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Mouse models of human diseases
The value of the mouse as a model for
human disease has become firmly estab-
lished as new mutants are repeatedly vali-
dated as models of human disease and,
increasingly, the similarities in the pathobi-
ology of the two species provide new insights
into disease mechanisms and aetiologies
(Peters et al., 2007; Rosenthal and Brown,
2007; Justice, 2008; Brown et al., 2009).
Mutant strains derived from hypothesis-dri-
ven research are now being augmented by
large-scale mutagenesis efforts that are being
undertaken worldwide (Brown et al., 2009).
Following the successful phenotype-driven
N-ethyl-N-nitrosourea (ENU) mutagenesis
projects, the products of which are still being
analyzed, large-scale gene knockout pro-
grammes have been established to provide
the mutant embryonic stem (ES) cells and
mice that are needed to discover the func-
tions of all of the protein-coding genes in the
mouse genome. The International Knockout
Mouse Consortium, (IKMC; www.knock-
outmouse.org) (International Mouse Knock-
out Consortium et al., 2007), composed of
four international partners (EUCOMM,
KOMP, NorCOMM and TIGM), is currently
producing large collections of targeted and
gene-trapped mouse mutants. Currently
13,374 genes have been knocked out from a

target number close to 24,000. More than 500
mouse lines are expected to be systematically
phenotyped within the next five years using
standardised phenotyping procedures devel-
oped by the EUMORPHIA (European Union
Mouse Research for Public Health and
Industrial Applications) and EUMODIC
(The European Mouse Disease Clinics) con-
sortia (www.eumodic.org) (Brown et al.,
2005).

The mutagenesis efforts are not the only
new sources of large amounts of systematic
phenotyping data. The Shock-Ellison Med-
ical Foundation-funded mouse aging pro-
gramme at the Jackson Laboratory
(http://agingmice.jax.org/index.html) is
keeping mice from 31 different strains for
the entirety of their natural life span to gen-
erate a huge volume of age-dependent phe-
notype data covering physiology, pathology
and gene expression (Yuan et al., 2009).
Longitudinal, cross-sectional and targeted
studies of these mice provide interesting
insights into the pathophysiology of aging.
By using the high-resolution single
nucleotide polymorphism (SNP) maps that
are now available, these data will generate
new gene/phenotype associations for many
age-related conditions and complex traits.

To make the best use of the sheer volume
and depth of the emerging mouse pheno-

type data we need to be able to relate it to
human ‘phenotype’ or disease data in a way
that is amenable to computation; it is this
challenge that we discuss here.

What is a phenotype?
The concept of a phenotype is used in a vari-
ety of ways, not all of which are compatible
with each other. Descriptions of clinical dis-
eases (signs and symptoms), pathological
lesions and entities; summative disease
nomenclature (e.g. syndromes); the appear-
ance or behaviour of mutants; genetically
determined traits of strains; and, at the
molecular level, transcriptome and gene
expression patterns all represent examples
of the common understanding of the con-
cept of phenotype. When defined properly,
the phenome itself is all of the genetically
determined traits manifested under the pre-
vailing environmental conditions and a phe-
notype is an observable property of the
organism in the specified environment.
Another useful concept is the phenoset,
which represents a group of phenotypes in
the same individual (e.g. behaviour, cancer,
adiposity) that, together, characterise it.

Phenotypes versus traits
The term phenotype is often used as a syn-
onym for a trait, especially in the descrip-
tion of human disease. This leads to con-
siderable confusion. In the development of
ontologies, the distinction between traits
and phenotypes is essential for logical clar-
ity and, in line with other developers (e.g.
Hughes et al., 2008), we adopt the follow-
ing definitions. A trait is a heritable, specif-
ically measurable or identifiable feature of
an organism, which can be followed through
the genetic segregation of one or more phe-
notypes – such as short legs or dark hair.
The traits here are ‘leg length’ and ‘hair
colour’. ‘Short legs’ and ‘dark hair’ are phe-
notypes, which are properties that can be
measured or categorised under given envi-
ronmental conditions.
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Phenotype ontologies for mouse and man: bridging
the semantic gap
Paul N. Schofield1,2,*, Georgios V. Gkoutos3, Michael Gruenberger1, John P. Sundberg2

and John M. Hancock4

A major challenge of the post-genomic era is coding phenotype data from humans
and model organisms such as the mouse, to permit the meaningful translation of
phenotype descriptions between species. This ability is essential if we are to
facilitate phenotype-driven gene function discovery and empower comparative
pathobiology. Here, we review the current state of the art for phenotype and
disease description in mice and humans, and discuss ways in which the semantic
gap between coding systems might be bridged to facilitate the discovery and
exploitation of new mouse models of human diseases.
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The importance of phenotype data
For the mouse, useful associations can be
made between genotypes and phenotypes
where the mutation is known; either from
identification of the ENU-induced or inser-
tional alleles, or from targeted mutations.
Additionally, where haplotype analysis is
possible between inbred strains, making
the association between phenotype and
genotype permits the association of phe-
notype differences with specific haplotypes
or SNPs, which is invaluable for complex
trait analysis. This is now facilitated greatly
by SNP discovery using high-throughput
sequencing (Nikolaev et al., 2009).

