
Aberystwyth University

Trees from Trees
Creevey, Christopher J; McInerney, James O

Published in:
Methods in Molecular Biology

DOI:
10.1007/978-1-59745-251-9_7

Publication date:
2009

Citation for published version (APA):
Creevey, C. J., & McInerney, J. O. (2009). Trees from Trees: Construction of Phylogenetic Supertrees Using
Clann. In Methods in Molecular Biology (Vol. 537, pp. 139-61). Springer Nature. https://doi.org/10.1007/978-1-
59745-251-9_7

General rights
Copyright and moral rights for the publications made accessible in the Aberystwyth Research Portal (the Institutional Repository) are
retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the Aberystwyth Research Portal for the purpose of private study or
research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the Aberystwyth Research Portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

tel: +44 1970 62 2400
email: is@aber.ac.uk

Download date: 09. Jul. 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aberystwyth Research Portal

https://core.ac.uk/display/326665325?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1007/978-1-59745-251-9_7
https://doi.org/10.1007/978-1-59745-251-9_7
https://doi.org/10.1007/978-1-59745-251-9_7


 

 

 

Trees from Trees: Construction of Phylogenetic 

Supertrees using Clann. 

 
Christopher J. Creevey*1 and James O. McInerney2. 
 
1 EMBL Heidelberg, Meyerhofstrasse 1, 69117 Heidelberg, Germany. 
2 Dept. Biology, National University of Ireland Maynooth, Co. Kildare, Ireland. 

 

* To whom correspondence should be addressed. 

 

Name and address for correspondence: 

Christopher Creevey 

EMBL Heidelberg, Meyerhofstrasse 1, 69117 Heidelberg, Germany. 

Telephone: +49 6221 387 8534 

Fax: +49 6221 387 8517 

E-mail: chris.creevey@gmail.com 

 

Keywords:  

Supertree software, phylogenetic reconstruction, phylogeny, congruency test, 

phylogenetic signal detection,  

 

Running head: 

Trees from trees. 



 2

Abstract 

 
Supertree methods combine multiple phylogenetic trees to produce the overall best 

“supertree”. They can be used to combine phylogenetic information from datasets only 

partially overlapping and from disparate sources (like molecular and morphological data), 

or to break down problems thought to be computationally intractable. Some of the longest 

standing phylogenetic conundrums are now being brought to light using supertree 

approaches. We describe the most widely used supertree methods implemented in the 

software program “Clann” and provide a step by step tutorial for investigating 

phylogenetic information and reconstructing the best supertree. Clann is freely available 

for Windows, Mac and Unix/Linux operating systems under the GNU public licence at 

http://bioinf.nuim.ie/software/clann. 
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1. Introduction 
 

1.1 What are supertrees?  

 

Supertree methods combine the information from a set of taxonomically overlapping 

phylogenetic trees sometimes called source, or input trees and produce a supertree, or set 

of equally good supertrees, containing a complete set of all leaves found in the input 

trees. The analysis requires that the source trees be connected by sets of shared taxa. 

Source trees that share no taxa in common cannot be combined, however two non-

overlapping source trees may be “bridged” by a third that shares taxa with both (Fig. 1). 

 

In terms of phylogenetic methods, supertrees are in their infancy, the first papers 

outlining methods only appeared in the early 1980s (1, 2). They are generally 

characterised by a set of rules detailing how the phylogenetic information from the source 

trees may be combined. Different methods use different rules but the end result should 

allow not only the combination of information contained in the source trees, but also the 

inference of relationships not present in any one source tree. It is also desirable that the 

resulting supertree does not contain any relationship contradicted in every source tree (3). 

 

Supertree methods can be considered a generalisation of consensus methods, except they 

combine information from partially overlapping trees. However, given a set of 

completely overlapping source trees (the so called “consensus setting”) a supertree 

method should work exactly like a consensus method in combining the phylogenetic 

information.  
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1.2. Why would you want to make supertrees?  

