need more than βn lnn coupons
to have a complete collection that holds for all β > 0. Together this yields
the result.

Again we present empirical results for n = 1000 and random initialisation
over 100 runs. The results are depicted in Figure 8. Additionally, we show
more detailed results in Figure 9 for the area where it becomes more likely
to already have reached the ridge. The size of the standard deviations is
small in the beginning when RLS is confronted with the OM-part of R. It
increases later to similar values like on P on the part that is P-like. In this
part our lower and upper bounds are quite tight and we see that the empirical
results are within these bounds. Only in the part where there is the random
change from the OM-part to the P-part of R our bounds are a bit more
loose. Figure 9 zooms into this area. We see that the difference between the
lower and upper bound for n = 1000 is less than 15 for function values of
more than 1000. The average of the empirical results is well within these
bounds.

4. Fixed Budget Results for (1+1) EA

We consider the (1+1) EA on LO with random initialisation. We con-
centrate on this case because this random process is very well analysed and
understood [18]. Moreover, the optimisation time of the (1+1) EA on LO
is very much concentrated around its expected value [9]. We will see that
in spite of these advantages and our preparations for this in Section 3.4 the
analysis is still difficult.
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Figure 8: Empirical results for R, n = 1000, and random initialisation: average values
together with their standard deviations (left) and with the theoretical bounds (right).

 998

 1000

 1002

 1004

 1006

 1008

 1010

 1012

 1014

 1016

 1018

 12000  13000  14000  15000  16000  17000

F
it

n
e

ss

Iteration

mean
theoretical lower bound
theoretical upper bound

Figure 9: Empirical results for R, n = 1000, and random initialisation: average values
together with the theoretical bounds.

We observe that for any xt the bits xt[v + 2]xt[v + 3] · · ·xt[n] with v =
LO(xt) are distributed independently uniformly. The property of local muta-
tions employed in RLS that is crucial for the proof, ∀x, y : Prob (mut(x) = y) =
Prob (mut(y) = x), also holds for the standard bit mutations employed in the
(1+1) EA [9]. Thus, E (LO(xt+1) | xt = x) is always at least as large for RLS
as it is for the (1+1) EA. This is true since the probability for increasing
the function value equals 1/n for RLS while it equals (1/n) · (1 − 1/n)v

(with v = LO(x)) for the (1+1) EA and the distribution of the other
bits is identical. Thus, the expected function value for RLS is an upper
bound for the expected function value for the (1+1) EA. We conclude that
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E (LO(xb)) ≤ 1 + (2b/n)− 2−n holds for any budget b = (1− β)n2 for any β
with (1/2) + β′ < β < 1 where β′ is a positive constant. One may speculate
that due to the considerably smaller success probability this upper bound is
not tight for the (1+1) EA. We prove that it actually is tight for budgets b
that are asymptotically smaller than the expected optimisation time.

Theorem 13. Let the budget b = (1−β)n2/α(n) for any β with (1/2)+β′ <
β < 1 where β′ is a positive constant and α(n) = ω(1), α(n) ≥ 1. With
x0 ∈ {0, 1}n uniformly at random,

E (LO(xb)) = 1 +
2b

n
−O

(
b

nα(n)

)
= 1 +

2b

n
− o
(
b

n

)
holds for (1+1) EA on LO.

Proof. We re-use the notation from the previous section and see that

E (LO(xb)) = 1− 2−n +
b−1∑
t=0

E (St)

and

E (St) = Prob (LO(xt) < n)
n−1∑
i=0

Prob (LO(xt) = i) E (St | LO(xt) = i)

both hold for the (1+1) EA, too. Due to the different mutation we have in
particular a change in E (St | LO(xt) = i). We have, similar to the proof of
Theorem 9 and again using Lemma 8,

E (St | LO(xt) = i)

=
n−i−1∑
j=1

j ·
(

1− 1

n

)i
1

n
·
(

1

2

)j
+ (n− i) ·

(
1− 1

n

)i
1

n
·
(

1

2

)n−i−1

and come to

E (St) =

(
2

n
· Prob (LO(xt) < n) ·

n−1∑
i=0

Prob (LO(xt) = i)

(
1− 1

n

)i)

− Prob (LO(xt) < n) ·
n−1∑
i=0

Prob (LO(xt) = i) · (1/2)n−i−1

n
·
(

1− 1

n

)i
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as before. Remember that the performance of RLS is an upper bound on the
performance of the (1+1) EA, thus we have

Prob (LO(xt) < n) ·
n−1∑
i=0

Prob (LO(xt) = i) · (1/2)n−i−1

n

(
1− 1

n

)i
= 2−Ω((1−β)n)

as before for any t = (1 − β)n2 for any (not necessarily constant) β with
(1/2) + β′ < β < 1 where β′ > 0 is a constant.