Phenotypes that are shared between
humans and mice can help identify candi-
date genes for human diseases. For exam-
ple, candidate disease genes within associ-
ation intervals in human genetic mapping
studies, e.g. genome-wide association stud-
ies, may be triaged by looking at phenotypes
of genes within the orthologous interval in
the mouse. Evolutionary conservation of
gene co-expression patterns for closely
related phenotypes allows candidate gene
prioritisation and, apart from identifying
mouse mutants that can act as models for
human diseases, we now see instances
where high-resolution phenotyping of the
mouse generates novel insights into human
conditions (Ishimori et al., 2006; Ackert-
Bicknell et al., 2008; Lisse et al., 2008).

The development of a common frame-
work to describe human diseases and sim-
ilar phenotypes in model organisms is
needed to integrate the huge amount of
phenotypic and genetic data that is gener-
ated from clinical genetic studies and the
analysis of mutant animals. The problem is
how to construct such a harmonised frame-
work starting from the existing, well-estab-
lished, but fundamentally different,
approaches to describing phenotypes in
humans and mice.

Coding of phenotype data
Both mice and humans have been ‘pheno-
typed’ for many years. Phenotypic variation
in mice was recognised by the ancient Chi-
nese (Keeler and Fuji, 1937) more than 2000
years ago. The Eh Yah dictionary (1100 B.C.)
has a special term for a ‘mouse with the hair
pattern of a leopard’, which is maybe the first
description of a spontaneous mutation in
the endothelin type B receptor gene, such
as piebald (Ednrbs-l) (Lane, 1966), which
shows a characteristic black spotting. The

‘waltzing’ phenotype, which is probably the
result of vestibular defects that are similar
to the familiar spontaneous waltzer muta-
tions, e.g. Cdh23v-5J, was valued by the
Japanese. A treatise on ‘The Breeding of
Curious Varieties of Mice’, was published in
1787 by Chobei Zeniya of Kyoto, Japan. In
this work, the author describes the cross-
ing of various types of fancy mice and iden-
tifiably mentions the albino, non-agouti,
recessive piebald, lilac with pink-eye and
other heritable phenotypes. Our interest in
mouse phenotypes and their genetics has a
rich history.

A medical classification of human dis-
ease, known as nosology, has been
attempted many times; in antiquity by Hip-
pocrates and Isidore of Seville, and then
later by Carl Linnaeus, who undertook one
of the first attempts at a modern systematic
classification of disease on the basis of
symptoms (von Linne and Schroeder, 1763).
Although subsequent classification systems
have successively replaced these, the current
system of International Classification of
Diseases (ICD) for humans (World Health
Organisation, 2008), still works in a para-
digm that Linnaeus would recognise. To
date, however, there have been few system-
atic attempts to harmonise the description
of abnormality or disease between different
species.

Phenotypes are generally described in
natural language, frequently using a mixture
of unstructured terminologies and free text,
with variations that are widely understood
within specific disciplines. Qualitative data
is represented using disparate data models
and indexed with simple text descriptions.
At worst, the descriptions used for human
phenotypes reflect local informal term
usage or domain-specific controlled vocab-
ularies. At best, they use terms from inter-
nationally accepted frameworks such as the
Unified Medical Language System (UMLS),
Medical Subject Headings (MeSH), Inter-
national Classification of Disease (ICD-
9/10) or Systematised Nomenclature of
Medicine Clinical Terms (SNOMED-CT)
terminology. SNOMED and ICD-9 are
designed and structured for use in a clini-
cal context, and both UMLS and MeSH are
predominantly designed for describing
human diseases and therapies. The struc-
ture of these nomenclatures precludes their
use for logical inference and, in many cases,
the terms are etiologically or anatomically
predicated in a way that cannot be used to

describe disease in non-human organisms.
The result is that the coding of human data
using these large and complex terminolo-
gies is logically and semantically incompat-
ible with the type of coding and nomencla-
ture used for model organisms such as mice.