 

1.2.1 Cumulative evidence is philosophically preferable. 

 

There are both philosophical and practical reasons for preferring to use a supertree 

method rather than other alternatives. From a philosophical viewpoint, the more data you 

can use to solve a problem, the better the result is likely to be. Supertree methods allow 

the inclusion of information from disparate sources and this opens the possibility for 

relationships to be inferred – a situation that would not be possible from one data source 

alone. For instance, supertree methods have been used to combine genetic data with 

morphological data (4, 5). This combination results in datasets that contain both macro-

evolutionary and micro-evolutionary information allowing statements to be made about 

relationships over evolutionary distances not possible with either of the datasets alone. 

 

From a practical viewpoint, few datasets contain exactly the same 

species/strains/proteins, and so their combination can be difficult. Furthermore, patchy 

gene distribution mean that only a few (estimated at 1% (6) ) genes are universally 

distributed in single copy. Traditionally phylogenetic studies have relied on this 1% to 

reconstruct phylogenies of organisms.  The ideal situation would be to reconstruct a 

phylogenetic tree using 100% of the available data.  Supertrees provide the only realistic 

possibility of using 100% of information to reconstruct the tree of life, as a concatenated 

alignment of all genes from all organisms is likely to have up to too much missing data. 

The only restriction to using supertree methods is that it must be possible to represent the 

data as a trees.  

 

1.2.2 To identify trees that are similar and trees that are different. 

 

In real biological datasets, the biggest problem is not data overlap but the conflict that 

exists between different data types. Conflicting phylogenetic signals can occur because of 

model misspecification in generating the source trees, hidden paralogy, poor homology 

determination, lineage sorting or horizontal gene transfer (7-9), causing gene trees to 

differ from the “true” history of speciation events (the species tree). If the factors causing 

the differences in the gene trees are randomly distributed, then the combination of many 
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gene trees should reveal the species tree. However, when the difference are too great it is 

not always desirable to simply combine the information, a more investigative approach is 

desirable in order to identify level of compatibility within the individual source trees. The 

classic example of this problem is horizontal gene transfer (HGT) in genomic 

information. A lot has been said recently about the role of HGT in the evolution of 

microorganisms (7, 10-16). Opinions differ over the role HGT has played and whether it 

has obliterated any possibility of accurately reconstructing the tree of life using the 

majority of genes (17, 18).  

 

It is possible to investigate the role of HGT in a dataset using supertree methods (7). 

Using this approach, trees made from orthologous genes are used to identify the overall 

phylogenetic signal existing in the majority of genes. Next, the gene trees that differ 

significantly from this signal can be identified. At this point, depending on the goal of our 

research, we could examine the genes individually to see why they differ, or see if there 

is an alternative phylogenetic signal underlying the first.  An example of this approach 

was the recent work on the origin of Eukaryotes, where individual signals were stripped 

from the data and the secondary and subsequent phylogenetic signals were examined 

(19). 

 

The same approach works for datasets affected by “hidden paralogy”, a situation where 

deletions of paralogs on different lineages can result in the remaining paralogs being 

misclassified as orthologs. Long branch attraction (20), systematic biases caused by the 

GC content of synonymous sites (21) or evolutionary model misspecification (22) also 

result in spurious source tree topologies and can be identified by investigating the data 

further. 

 

1.2.3 Divide and conquer? Lots of small trees are easier to construct than one big 

tree. 

 

Biological datasets are becoming progressively larger and more computationally difficult 

to handle. A divide-and-conquer approach therefore is sometimes necessary whereby a 

single large problem is divided into smaller and easier to handle subsets. Each of these 

subsets can then be solved independently and the results combined to form the overall 
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solution. Supertree methods are well suited to this approach. Lots of small trees are easier 

to construct than one big tree and their combination into a single tree is exactly the 

purpose for which supertree methods were designed. 

 

 

1.3. Are there alternatives?  

 

Other methods exist that can tackle the same type of problems as supertree methods. 

 

1.3.1 Supermatrix. 

 

Concatenating alignments together to produce a supermatrix is a very popular approach 

to combine information from different sources (23, 24).  These methods work best when 

the alignments to be combined have very little or no missing data.  The appeal of this 

approach is that the resulting tree is created directly from the sequences without the 

necessity for any intermediate step such as the construction of source trees as happens in 

a supertree analysis.  Another alluring feature of the supermatrix approach is based on the 

assumption that misleading evidence of phylogeny (homoplasy) will be random, whereas 

true phylogenetic signal, however, weak, will be additive and with enough data this 

signal should emerge.   

