
Aberystwyth University

Clann: investigating phylogenetic information through supertree analyses
Creevey, C. J.; McInerney, J. O.

Published in:
Bioinformatics

DOI:
10.1093/bioinformatics/bti020

Publication date:
2005

Citation for published version (APA):
Creevey, C. J., & McInerney, J. O. (2005). Clann: investigating phylogenetic information through supertree
analyses. Bioinformatics, 21(3), 390-392. https://doi.org/10.1093/bioinformatics/bti020

General rights
Copyright and moral rights for the publications made accessible in the Aberystwyth Research Portal (the Institutional Repository) are
retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the Aberystwyth Research Portal for the purpose of private study or
research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the Aberystwyth Research Portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

tel: +44 1970 62 2400
email: is@aber.ac.uk

Download date: 30. Aug. 2021

https://doi.org/10.1093/bioinformatics/bti020
https://pure.aber.ac.uk/portal/en/publications/clann-investigating-phylogenetic-information-through-supertree-analyses(fdb0b017-80f9-4bbb-aaee-d503b58eee98).html
https://pure.aber.ac.uk/portal/en/publications/clann-investigating-phylogenetic-information-through-supertree-analyses(fdb0b017-80f9-4bbb-aaee-d503b58eee98).html
https://doi.org/10.1093/bioinformatics/bti020

Clann manual

 - 1 -

Clann Manual (version 3.0.0)

 (Revised Manual released 16th November 2004)

Clann: Construction of Supertrees and exploration
of phylogenomic information from partially

overlapping datasets.

Homepage: http://bioinf.may.ie/software/clann/

Copyright © Christopher Creevey 2003-2005.

Clann was written by Chris Creevey while working in the lab of
James McInerney at the National University of Ireland between
2003 and 2005.

Clann manual

 - 2 -

Table of Contents:

AIM: .. 3
LEGAL STUFF:... 3
DISCLAIMER: .. 3
BUG REPORTING: .. 4
REFERENCING CLANN: ... 5
BACKGROUND. ... 6
OPTIMALITY CRITERIA. .. 9

1. Matrix Representation using Parsimony (MRP) .. 9
2. Most Similar Supertree Method (dfit) ... 11
3. Maximum Quartet fit. (qfit).. 16
4. Maximum Split Fit (sfit). .. 17
5. Average consensus (avcon).. 18

OPERATIONS ON DATA... 19
Heuristic searches of tree-space: .. 19
Bootstrapping source trees: ... 21
YAPTP Test ... 21

INSTALLING AND RUNNING CLANN ... 23
THE CLANN INTERFACE. .. 25

Execute (or exe) command:... 29
alltrees command: .. 35
hs command: ... 38
usertrees command:.. 44
bootstrap (or boot) command: ... 46
yaptp command:.. 51
includetrees command:... 55
excludetrees command: .. 57
showtrees command: .. 59
consensus command: .. 62
deletetaxa command:.. 66
generatetrees command: .. 67
nj command:.. 71
rfdists command:... 72
set command: .. 73
! command: ... 74
quit command: .. 74

TUTORIAL: .. 75

Clann manual

 - 3 -

Aim:

To construct supertrees and explore the underlying phylogenomic

information from partially overlapping datasets.

The program Clann has been developed to provide implementations

of several supertree methods. The methods implemented all allow

the investigation of data in a phylogenomic context. It is important

that the user understands the advantages and limitations of these

methods. It is also important for the user to know that the software

is designed to perform a number of different tasks, however the

interpretation of the results is left entirely to the user.

Legal Stuff:

Clann 3.0.0 © 2003-2005 Chris Creevey.

The software and its accompanying documentation are provided as

is, without guarantee of support or maintenance. The whole

package is licensed under the GNU public license, except for the

parts indicated in the sources where the copyright of the authors

does not apply. Please see http://www.opensource.org/licenses/gpl-

license.html for details.

Disclaimer:

While we try to ensure that the software is free of bugs, this

cannot be guaranteed. The software is provided as-is, with no

guarantee that it will do anything, that it is suitable for any purpose

whatsoever and that it will be of any use to anybody. We cannot be

held responsible for any errors and we cannot be held responsible

for the user being misled by any results they obtain when using the

software. But that said, we think it works really well!