Since natural language is highly expres-
sive, the range of information it can capture
in phenotype descriptions is usually both
deep and broad. For example the ‘hoarse
cry’ in Opitz GBBB syndrome (OMIM:
145410), and the ‘striking upslanting of the
palpebral fissures, small nose with broad
root, abnormally modelled ears, short neck
with loose skin’ in Opitz C syndrome
(OMIM: 211750) are difficult to express as
concisely in any other way. Thus, natural
language is the most obvious medium in
which to record and express phenotypes.
However, it is hard to carry out computa-
tion on descriptions based on natural lan-
guage, and the task suffers from the now
often-rehearsed problems of ambiguity,
semantic complexity and lack of structure.
For example the term hedgehog can refer to
one of several human or mouse genes;
human or mouse gene products; a small
mammal of the family Erinaceomorpha; or
an arrangement of pineapple and cheese
impaled on cocktail sticks. Disambiguation
and semantic standardisation are vital but
difficult to achieve.

The key to providing terminological clar-
ity is to use far more formalised language
sets than are provided by natural language.
The bioinformatics community realised this
more than a decade ago and has produced
complex term hierarchies describing vari-
ous areas of knowledge (gene properties,
anatomies, etc.) where the terms are linked
by relationships (e.g. part of, is a, derived
from, etc.). These ontologies have provided
computational tools to capture knowledge
within a domain and to express it within a
relational framework that can be used by a
broad range of clinicians and scientists (see
Box 1) (Bard and Rhee, 2004). The most
important ontologies for describing human
abnormalities are the Human Phenotype
Ontology (HPO) (Robinson et al., 2008) and
the Disease Ontology (DO) (Du et al., 2009;
Osborne et al., 2009), whereas those for the
mouse are the Mammalian Phenotype
Ontology (MP) (Smith et al., 2005) and the
Mouse Pathology Ontology (MPATH;
www.obofoundry.org/cgi-bin/detail.cgi?id
mouse_pathology). All are members of the
Open Biological Ontology (OBO) family
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(Smith et al., 2007) and can be downloaded
from the OBO foundry site (www.obo-
foundry.org/).

Mammalian phenotype ontology
and the mouse pathology ontology
The Mouse Genome Informatics (MGI)
databases (www.informatics.jax.org/)
(Eppig et al., 2007; Bult et al., 2008) hold
qualitative (categorical) data coded by the
MP (Smith et al., 2005). The MP consists
largely of ‘pre-coordinated’ terms (see Box
2) – i.e. terms that include, for example,
severity qualifiers or anatomical locations
– and currently contains 9861 concepts.

The MP is currently the most successful
and readily applicable approach to describ-
ing a wide range of aspects of phenotype
and disease using a set of carefully defined
descriptive terms. The terminology effec-
tively captures various abnormal pheno-
types and processes, as well as summative
diagnoses and other descriptors of phen-
odeviance, which is the deviance of a phe-
notype in an animal, or cohort of genetically
identical animals, away from what is typi-
cal in a reference population. Phenode-
viance includes abnormal values for char-
acteristics such as weight, coat colour or
blood metabolites. The upper level terms of
the MP ontology include physiological sys-
tems, behaviour, developmental phenotypes
and ageing, and below this level, physio-
logical systems are divided into morpho-
logical and physiological phenotypes. Many
disease manifestations can be coded read-

ily by MP and currently there are 88,600
annotations of approximately 21,000 geno-
types in the MGI database. MP is a classi-
cally structured, hierarchy-based ontology
and is designed to enable phenotype data-
bases to be searched in order to find muta-
tions and alleles with specific phenotypes;
allow gene clustering based on mutant phe-
notypes; and discover genes in related path-
ways or potential mouse models of human
diseases.

MPATH was originally designed as a
description ontology for images of mouse
histopathology and is segmented into
aspects of pathology that would be familiar
to traditionally trained pathologists. The
most recent release is fully defined and con-
tains terms covering all of the major classes
of pathological lesions (594 to date), with
specific reference to the mouse. These
classes are arranged as a hierarchy within a
directed acyclic graph (DAG), six levels
deep, using the is_a relationship (e.g. a
Harderian gland carcinoma is_a glandular
tumour, is_a neoplasm) with each item hav-
ing an MPATH ID that can be used for data-
base interoperability and analysis. Many
tissue responses are common to multiple
anatomical sites and, as far as possible, the
redundancy of specifying a particular
response in multiple tissues has been
avoided. The additional topographical or
anatomical information for each image
comes from the curatorial creation of cross-
products with an appropriate anatomy
ontology such as MA, the mouse adult

anatomy (Hayamizu et al., 2005). For exam-
ple, colon adenocarcinoma[MPATH;
0000268 (Adenocarcinoma) + MA; 0000335
(Colon)]. The use of cross-products pre-
vents the combinatorial explosion that
causes ‘ontology bloat’ in poorly structured
ontologies – the inclusion in the ontology
of all possible pre-composed variations of
instances of an entity (see Box 2).