 

Weaknesses of this approach include the inability to explicitly deal with missing data 

leading to a ‘situation where we don’t know the effect that differing levels of missing 

data have on the result, although some have attempted to estimate this affect (25). 

Finally, the analysis of a supermatrix requires much more computational power than the 

divide-and-conquer approach taken by supertree methods.  Because of these 

computational requirements, it is sometimes not possible to build a tree from a 

concatenated alignment. 

 

1.3.2 Genome content  

 

There are several other methods available for reconstructing a tree when using data from 

whole genomes. The most commonly used is called a genome content approach (26). In 
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this analysis, gene families are identified in the genomes of interest and the presence (and 

sometimes number of copies) of genes from each family in each genome is recorded. 

Genomes from closely related species are expected to have similar genome content.  This 

information is combined into a data-matrix that can be used to build a phylogeny. 

Another variant on this approach is a gene order analysis (27). Here, the order rather than 

the presence or absence of genes is used as a phylogenetic marker. This is a more ‘fine-

grained’ approach than genome content analyses and is better suited to reconstructing 

relationships between closely related organisms. 

 

The advantage of genome content methods is that they are computationally more 

tractable than supermatrix or supertree approaches and they have the ability to use all the 

information from all the genes in a genome. The disadvantages include being very 

‘coarse-grained’ and not using the phylogenetic information from the genes themselves, 

and being very sensitive to hidden paralogy including HGT. Furthermore, even though 

there are a few simple, but interesting models of whole genome evolution (28-30) we 

have no realistic models at this scale (8) and so we must rely on basic parsimony 

principles the majority of the time to reconstruct the overall tree. 

 

1.3.3 Conditioned reconstruction 

 

Recently a method of using whole genomes to reconstruct organismal relationships called 

‘conditioned reconstruction’ has been proposed (31). Similar to genome content methods, 

conditioned reconstruction uses information of presence or absence of genes, but between 

pairs of genomes. This information is further enriched with rates of gene loss and gain 

within the frequencies of presence or absence. A ‘conditioning’ genome is used to 

calculate these frequencies between it and all other genomes in the analysis. In order to 

calculate the shared absence of genes between genomes several conditioning genomes are 

used and the combined information is used to reconstruct phylogenetic relationships (8). 

The advantages to this approach are an increased sensitivity to more recent relationships 

over standard genome content methods while still retaining the ability to use all the 

information within all the genomes. Disadvantages include our lack of knowledge of how 

well it performs under violations to the assumptions made by the method. Also it does not 



 8

use the information that may be gained by directly comparing the sequences of the genes 

used (8).  

 

1.4. What  supertree methods are out there?  

 

A variety of supertree methods have been developed since the original publications. Each 

method approaches the problem of combining the information from multiple trees in 

different ways. 

 

1.4.1 Matrix representation. 

 

The most widely used supertree method is based upon a method proposed independently 

by both Baum (32) and Ragan (33). Called matrix representation with parsimony (MRP) 

it uses a coding scheme to construct a matrix representing the relationships within the 

source trees. Typically, a maximum parsimony algorithm is then used to reconstruct a 

supertree from this matrix. 

 

The method identifies the internal branches (also called splits) within each of the source 

trees and a simple coding scheme of 1s and 0s are used to determine which taxa are on 

either side of the split (Fig. 1). All the taxa on one side of the split are marked with a 1 

and the taxa on the other side of the split, with a 0. Any taxa not present on this source 

tree are marked with a ‘?’ (Fig. 1). For unrooted source trees (as is most common with 

genomic data) it makes no difference which side of a split is marked with a 1 or a 0. The 

coding for all the internal branches across all the source trees are then combined into a 

single matrix and this is used to reconstruct the supertree. Despite being widely used, 

there have been major criticisms about biases in this method, including a tendency to 

favour the relationships of larger source trees than smaller trees and toward source trees 

with certain phylogenetic shapes (3). 
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Figure 1 

Matrix representation using parsimony (MRP) method. 