E (St) =

(
2

n
·
n−1∑
i=0

Prob (LO(xt) = i)

(
1− 1

n

)i)
− 2−Ω((1−β)n)

follows. We observe that the (1− 1/n)i behave asymptotically differently for
i = o(n) and i = Ω(n). Thus, it makes sense to make a case distinction. We
consider the (1+1) EA with a small budget b that is b(n) = o(n2) here. The
other case is dealt with in Theorem 14.

We have

n−1∑
i=0

Prob (LO(xt) = i)

(
1− 1

n

)i
≥

n/α(n)∑
i=0

Prob (LO(xt) = i)

(
1− 1

n

)i
≥
(

1− 1

n

)n/α(n)

· Prob (LO(xt) ≤ n/α(n))

for any function α : N→ R+ with α(n) = ω(1).
For RLS and t = (1− β)n2 with β as before we proved

Prob (LO(xt) < (1− δ)n) = 1− 2−Ω((1−β)n).

We observe that we get basically the same statement for any function α : N→
R+ with α(n) = ω(1), i. e., Prob (LO(xt) < n/α(n)) = 1 − 2−Ω((1−β)n/α(n)).
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Since this holds for RLS, it holds for the (1+1) EA, too. Together we have

E (St) =

(
2

n
·
(

1− 1

n

)n/α(n)

·
(
1− 2−Ω((1−β)n/α(n))

))
− 2−Ω((1−β)n)

=

(
2

n
·
(

1− 1

n

)(n−1)·n/((n−1)α(n))
)
− 2−Ω((1−β)n/α(n))

≥
(

2

n
· e−n/((n−1)α(n))

)
− 2−Ω((1−β)n/α(n))

≥
(

2

n
·
(

1− n

(n− 1)α(n)

))
− 2−Ω((1−β)n/α(n)) =

2

n
−O

(
1

nα(n)

)
so that the result follows.

For budgets that are not so small we start with rather trivial upper and
lower bounds. We have already observed that the performance of RLS is an
upper bound on the performance of the (1+1) EA. This implies E (LO(xb)) ≤
1 + (2b/n) − 2−n here, too. For a lower bound we observe that the term
(1− 1/n)i decreases monotonically in i and becomes minimal for i = n− 1.
Thus, the expected increase in the number of leading 1-bits is in each step
bounded below by (2/n) · (1− 1/n)n−1 ≥ 2/(en). This establishes

E (LO(xb)) ≥ 1− 2−n +
2

en

b−1∑
t=0

Prob (LO(xt) < n)

as lower bound. Using the upper bound we see that for any b ≤ (1 − β)n2

for any β with (1/2) + β′ < β < 1 where β′ > 0 is a constant we obtain
E (LO(xb)) ≥ 1 + (2b/en)− 2−Ω(n) as lower bound. We restrict ourselves to
budgets b = cn2 where 0 < c < 1/2 is a constant. We observe that there is a
multiplicative gap of size e ≈ 2.72 between the upper and lower bound. We
aim to close this gap.

Our approach follows a simple divide and conquer scheme and works as
follows. We consider the b steps to be taken and divide them into k intervals
of equal size that we call phases. In the beginning of each phase we have
upper and lower bounds on the number of leading 1-bits that hold with high
probability. In a first step we use these bounds to determine an upper bound
on the number of leading 1-bits at the end of this phase that coincides with
the beginning of the next phase. With this upper bound and the lower bound
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for the beginning of the phase we derive a lower bound for the end of the
phase and thus the beginning of the next phase. Formally,

U0 = v, Ui = Ui−1 + (1 + ε)(2s/n) (1− 1/n)min{n,Li−1}

L0 = 0, Li = Li−1 + (1− ε)(2s/n) (1− 1/n)min{n,Ui} ,

where Ui is the upper bound on the number of leading 1-bits at the end of
phase i, Li is the corresponding lower bound, v ∈ N is an upper bound on
LO(x0) (later chosen sufficiently large to have high probability), s = b/k is
the length of each of the k phases, and ε > 0 is a small constant needed
to have the bounds hold with high probability. For the initialisation and
in each phase we have failure probabilities. We choose v and k in a way
that the sum of all failure probabilities is o(1). It is easy to observe that by
application of Chernoff bounds in each phase it suffices to have v = Ω(log n),
k ≤ δn/ log n for a sufficiently small constant δ > 0 and ε > 0 constant
and arbitrarily small. We set v = Θ(log n) appropriately. With this we have
Lk ≤ LO(xb) ≤ Uk with high probability. We are interested in getting Uk/Lk
small, i. e., close to 1.