Human disease ontology and
human phenotype ontology
The full DO and its cut-down version, DO-
lite (Du et al., 2009; Osborne et al., 2009),
are based on ICD-9 and referenced to
UMLS and SNOMED-CT. The full version
contains 11,961 terms in the form of a hier-
archy, of which 4399 terms are internal
nodes lying up to 16 levels deep. HPO, the
human phenotype ontology, was however
derived from the terms found in the ‘clini-
cal synopsis’ section of Online Mendelian
Inheritance in Man (OMIM; www.ncbi.
nlm.nih.gov/omim/) (Hamosh et al., 2005),
and therefore covers largely monogenic dis-
eases with mendelian inheritance. Although
a hugely valuable resource, OMIM is not
structured formally and the terminology
used does not follow any consistent pattern.
The construction of the HPO therefore rep-
resents a major improvement in the utility
of OMIM and provides immediate struc-
tured genotype annotation to all of the
4779  annotated diseases. Both GeneRIFs
(Mitchell et al., 2003) and GeneReviews
(www.ncbi.nlm.nih.gov/projects/GeneTests/
static/about/content/reviews.shtml) are
additional useful sources of genotype/phe-
notype data but again are textual resources
only.

The use of ontologies for recording
human phenotypes is in its infancy and it
is fair to say that the mouse research com-
munity has been much more pro-active in
accepting and implementing standard ter-
minologies than that of the human. The call
for a human phenome project in 2003
(Freimer and Sabatti, 2003) with emphasis
on the need for standards and international
integration has not yet met with a concerted
response, and with regard to human phe-
notypes and traits, there is an uncoordi-
nated scatter of human phenotype and trait
data throughout databases and resources
across the world. Much human phenotype
data relates to disease and its predisposition,
and is largely captured with free text. In the
best situations, it is coded using clinical
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Box 1. Ontologies
An ontology is a formal conceptual representation of a domain of knowledge with the primary aim of
creating a shared understanding of a domain and the relationships within that domain. It contains
common defined symbols for the concepts within a domain and meaningful relationships between those
concepts. These relationships permit inference – the propagation of meaning across the ontology.

Most biomedical ontologies are structured as simple hierarchies of information using is_a or
part_of relationships. For example the big toe is a part_of the foot and the heart is_a thoracic organ.
These hierarchies are termed directed acyclic graphs as cyclic relationships are not permitted, i.e. one
term is not permitted to be the parent and child of another term, and the flow of meaning through
the hierarchy is from the most-specific term to the least specific.

Box 2. Pre-composition and post-composition
Also known as pre-coordination methodology, pre-composition uses a predefined set of phenotype terms
created in advance by the ontology developer and combines, for example, the entity, say ‘big toe’, and the
quality of that entity, say ‘[large big toe]’.

Also known as post-coordination methodology, post-composition involves construction of
phenotype description at the time of annotation. In this case, there would be a term for ‘big toe’ and
a term for ‘large’, and the post-composed term would combine these: [‘big toe’ + ‘large’]. This avoids,
for example, the combinatorial explosion that is evident when the big toes might have many
attributes that could also describe other toes, e.g. [‘small big toe’], [‘blue big toe’], [‘short big toe’],
[‘short little toe’], [‘large little toe’], etc.
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informatics formalisms such as ICD-9/10 or
SNOMED-CT. These systems are struc-
tured, unambiguous and widely accepted
but suffer from being highly pre-composed
(e.g. aetiologically and anatomically predi-
cated), and are not organised in such way
as to support inference or computer rea-
soning. Nevertheless, one great advantage
is that tools and resources such as UMLS
and MetaMap (Bodenreider, 2004) are avail-
able for using ICD and SNOMED coding
systems. These provide synonyms, cross-
references and mark-up facilities, which are
of assistance in comparing data between
databases and within literature records, and
have recently been used in crossing species
boundaries (see below) (Marquet et al.,
2007).

Human genetic databases may be divided
into core databases and locus-specific data-
bases (LSDB). Core databases attempt to
provide data on all pathological variation
and its consequences, for example, the
human gene mutation database (HGMD)
(Stenson et al., 2008), which uses a local
controlled vocabulary. LSDBs, by contrast,
focus on one gene or locus respectively
[for  discussion, see Patrinos and Brookes
(Patrinos and Brookes, 2005)]. The genetic
association database (GAD) (Becker et al.,
2004) contains associations between com-
plex diseases and disorders and individual
human genes curated from the literature;
here, diseases are categorised using a con-
trolled vocabulary drawn from MeSH
terms. Quantitative data sets on human
populations are held by the database of
genotypes and phenotypes, DBGaP (Mail-
man et al., 2007), and again are indexed in
a largely unstructured way through MeSH-
defined terms. The human genome varia-
tion database, HGVbase G2P (Thorisson et
al., 2009), is one of the most useful collec-
tions of genotype/phenotype associations,
although it uses only a local controlled
vocabulary to record phenotype data.