The MRP procedure is as follows: once the alignment of the gene families is complete, trees are built for 

each of the genes separately. Within each of these trees, the internal branches (or splits) are identified (I to 

V above). A Baum-Ragan coding scheme is constructed, containing a column for each of the internal 

branches. The coding scheme groups the taxa into those that appear on either side of the split. For instance 

for internal branch I, taxa A and B are on one side and taxa C and D are on the other. In the coding scheme, 

taxa A and B are both marked with a ‘1’ and taxa C and D are both marked with a ‘0’. As taxa E and F are 

not in this tree, they are marked with a ‘?’ in column I. When the matrix is completed, a maximum 

parsimony approach is generally used to reconstruct the supertree. 
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1.4.2 Average Consensus 

 

A second approach to reconstructing a supertree involves calculating distance matrices 

representing the relationships within the source trees. These methods may make use of 

the branch lengths on the source trees and can result in a supertree with branch lengths. 

One such method is called “Average consensus” (34). In this approach the path-length 

distances of each taxon to every other taxon is calculated across each of the source trees. 

The average distance of each taxon to every other is then used in a final distance matrix, 

from which a supertree is constructed (Fig. 2). Sometimes however there is an example 

where two taxa never appear together on any source tree, in this case the average distance 

of each of these taxa to taxa they both share in common is used to estimate the distance 

that they would be from each other, if they appeared together on a tree. This is essentially 

‘filling in the blanks’ where we have no information concerning their evolutionary 

relationships to each other. Several methods have been developed to calculate these 

missing values, see (35) for more details. Once the average consensus matrix is complete, 

a variety of distance-based phylogenetic methods can be used to reconstruct the best 

supertree. The most commonly used is a least-squares fit (35), but it is also possible to 

use a simple neighbor-joining algorithm (36). The advantage of this method is that it 

produces a supertree with branch lengths. 
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Figure 2  

Calculation of average consensus. 

In this approach, the branch lengths from the source trees are used to calculate the path length distances of 

each taxon to every other taxa. In the trees above, the numbers in brackets indicate the lengths of their 

associated branches. For example: the source tree on the left has a path length distance from taxon A to 

taxon D of 0.6 (0.2 + 0.1 + 0.3). The average distance each taxon to every other taxon is then calculated for 

the average consensus. For example: the distance from taxon A to taxon C in the two source trees are 0.35 

and 0.26 respectively. The average of these (0.305) is the result put in the average consensus matrix. Some 

distances are not possible to calculate because the taxa do not appear together in any tree (like with Taxa B 

and E above), in these cases the value is estimated from the surrounding values in the average consensus 

matrix. 
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1.4.3 MSSA-type 

 

Other distance-matrix based methods use different approaches to find the best supertree. 

The most similar supertree algorithm (MSSA) (7) searches for the best supertree without 

averaging the information from the source trees. Instead, a heuristic search of supertree-

space is carried using a scoring function, which when minimised, returns the supertree 

that is the most similar to the set of source trees. This scoring function works by 

comparing a candidate supertree to each of the source trees individually. As the supertree 

will contain all taxa and any source tree is likely to contain only a subset, for each 

comparison to a source tree the candidate supertree is pruned down to the same taxon set 

as the source tree. A direct comparison is then possible between the pruned candidate 

supertree and the source tree. The difference between the two trees is calculated by 

summing the absolute differences between the path-length distance matrices of the two 

trees. In this case the path length is defined by the number of internal nodes separating 

any two taxa on a tree (Fig. 3). This pruning-then-comparison method is carried out 

against every source tree and the sum of the absolute differences is used as a score 

representing the similarity of the candidate supertree to the set of source trees. A score of 

zero represents the situation where every source tree is identical to the supertree (when 

the supertree is pruned to the same size for comparison). Multiple candidate supertrees 

are tested to find the one that minimises the score function when compared to the source 

trees. An exhaustive search of supertree-space can be carried out or a standard heuristic 

search can be used (for instance: nearest neighbor interchange (NNI) or sub-tree pruning 

and regrafting (SPR)). 
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Figure 3 
Most Similar Supertree Algorithm (MSSA). 