It is interesting to observe that this divide and conquer approach is better
than the trivial bounds even if one does not divide, i. e., if one considers the
base case k = 1. We start with this case. Due to our assumptions we have
b = cn2 where 0 < c < 1/2 is a constant. We have U1 = 2c(1 + ε)n+ v, and
consider U1/n in the limit for n→∞ and ε→ 0. This yields lim

n→∞,ε→0
U1/n =

2c as upper bound. Similarly we obtain L1 = 2c(1− ε) (1− 1/n)2c(1+ε)n+v n
and get lim

n→∞,ε→0
L1/n = lim

n→∞
2c (1− 1/n)2cn+v = 2ce−2c.

We summarise what we have using k = 1 so far. We have

Prob

(
2ce−2c ≤ LO(xb)

n
≤ 2c

)
= 1− o(1)

for b = cn2 with 0 < c < 1/2 constant. These bounds are visualized in
Figure 10.

We can repeat the same for k > 1. For k = 2 we obtain lim
n→∞,ε→0

U2/n =

c
(

1 + e−ce
−c
)

as upper bound and lim
n→∞,ε→0

L2/n = ce−c
(

1 + e−ce
−ce−c

)
in

the very same way. Together this yields

Prob

(
ce−c

(
1 + e−ce

−ce−c
)
≤ LO(xb)

n
≤ c

(
1 + e−ce

−c
))

= 1− o(1)
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Figure 10: Illustration of upper and lower bounds for LO(xb)/n holding with high prob-
ability derived with the divide and conquer approach for k = 1.

for k = 2. While these bounds are tighter they are also more complicated.
We illustrate the improvement by plotting the improved bounds for k = 2
together with the bounds for k = 1 in Figure 11. This complication of the
analytical bounds continues due to the recursive structure of our estimation.
We therefore abstain from continuing this analytically. For k > 2 we perform
the same calculations for Uk and Lk but now numerically for some sufficiently
large value of n. We present the results of numerical analysis that establish
bounds on Uk, Lk and the quotient Uk/Lk for some finite values of k and
fixed budget of b = .45n2 and b = .25n2. The numerical results for Uk and Lk
together with the trivial bounds are given in Figures 12 and 13, respectively.

We observe that both bounds start to improve quickly with increasing k.
For illustration we give upper bounds for the values of Uk/Lk in the following
table, i. e., for c→ 0.5.

k 1 2 3 4 5 6 7 8 9 10
Uk/Lk 2.47 1.61 1.38 1.28 1.22 1.18 1.16 1.14 1.12 1.11

k 11 12 13 14 15 16 17 18 19 20
Uk/Lk 1.10 1.09 1.08 1.08 1.07 1.07 1.07 1.06 1.06 1.06

We show how the quotients approach their true values with increasing n
by plotting the quotient obtained numerically for n ∈ {1 000, 10 000, 100 000}
in Figure 14. It becomes obvious that for n ≥ 10 000 there is hardly any
difference.
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Figure 11: Illustration of upper and lower bounds for LO(xb)/n holding with high prob-
ability derived with the divide and conquer approach for k = 1 and k = 2.

Clearly, the most important factor is the budget b. Remember that we
assume b = cn2 for some constant 0 < c < 1/2 in this section. Recall that
our divide and conquer approach can be extended until k = O(n/ log n)
and becomes better with increasing k. We perform numerical analysis for
k = n/ lnn, n = 10 000 and values of c ∈ {.01, .02, . . . , .49}. The results are
shown in Figure 15 together with the analytical bounds we obtained above
for k = 1. Moreover, we summarise the analytical bound that we obtained
for k = 2 in a theorem.

Theorem 14. Let the budget b = cn2 for any constant c with 0 < c < 1/2.
With x0 ∈ {0, 1}n uniformly at random,

Prob

(
ce−c

(
1 + e−ce

−ce−c
)
≤ LO(xb)

n
≤ c

(
1 + e−ce

−c
))

= 1− o(1)

holds for (1+1) EA on LO.