The consequence of the terminology
‘Babel’ in human clinical databases is that
text mining is often the only approach to
extract information from these resources
(Perez-Iratxeta et al., 2002; Hristovski et al.,
2005; van Driel et al., 2006). Text mining
is fraught with problems, including issues
of semantics, over-representation of com-
mon phenotypes and insufficient granu-
larity.

Misinterpretation of the literature, com-
bined with inaccurate database curation,

can generate misleading hypotheses
through implied disease orthology. How-
ever, the following example of the mouse
hairless gene and its incorrect link to the
complex polygenic disease known as alope-
cia universalis in humans shows that more
considered analysis of such errors can ulti-
mately create a much greater understand-
ing of a particular disease. The hairless
phenotype and its more severe form,
known as rhino (short for rhinoceros),
were first described in mice in 1856
(Gaskoin, 1856). The human homologue,
atrichia with papules, or as it later became
known as, papular atrichia, was first
described in 1954, nearly 100 years later
(Damste and Prakken, 1954). The link
between the mouse and human disease was
made some 30 years afterwards (Sundberg
et al., 1989; Sundberg, 1994). The hairless
gene was traditionally linked to a simple,
recessively inherited form of alopecia uni-
versalis based on a curation call in the
OMIM entry (OMIM: 203655) (Ahmad et
al., 1998). The OMIM designation was
based on morphologic diagnosis; a total
lack of hair in patients with an autosomal
recessive pattern of inheritance. Alopecia
universalis is actually a well-characterised,
complex genetic-based autoimmune skin
disease in both humans (Martinez-Mir et
al., 2007) and mice (Sundberg et al., 2004).
Although this mismatch was initially of
great concern (Sundberg et al., 1999), it
subsequently led to a much better under-
standing of papular atrichia. Many muta-
tions have now been identified in the
human hairless gene, as well as in rodents
and non-human primates (Panteleyev et
al., 1998; Ahmad et al., 2002).

Crossing the species divide;
granularity and specificity
Accurate phenotype descriptions can dis-
cover new relationships between genes and
phenotypes, and new functions for previ-
ously uncharacterised genes and alleles. A
good example is PhenomicDB (Groth et al.,
2007), which contains one of the most
wide-ranging cross-species datasets on
gene/phenotype associations. This data-
base combines data from OMIM, the
Mouse Genome Database (MGD), Worm-
Base, FlyBase, the Comprehensive Yeast
Genome Database (CYGD), the Zebrafish
Information Network (ZFIN), and the
MIPS Arabidopsis thaliana database
(MAtDB). Groth et al. (Groth et al., 2008)

queried the resulting PhenomicDB ‘ware-
house’ that was created by using a text-min-
ing approach, and which generated a sum-
mary phenotypic statement for each gene,
then clustered the statements to produce
what Oti and Brunner (Oti and Brunner,
2007) have termed ‘Phenoclusters’ – a
group of genes with overlapping pheno-
types, which may then be used for the dis-
covery of new disease or functional asso-
ciations. This phenotype-driven approach
to the discovery of gene function has dis-
tinct advantages over the gene-driven
approach to phenotype prediction because,
although many closely related phenotypes
are caused by mutations in different genes
whose gene products interact directly or are
on the same pathway, mutations in the
same gene can have diverse phenotypic out-
comes depending on which function of a
multifunctional gene product is compro-
mised. Several related disease candidate
gene discovery approaches have been
developed (for examples, see Tiffin et al.,
2006; van Driel and Brunner, 2006; Oti and
Brunner, 2007). However, in the absence of
systematic coding, all of these approaches
depend to a greater or lesser extent on text
mining from their data sources, and mak-
ing use, at best, of UMLS and MeSH terms
in abstracts and database phenotype fields.
Despite impressive results from many of
these approaches, it is clear that a stan-
dardised description of phenotypes and
diseases would greatly increase the power
and specificity of cross-species data min-
ing.

A key problem is the assumption that the
currently dominant paradigm for disease
conceptualisation, based on clinical medi-
cine, is useful for biomedical science appli-
cations. It is a mistake to assume that the
human ‘phenome’ is a list of ‘diseases’ that
form more or less distinct entities. The real-
isation that diseases of separate genetic
aetiology may share similar phenotypes may
seem obvious, but it is only recently that this
has generated attention. Work by Brunner
and others (Oti and Brunner, 2007; Oti et
al., 2008) demonstrated that shared aspects
of phenotype may be viewed as a proxy for
a common underlying pathogenetic mech-
anism, and that this mechanism may be
shared by dysfunction of a group of genes
whose products either interact or are on the
same functional pathway. This ‘modularity’
of phenotypes should not come as a sur-
prise, but it makes the formulation of a new
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concept of disease description all the more
urgent. The generation of phenoclusters
depends on the ability to code phenotypes
in as granular a way as possible. This
approach was used originally in making
gene/phenotype associations in RNA inter-
ference (RNAi)-generated phenotypes (by
our definition, phenosets) in C. elegans,
where each was expressed as a combination
of 45 phenotypic features, enabling cluster-
ing of functionally related genes (Piano et
al., 2002).