In this approach, a function is used to assess candidate supertrees. A heuristic or exhaustive search of 

supertree space is carried out and the supertree that minimises the function is the most similar supertree to 

the set of source trees. The difference between the candidate supertree and each source tree is calculated 

separately and the sum of these scores is the overall score for the supertree. For each comparison to a 

source tree the supertree is firstly pruned down to the same taxa set as the source tree (above). Next a path-

length distance score representing the differences between the two trees is calculated. The path-length 

distances are the number of internal nodes (filled circles in the trees above) that are in the path between any 

two taxa on the tree. The sum of the absolute differences between the matrices is the score representing the 

difference between the supertree and this source tree. This value is usually divided by either the number of 

comparisons in the matrix or the number of species shared by the supertree and the source tree to 

counteract biases from large source trees.
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1.4.4 Quartets 

 

Quartet methods generally break down the source trees into their constituent quartets and 

use various approaches to find the supertree that shares the most quartets with the set of 

source tree quartets. A set of quartets is all possible 4-taxon trees that can be made by 

pruning the any tree. The optimum supertree can be found using several techniques, 

including by simply counting the number of shared quartets or by using a “puzzling step” 

whereby random subsets of quartets are combined in a step-wise manner to “grow” the 

supertree. This is then repeated many times to see which supertree relationships are 

reconstructed the most often. 



 15

2. Program Usage 

 
Clann (37) is a command-line software package for investigating phylogenetic 

information through supertree analyses and is freely available under a GNU public 

license agreement. Version 3.1 implements 5 different supertree methods, including 

matrix representation using parsimony (MRP), average consensus, and the most similar 

supertree algorithm (MSSA). In this version of Clann the MRP criterion requires the use 

of an external parsimony program like PAUP* (38), future versions will remove this 

requirement. 

 

2.1 Installation 

 

Clann is available at http://bioinf.nuim.ie/software/clann. On the download page the 

choice of three different operating systems are available (Mac OSX, Linux and Microsoft 

Windows). In Mac OSX an installation script is included which installs the readline and 

ncurses libraries (if needed) before putting Clann into the folder /usr/bin/. Once in this 

location (and the user starts a new terminal window) Clann will be visible to the 

operating system from any directory. An administrative password will be needed to 

successfully install Clann. 

 

On a Linux operating system, the Clann program should either be located in the same 

directory as the input files, or somewhere on your path (e.g. ~/bin/ or /usr/local/bin). If 

you do not know which directories are on your path, ask your system administrator. 

 

On the Microsoft Windows double clicking on the icon associated with Clann will run the 

program. Using this operating system, the Clann program must be located in the same 

directory as the input files, an alias or shortcut to Clann will not suffice.  

 

To run Clann on the MacOSX or Linux operating systems, type the command "./clann" 

or "clann" in a terminal window. 
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2.2 File formats 

 

Clann accepts source trees in two different formats: newick (also called phylip format) 

and nexus format (see Note 1). Multiple trees can be contained in the same file in both 

formats. Newick formatted trees are the simplest to construct and can contain branch 

lengths, internal branch labels, tree weights and tree names (see Note 2) (Fig. 4).  

 

The nexus format is a modular system for representing many types of systematic 

information, including sequences and trees (39). Branch lengths and internal branch 

labels are indicated in the same manner to newick-formatted files. Different types of 

systematic information are contained within “blocks”. It is also possible to include a 

clann block, containing the commands to be executed on the data in the file. To load a 

file of trees into clann use the command exe filename or include the name of the file 

to be executed along with the call for clann at the operating system prompt (i.e. “clann 

filename”) (see Note 3). After completing a summary of the relationships between the 

trees in the file, clann will return the prompt “clann>”. From this point all the different 

commands available can be executed (see Notes 4 and 5). 
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Figure 4 

Newick (phylip) format trees. 