Finally, we present empirical results for n = 1000 and random initialisa-
tion in Figure 16. We see that for the (1+1) EA the variance in the function
value is clearly larger than for random local search. For the comparison we
use the bounds from Theorem 13. These bounds are less tight than the
bounds for RLS. We decide not to bother about the terms of lesser order
in the bounds (that may actually be non-negligible) so that both bounds
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Figure 12: Values of Uk and Lk together with the trivial bounds for c = 0.45.

are simply 1 + (2b/n). Note that the bounds are only valid for rather small
computational budgets b ≤ (1− β)n2/α(n) where β > 1/2 and α(n) = ω(1).
We observe a very good match of the empirical results with the bound for
budgets up to 30000. For larger budgets it appears to be the case that the
bound is too optimistic. We remember that the budget is systematically
optimistic for budgets that are too large and this way get an idea of what
b ≤ (1−β)n2/α(n) means in practice for n = 1000. Note that for say β = 0.6
and α(n) = ln(n) we have (1 − β)n2/α(n) ≈ 57906 so that not considering
values larger than 60000 is reasonable.

5. Conclusions

The analysis of randomised search heuristic aims at delivering valuable
insight into potential and limitations of randomised search heuristics. It is
motivated by the desire to be able to apply randomised search heuristics in
a more informed and effective way.

Currently, the analysis of randomised search heuristics is dominated by
the analysis of the expected optimisation time or the expected approximation
time. While this perspective has produced a number of useful results it is
in strange contradiction to the way randomised search heuristics are usually
applied. This contributes to a substantial gap between theory and practice in
the area of randomised search heuristics. We aim at helping to close this gap
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Figure 13: Values of Uk and Lk together with the trivial bounds for c = 0.25.

by introducing a different analytical perspective. We analyse the expected
function value after a given number b of function evaluations, called budget.

In addition to the introduction of the analytical perspective we present
a number of results. For this we consider as the main vehicle random local
search. This particularly simple randomised search heuristic facilitates anal-
ysis. We exemplify the difficulty of the analysis of less simple randomised
search heuristics by considering the (1+1) EA, a very simple evolutionary
algorithm.

We obtain results for random local search for five well-known example
functions. For OM we prove exact results. For P and LO we prove upper
and lower bounds that are asymptotically tight up to an exponentially small
summand. For Jk we have on the one hand upper and lower bounds that
are tight up to a summand of k and on the other hand an exact recursive
formulation that allows us to compute exact results for concrete values of n
and k numerically. For R we have lower and upper bounds that are matching
for quite small and quite large budgets. They are not tight for values where
we expect RLS to reach the ridge of R for the first time. Around this time
the progress in function value changes from being OM-like to being P-like.
While we have exact bounds for both functions combining them to an exact
bound for R that combines both functions is not trivial.

Considering the (1+1) EA we see that the greater variability in mutations
presents us with substantial analytical difficulties. We consider the situation
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Figure 14: Quotients Uk/Lk for n ∈ {1 000, 10 000, 100 000}.

for LO that is particularly well understood. For budgets that are asymptot-
ically smaller than the expected optimisation time for LO we obtain results
that are tight up to a summand of smaller order. For budgets that are
asymptotically equal to the expected optimisation time we have upper and
lower bounds. For this case we present an analytical method that allows to
derive upper and lower bounds analytically and numerically. Our analytical

lower and upper bounds have a factor of ec(1+e−ce
−c

)/(1+e−ce
−ce−c

) < 1.695
between them if the budget is b = cn2, c < 1/2 constant. We recognise room
for improvement since it is desirable to have upper and lower bounds that
are tight up to not too large summands.

The introduction of the new perspective to the theory of randomised
search heuristics and the presentation of first results is hoped to motivate
further research. Clearly, there is a large gap between the results on simple
example functions here and insights that are actually useful in practice. The
most important and pressing issue for further studies is the development of
adequate analytical methods and tools. A first step in this direction that
concentrates on re-using known results on the expected optimisation time
has recently been presented by Doerr et al. [19]. We hope that theoreticians
find this an interesting, challenging, and fruitful direction for future research.
More importantly, we hope that the type of results obtained this way is more
appealing and relevant for practitioners. Ultimately, we hope to bring theory
and practice in the field closer together.
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Figure 15: Bounds for LO(xb)/n for b = cn2 with c ∈ {.01, .02, . . . , .49}.

 0

 50

 100

 150

 200

 0  10000 20000 30000 40000 50000

Fi
tn

e
ss

Iteration

std
mean

 0

 50

 100

 150

 200

 0  10000 20000 30000 40000 50000

Fi
tn

e
ss

Iteration

mean
theoretical bound

Figure 16: Empirical results for LO, n = 1000, and random initialisation: average values
together with their standard deviations (left) and with the theoretical bounds (right).
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