The use of a phenotype-driven approach
to discover new information about gene/
phenotype relationships within a species
requires a sufficiently high level of speci-
ficity and granularity to discriminate
between closely related phenotypes with
overlapping components. This is particu-
larly true of complex traits. Joy and Hegele
(Joy and Hegele, 2008) provide an excellent
discussion of the problems caused by the
inaccuracy and variability of definitions in
the context of metabolic syndrome and the
resulting problems with candidate gene
association and linkage studies. Description
problems inhibited gene association stud-
ies in X-linked mental retardation, where
there are insufficient phenotypic features to
‘unbundle’ non-syndromic cases in gene
association studies (Ropers and Hamel,
2005).

The requirement for ‘deep phenotyping’
using well-defined criteria is clearly impor-
tant in human gene association studies. It
is also crucial if human phenotypes are to
be compared with those from model
organisms. The deficiency in cross-species
interoperability of phenotype description
formalisms is well demonstrated by the
analysis of cross-species phenoclustering
that was carried out using PhenomicDB by
Groth et al. (Groth et al., 2007), discussed
above. More than 90% of the clusters they
generated contained genes from a single
species and there was a tendency for genes
to fall into species-specific clusters. They
interpret this as an indication that the ter-
minology used to describe phenotype in
each species fails to cross the species bar-
rier, even though many phenotypes clearly
have their equivalents between species. It
is therefore clear that, if our aim is to
understand the underlying processes and
genetic aetiology through using model
organisms, we need a change in the way in
which diseases and phenotypes are
described.

Bridging ontologies
The ontologies described earlier were all
developed for particular species and, like
many other controlled vocabularies, are not
readily interoperable for cross-species
queries, for example, between different
genotype/phenotype databases. Semantic
inconsistency and anatomical incompati-
bility, together with different traditions of
disease description in different organisms,
prevent the matching of phenotype ontolo-
gies either lexically or conceptually.

Two related problems impede the bridg-
ing of different ontologies that have been
derived for either the same or separate
species. None of the ontologies or con-
trolled vocabularies for describing disease
is truly orthogonal (generally used in this
context to mean complementary and non-
redundant), although they were designed to
cover the same area of knowledge, for exam-
ple DO and HPO. This means that, even
within a species, the terminology used and
the underlying structure may be different.
For example, the term ‘melanoma in situ’ is
used within SNOMED-CT and MPATH to
represent a potentially cancerous lesion,
whereas the National Toxicology Program
(NTP) Toxicology Data Management Sys-
tem (TDMS) pathology code table for
microscopic lesions (http://hazel.niehs.nih.
gov/user_spt/pct_terms.htm) defines only
‘melanoma benign’ and ‘melanoma malig-
nant’. Similarly, only the NTP TDMS pathol-
ogy code table and the SNOMED-CT
vocabularies define a benign melanoma
term (‘melanoma benign’ and ‘benign
melanocytic neoplasm’, respectively). HPO
provides ‘especially prone to malignant
melanoma’, ‘malignant intraocular
melanoma’ and ‘malignant melanoma’. HPO
does not address pre-neoplastic or benign
lesions, but provides an anatomically pred-
icated version and a predisposition syn-
drome. DO provides 96 melanoma terms,
many of which are pre-composed and are
both anatomically predicated and include
morphological and prognostic qualifiers.
Interestingly, there is no term for the pre-
neoplastic lesion. MP only contains the
anatomically predicated ‘intraocular
melanoma’. Even this superficial comparison
shows that comparing the data coded to
each of these ontologies is very difficult and
impossible to do automatically using sim-
ple lexical matching. A major problem is the
use of complex pre-composed terms (see
Box 2). In comparison to this, the issue of

species-specific lesions, for example, as is
found when comparing mouse haematopoi-
etic neoplasms with those in humans, is rel-
atively easy to deal with (Kogan et al., 2002;
Morse et al., 2002). Making use of the sub-
sumption (incorporation of a term into a
higher order or parental category) that is
available within an ontology permits rela-
tion of species-specific variants through a
common parent. For example, the mouse
small T-cell lymphoma (STL), which prob-
ably has no counterpart in the human
(Morse et al., 2002), can be classified as a
‘mature T-cell neoplasm’ – a parent cate-
gory that is common to human and mouse
malignancies. Searching a database of
mouse and human tumours using an ontol-
ogy, where STL is_a ‘mature T-cell neo-
plasm’, would recover any human data
coded to the 16 ‘mature T-cell neoplasms’
listed in ICD.