Newick formatted trees can contain a variety of information. i) The simplest form which just contains the 

tree topology. ii) Branch length information incorporated onto the tree (in brackets on the tree above). iii) 

Internal branch name (Int1) included, this could also be used to indicate a bootstrap proportion value. iv) A 

tree weight can be included within square brackets before the semi colon. This may be used if more or less 

emphasis should be applied to the relationships any tree (1 is the default). v) Trees may be given specific 

names within square brackets after the semi colon, representing the datasets from which they were 

constructed. vi) All possible information from i) to v) above included on a single tree. Multiple trees can be 

contained in a single file. 
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2.3 Building Supertrees 

 

Each supertree method in clann is a separate criterion on which operations such as 

heuristic searches, exhaustive searches or bootstrap resampling analyses can be carried 

out (see Note 6). The 5 criteria implemented in version 3.1 of clann are MRP (matrix 

representation using parsimony), DFIT (Most similar supertree algorithm), SFIT (split fit 

algorithm), QFIT (quartet fit algorithm) and AVCON (average consensus method).  

 

2.3.1 Constructing an MRP tree  

 

From the clann prompt the command set criterion=mrp tells clann that all 

following commands are to use MRP as the criterion for assessing supertrees (see Note 

7). The quickest way to reconstruct a supertree in this criterion is using a heuristic search 

of tree-space. The command hs ? lists the possible options for a heuristic search (Fig. 

5). 

 
 
 

 

 
Figure 5 

Options available with the heuristic search (hs) command using the matrix representation using parsimony 

(MRP) criterion. 



 19

 

By default a heuristic search will use PAUP* (38) to carry out the parsimony analysis.  

Clann will try to run PAUP* but if it fails to do so, will return an error and suggest that 

the user should execute the created Baum-Ragan matrix in PAUP* separately. The use of 

other parsimony programs is also possible. The best supertree(s) is saved to the file 

“MRP.tree”, although it is possible to change the name of the file using the option  

 

savetrees=new-file-name. 
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2.3.2 Making an average consensus tree.  

 

The quickest method to construct a supertree is to create a neighbor joining tree using the 

average consensus method to create the distance matrix. This can be carried out under 

any criteria using the command nj. The resulting tree is both displayed on screen and 

saved to the file “NJtree.ph”. The options for this approach only concern the methods 

used to fill in the missing values in the distance matrix. Typing the command nj ? 

returns the options possible with this command (Fig. 6). 
 

 

 
Figure 6 

Options available with the neighbor joining supertree (nj) option. 

 

 

To carry out a full average consensus analysis it is necessary to change the criterion to 

“avcon”.  By default, Clann uses PAUP*(38) to carry out the heuristic search using the 

least-squared objective function. The resulting tree is displayed on screen and saved to 

the file “Heuristic_result.txt”. 

 

2.3.3 Making an MSSA tree  

 

The MSSA algorithm is called under the criterion “DFIT” in clann. The command hs ? 

displays the options available under the MSSA criterion (see Note 8) (Fig. 7). 
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Figure 7 

Options available with the heuristic search (hs) command using the most similar supertree algorithm 

(MSSA) criterion. 

 

 

By default clann will create 10 neighbor-joining trees with some random changes and 

carry out the heuristic search from these starting points. It is also possible to specify a 

random pre-sample of supertree space to find the best starting points from which to carry 

out the heuristic search using the option “start”. When the search is complete, the best 

supertree(s) are displayed to screen.  

 

2.4 Visualising output. 

 

By default, any supertrees reconstructed by clann are saved into their respective files in 

newick format. There are a variety of tree-viewing application that can read these files 

including stand-alone applications like Treeview (40) and online tools like iTOL (41). 

Clann also saves the trees returned from heuristic searches as a post-script image file 

(called “trees.ps”) that can be viewed by a variety of applications.  
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2.5 Interrogating input trees  

 

One of the strengths of Clann is its ability to allow the user to investigate the 

phylogenetic support in the source trees for a supertree (see Notes 9 and 10). At the most 

basic level, the user can choose to rank the source trees according to their similarity to the 

best supertree. This is carried out during a heuristic search for the best supertree. If the 

option “drawhistogram” has been set to “yes”, a histogram providing information on how 

similar the supertree is to the set of source trees is displayed (where a score of 0 means 

they are identical) (Fig. 8). The information is also saved to the file 

"Heuristic_histogram.txt”. 
 
 

 

 
Figure 8 

Histogram detailing the similarity of the best supertree to the source trees. 
 
 
 

A bootstrap analysis of the source trees can also be carried out in clann using the 

command bootstrap or boot. This analysis will resample the set of source trees 

with replacement to create a new set with the same number of trees as the original. This is 

generally carried out 100 times and the best supertree is found for each. Clann then 

carries out a summary of the source trees (usually a majority rule consensus) and the 

relationships with the best support are displayed to screen. All the best supertrees for 

each bootstrap replicate are saved to the file “bootstrap.txt” and the consensus to 
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“consensus.txt”. The bootstrap analysis can be carried out for each of the 5 different 

criteria in clann. Typing boot? displays the options available under the current criterion 

(Fig. 9). 

 
 

 
Figure 9 

Options available with the bootstrapping (boot) command using the most similar supertree algorithm 

(MSSA) criterion. 

 

 

Finally it is possible to carry out an analysis of the level of congruent phylogenetic signal 

across the set of source trees using a permutation-tail-probability test. The test 

implemented in Clann is called the YAPTP (yet another permutation-tail-probability) 

test. This test compares the score of the best supertree to the score of the best supertrees 

from 100 randomly permuted versions of the source trees.  For each of the 100 replicates 

of this analysis each source tree is randomised, thereby destroying the any congruent 

signal between them, while keeping the same taxon distribution and source tree sizes. A 

heuristic search for the best supertree for each of these randomised datasets is then 

carried out. If topological congruence between the source trees is better then random, 

then the supertree score for the real dataset is expected to be better than any of the 

supertree scores from the randomised datasets. This is essentially testing that the 

phylogenetic signal shared between the source trees is better then random noise (7). 
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3. Examples 

 
The datasets used in the following examples are from (7). This analysis concerns the 

extent of phylogenetic signal with the prokaryotes. Two datasets were constructed, the 

first consisting of single-copy gene families from 10 genomes within the gamma-

proteobacteria and the second consisting of single-copy gene families from 11 genomes 

spanning the earliest branches of the prokaryotic tree of life. For more details on the 

methods used to create the source trees see (7). The source trees created are available for 

download at http://bioinf.nuim.ie/supplementary/royalsoc04/ .  

 

Beginning with the dataset from genomes spanning the earliest branches of the 

prokaryotes (the file named “11taxonfundamentals.ph.txt”), from within Clann type: 

 
exe 11taxonfundamentals.ph.txt 

 

Clann will read in the source trees and calculate and display some basic statistics about 

the data (Fig. 10). 
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Figure 10  

Output generated by Clann after the execution of a phylip formatted file of multiple source trees. 
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3.1 Supertree construction 

 

The quickest method of constructing a supertree in Clann is to use the command nj 

which results in a neighbor-joining tree calculated from an average consensus distance 

matrix to be saved to the file “NJ-tree.ph” and to be displayed on screen (Fig. 11). 

 
 

 

 
Figure 11  

Output generated by the neighbor-joining (nj) command. 

 

 
 

It is important to note that the trees displayed by Clann are all unrooted. In this dataset 

Halobacterium (Halobact) is the obvious choice as an outgroup when displaying the best 

supertree in external phylogeny viewers, as it is the only Archaea in the dataset.  

 

By default Clann uses the MSSA (dfit) algorithm when searching for the best supertree. 

To carry out a simple heuristic search of tree space for the best supertree, type:  hs 
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The resulting tree will be saved to a file called “Heuristic_result.txt” and also displayed 

on screen (Fig. 12). 

 
 

 
Figure 12  

Output generated by Clann using the heuristic search (hs) command under the most similar supertree 

algorithm (MSSA) criterion. 

 

 

Comparing the tree from the neighbor-joining (NJ) algorithm to this tree reveals that they 

are not the same: for instance in the NJ tree Mycobacterium tuberculosis (M.tuberc) is 

most closely related to Halobacterium (Halobact), however in this tree Deinococcus 

radiodurans (D.radiod) is its closest relative. 
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In order to try to resolve to differences between these two trees we can carry out a 

bootstrapped search of supertree space. In this case we will use the command:  
 

boot hsreps=1 

 

This tells clann to carry out the bootstrap search (100 times by default) but for each 

replicate only carry out the heuristic search once (the default is 10). This is to speed up 

the time taken to do the analysis for the purposes of the example. 