One approach to bridging the nomen-
clature gap between species is to make use
of the UMLS resource of the National
Libraries of Medicine (NLM). The UMLS
thesaurus (Bodenreider, 2004) is a large and
well-curated resource of terms and syn-
onyms that can be used for semantic map-
ping between terminologies. This was used
by Osborne et al. (Osborne et al., 2009) to
annotate the human genome to the DO
ontology and has proved a valuable
approach to cross-mapping the DO, MP and
MPATH (Marquet et al., 2007). However,
apart from what might be described as the
‘straightforward’ compatibility problem,
there is a more complex problem that needs
to be considered: that of the composition of
disease terms themselves.

An alternative way to represent
phenotype: the E+Q approach
It is clear from the preceding discussion that
a major problem in describing phenotypes
and diseases is that many of the terms that
are commonly used to describe them are
complex and subsume a multitude of mean-
ings. This is both a problem for cross-link-
ing phenotype and disease, and restrictive
computationally. The MP ontology, for
example, only allows the description of
abnormal phenotypes and does not allow
quantitative descriptions. An alternative
approach is to break down complex pre-
composed terms into their constituent log-
ical parts, an approach known as the E+Q
(entity plus quality) approach, which is used
in the capture of raw mouse phenotype data

Disease Models & Mechanisms 285

SPECIAL ARTICLEPhenotype ontologies for mouse and man
D

ise
as

e 
M

od
el

s &
 M

ec
ha

ni
sm

s  
    

   D
M

M



(Bard and Rhee, 2004; Gkoutos et al., 2004;
Gkoutos et al., 2005; Mungall et al., 2007;
Beck et al., 2009). The E+Q syntax uses a
combination of relevant descriptive ontolo-
gies. It represents entities (E), such as
anatomical structures or chemical com-
pounds, using ontologies such as MA, the
Foundational Model of Anatomy (FMA)
(Rosse and Mejino, 2003) and Chemicals of
Biological Interest (CheBI) (Degtyarenko et
al., 2008), etc., and represents the qualities
(Q) inhering in the entities, such as colour,
size or shape using the Phenotype and Trait
Ontology, PATO (www.obofoundry.org/cgi-
bin/detail.cgi?idquality). The combination
of E and Q terms can then be used to rep-
resent both traits (e.g. ‘tail+length’) or phe-
notypes (e.g. ‘tail+long’); within PATO,
‘long’ in this example is a child of ‘length’,
so that the trait is implicit in the phenotype
(Gkoutos et al., 2004; Gkoutos et al., 2005;
Beck et al., 2009). The basic E+Q syntax can
be extended to increase expressivity to
include E2, which is an additional optional
entity type for relational qualities, and the
modifier M: E+Q+E2+M.

The E+Q approach is referred to as ‘post-
composition’, reflecting the composition of
compound terms from components. It is
used in the EuroPhenome mouse phenotype
database (www.europhenome.org/) to
describe raw phenotype data from high-
throughput phenotyping experiments (Beck
et al., 2009; Morgan et al., 2010), and in
some model organism databases such as
ZFIN and FlyBase (Drysdale, 2008; Sprague
et al., 2008). For example, to describe the
phenotype of Sox9 mutants, MGI uses the
pre-composed term MP:0005587 (abnormal
Meckel’s cartilage) and ZFIN uses the E+Q
approach – entity, ZFA:0001205 (Meckel’s
cartilage); quality, PATO:000587 (decreased
size).

The E+Q approach can be used to pro-
vide a ‘logical definition’ of a pre-composed
ontology term. Applying a decomposition
process to pre-composed terms in princi-
ple allows terms with different names to
be linked via shared logical definitions, a
process that could be used to link pheno-
types across species or, in principle, phe-
notypes to diseases. Using this approach,
Mungall and co-workers (Mungall et al.,
2010) recently reported the association of
8285 classes from four species-specific
ontologies to E+Q definitions, using a
cross-species upper level ontology of
anatomy, Uberon (Haendel et al., 2009).

Leveraging the E+Q definitions that were
available for mouse, human and zebrafish
phenotypes, Washington et al. (Washing-
ton et al., 2009) have been able to identify
orthologous and biologically relevant genes
on the basis of E+Q phenotype similarity,
matching within and between species for
a defined test set of genes, thereby vali-
dating the approach.

The relationship between pre- and post-
composed ontologies is additionally advan-
tageous as pre-composed ontologies, such
as MP, are ‘human-readable’, whereas post-
composed ontologies are better for com-
putational analysis. An example of this is the
EuroPhenome database (Beck et al., 2009;
Morgan et al., 2010). Here, quantitative
parameters for specific phenotypic assays
are stored in the database. Mutant cohorts
are then compared with control cohort data
and statistically abnormal lines are anno-
tated dynamically to E+Q statements of
phenodeviance using preset parameters.
Logical definitions then allow E+Q state-
ments to be translated into pre-composed
MP terms. Both quantitative and qualitative
data can be represented in this way, and rep-
resentation in MP allows the data to be
queried in a consistent and transparent way
that offers a powerful paradigm for the
annotation and computational analysis of
mutant phenotype data.