This analysis returns the results shown in Fig. 13. 

 
 

 
Figure 13 

The output generated by Clann using the bootstrap (boot) command, detailing the support (or lack thereof) 

in this dataset. 

 

 

There is obviously very little support for any relationships in this tree, but we can further 

investigate to see if the phylogenetic signal within the source trees is any better than 

random noise using the YAPTP test. This test creates randomised versions of the source 

trees and finds the best supertrees for these randomised datasets. This is carried out 100 

times and the scores of the best supertrees for the randomised data is displayed along 
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with the score of the best supertree for the original data. If the phylogenetic signal of the 

source trees is better than random noise the score of the best supertree should lie well 

outside the distribution of scores from the randomised data. The command yaptp 

returns the results shown in Fig. 14. 

 
 

 
Figure 14 

The output generated by Clann using the “yet another permutation-tail-probability” (YAPTP) test. 

 

 

As we know from the hs search the score of the best supertree is 203.6 (using the dfit 

criterion) then we can say that this score lies within the distribution of random supertrees 

and leads us to suspect that the overall phylogenetic information in this dataset is no 

better then random. 

 

The second dataset from within the gamma proteobacteria represent a group of organisms 

that are nearly at the tips of the prokaryotic tree of life. Follow the same procedure with 

the corresponding file (10taxonfundamentals.ph.txt) to see if the same conclusion holds 

for this group. 
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4. Notes 
1. Clann can be used to transform nexus formatted tree files into newick formatted 

files. This is done by executing the nexus file as normal and then using the 

command: showtrees savetrees=yes. It is also possible to set the name 

of the file to which the trees are saved, and to stop clann from displaying a 

graphical representation of each source tree while this is done. 

2. Clann can be told only to read the first few characters of each taxa name when 

reading the source trees into memory. This is useful when it is necessary to have 

unique identifiers (for instance gene IDs) on the source trees. The option 

maxnamelen in the exe command sets this value. If the names are not fixed 

widths, maxnamelen=delimited tells Clann to look for a dot (.) specifying 

the end of the taxon ID in the trees. For instance using exe 

maxnamelen=delimited on this tree: 

(apple.00121,(orange.1435,lemon.3421), pear.1032); 

Results in clann ignoring the numbers after the dots in the taxa names. 

3. The equals sign (=), hyphen (-) and space ( ) are special characters in Clann and 

by default cannot be used in filenames to be read by clann. If a filename contains 

one of these characters Clann can only read the name of the file properly by 

putting the name in inverted commas.  

For example: exe “my-file.txt”. 

4. The first command that you should run if you don’t know what to do is help. 

This will display the list of the commands that are available. Calling any of the 

commands followed by a question mark (for instance hs ?), will display the 

options and defaults associated with that command.  

5. The command ! runs a shell terminal on Unix and Mac operating systems 

allowing system commands can be run without having to quit Clann. 

6. Clann can assess supertrees created using other programs. Using the usertrees 

command, clann will read in the file specified and assess all the trees it contains. 

The best supertree found in the file is displayed. 

7. All commands in Clann should be written completely in lowercase, typing the 

command boot is not the same as Boot and only the first will be recognised as 

a valid command. 
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8. Heuristic and exhaustive searches of supertree space can be interrupted using the 

key combination “Control-c”. This allows the user to specify if they wish to stop 

the search now and display the best tree found so far. If this is done during the 

random sampling phase of a heuristic search, it will allow the user to move 

straight to the heuristic search without completing the random sampling. 

9. Users can assess different configurations of their data by excluding (or including) 

certain source trees from subsequent commands using the excludetrees and 

includetrees commands. Source trees can be selected based on their name, 

the taxa they contain, their size (number of taxa they contain) or their score when 

compared to a supertree. 

10. Individual (or multiple) taxa can be pruned from the source trees using the 

command deletetaxa. Branch lengths are adjusted to take the deletion of the 

taxa into account. If the deletion of taxa from a source tree means that there are 

less than 4 taxa remaining, that source tree is removed from the analysis. Clann 

will display the names of the source trees removed if this occurs. 
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