Disaggregation of disease entities
In principle, the ontology decomposition
approach described above might be used to
map phenotypes to diseases, and pheno-
types between species. However, as dis-
cussed above, the term ‘phenotype’ is used
to encompass a multitude of logically dis-
parate entities. This is especially true with
the terms that are commonly used to
describe diseases in humans. Human dis-
eases are complex collections of phenotypic
observations and pathological processes,
and a diagnosis involves establishing the
presence of a set of phenotypes, which is
often probabilistic. For example, Beckwith-
Wiedemann syndrome is defined by the
simultaneous presence in the proband of all
of the three most common phenotypes
(macroglossia, anterior abdominal wall
defect and overgrowth), or two of these
phenotypes combined with five of more
than a dozen other manifestations (Elliott
et al., 1994; Cooper et al., 2005).

As long as we do not have a formalism
to capture the probabilistic phenotypic ele-

ments of diseases – often the underlying
observations used by clinicians as diagnos-
tic criteria – high-level disease terms will
be difficult to use for detecting overlaps
between diseases and between phenotypes
in different species. Additional elements
also need to be captured to accurately
record aspects of genetic disease that are
used for differential diagnosis and stratifi-
cation, such as the mode of inheritance,
penetrance, pleiotropy, expressivity and
progression. This is a challenge for the E+Q
framework.

A first step towards a solution is to dis-
aggregate disease terms into individual phe-
notypic components, which, in combina-
tion, make up the disease entity. An example
of this is shown in Fig. 1, using the HPO.
Here, the congenital heart defect tetralogy
of Fallot, which is very difficult to render
into a satisfactory E+Q statement directly,
is broken down into its constituent
endophenotypes, which are then amenable
to E+Q definition. With the provision of a
bridging anatomy ontology, the remaining
terms used in the E+Q statements are from
PATO and are species agnostic, allowing
species-specific phenotype data to be tra-
versed readily.

As an illustration of the potential utility
of this disaggregation approach, we set out
to search MGI for models of the tetralogy
of Fallot. MP does not contain the term
‘tetralogy of Fallot’, but searching MGI with
the intersection of MP:0000273 (overriding
aorta), MP:0000486 (abnormal pulmonary
trunk morphology), MP:0000276 (heart
right ventricle hypertrophy) and
MP:0008823 (abnormal membranous ven-
tricular septum morphology), yields the
homozygous knockout of hairy/enhancer-
of-split related with YRPW motif 2
(Hey2tm1Uts), which is already annotated as
a model for the tetralogy of Fallot in OMIM,
and homozygous knockout of poly-
homeotic-like 1 (Phc1tm1Os), which has not
previously been linked.

This is a relatively straightforward exam-
ple. However, disease description is a com-
plex domain and disaggregating disease
terms requires expert input if the disaggre-
gations are to accurately reflect the clinical
nature of the disease. Although automatic
approaches, such as the ones used in the
HPO, are a great advance, the cooperation
of experts in individual disease areas is
needed to produce a well-founded, ‘post-
composed’ disease ontology.
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Conclusions
Ontologies and description frameworks
for capturing data on disease and pheno-
type are essential tools to support mouse
functional genomics, and in a broader con-
text, for the assignation of functions to
genes. The tools that are currently avail-
able are still in the early stages of devel-
opment and may need to be applied in new
ways to fully serve the requirements of
cross-species phenotype mapping. Even a
preliminary attempt to implement existing
ontologies in the E+Q framework demon-
strates the need for more terms to describe
measured entities, both in humans and in
mice, and for example a mammalian trait
ontology would be of great utility. Another
area in need of development is that of the
non-anatomical phenotype traits, notably
behaviour. With respect to the human, it
will not always be possible to obtain or
record measurements with the same com-
pleteness or precision as with mice in a lab-
oratory setting, although some clinical
biobanking projects approach this, and in
many cases phenotype description from
the literature will inevitably be only qual-
itative, if only because it constitutes legacy

data. The power of the decompositional
approach is that it is applicable to both
qualitative and quantitative data and, in
either, lends itself to computational analy-
sis. The difficulty and amount of labour
necessary to implement effective cross-
species ontologies is daunting, but success
will yield valuable insights from model
organisms.
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Fig. 1. Endophenotype disaggregation of the tetralogy of Fallot (OMIM:187500). The syndrome is broken down into its component endophenotypes, each
of which appears independently both in a clinical context and in HPO. Each endophenotype is then logically defined using anatomy terms from the FMA
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