Clann manual

 - 4 -

Bug reporting:

 It is the intention of the authors to continuously develop and

up-grade this software. Much of this development can only happen

with user feed-back. With this in mind we will put all constructive

comments into a “wish list” of upgrades and bug-fixes. If you are

going to report a bug, we ask that you provide the following:

1) The version of Clann you are running.

2) The operating system you are using in as much detail as

possible (like Mac OS 10.2.8).

3) A description of the exact nature of the problem (i.e. the

operation that causes the crash or the repetition that the

crash occurred).

4) A copy of the data that caused the failure. Without this it will

not be possible to re-create the problem and fix it. Please

note that all data provided will be treated with the up-most

confidentiality.

5) Email all these details to Chris Creevey,

(chris.creevey@gmail.ie)

Clann manual

 - 5 -

Referencing Clann:

Clann has been published in Bioinformatics in 2005 under the
following title:

Creevey C.J. and McInerney J.O. 2005 Clann: investigating
phylogenetic information through supertree analyses.
Bioinformatics 21(3): 390-2.

The Bootstrapping and YAPTP methods and the DFIT (most similar
supertree algorithm) have all been described in the paper:

Creevey C.J., Fitzpatrick, D.A., Philip, G.A., Kinsella, R.J., O’Connell
M.J., Travers, S.A, Wilkinson M. and McInerney, J.O. 2004 Does a
tree-like phylogeny only exist at the tips in the prokaryotes?
Proceedings of the Royal Society London, B series: Biological
Sciences 271 (1557): 2551-8.

Either or both of these publications should be cited if you use Clann
in published work.

Other places we have used Clann:

Fitzpatrick, D.A., Creevey, C.J. and McInerney, J.O. (2005).
Genome Phylogenies Indicate a Meaningful -Proteobacterial
Phylogeny and Support A Grouping of the Mitochondria With the
Rickettsiales. Molecular Biology and Evolution
doi:10.1093/molbev/msj009.

Philip, G.K., Creevey, C.J. and McInerney, J.O. (2005). The
Opisthokonta and the Ecdysozoa may not be Clades: Stronger
Support for the Grouping of Plant and Animal than for Animal and
Fungi and Stronger Support for the Coelomata than Ecdysozoa.
Molecular Biology and Evolution 22, 1175-1184.

Wilkinson, M., Cotton, J., Creevey, C.J., Eulenstein O., Harris, S.R.,
Lapointe, F-J. McInerney, J.O., Pisani, D and J. Thorley (2005). The
Shape of Supertrees to Come: Input Tree Shape Biases and Some
Axiomatic Properties of Fourteen Supertree Methods. Systematic
Biology 54(3):419-31.

Clann manual

 - 6 -

Background.

One way to build larger more comprehensive phylogenies is to

combine the vast amount of phylogenetic information already

available. A supertree does this by combining all the taxa from a

collection of fundamental (or source) trees into a single phylogeny

(1). An ideal supertree that agrees completely with all its source

trees is called a strict supertree, and can only result when all its

source trees are compatible. Two source trees are compatible if,

when only their shared taxa are considered, their relationships to

each other are the same in both trees (1). However an ideal strict

supertree is rarely found because phylogenies based on different

genes are subject to different evolutionary processes and because

of events like lateral gene transfer and duplication.

With the availability of whole genomes, supertree methods have

become very important in reconstructing whole genome phylogenies

(2). New methods (2-6) have been developed, each approaching

the problem from a different perspective.

Methods based on gene content (3, 7, 8) build phylogenies based

on the presence or absence of particular genes or families of genes.

The concept being that closely related species should share a large

proportion of genes, while distantly related species should either

have lost genes since they last shared a common ancestor or never

have had many genes in common in the first place. Ideally this

gene loss would be constant over time and would also be a good

estimate of how long its been since they last shared a common

ancestor (3, 7, 8). However, selective pressures acting on gene loss

(as in adaptation to endosymbiosis (9)) or gene acquisition by

horizontal gene transfer (as in adaptation to extreme environments

Clann manual

 - 7 -

(10)) or gene preservation (for functionally important genes (11))

may alter this rate.

Analysing gene order, which follows the same idea as methods

based on gene content, is another way of comparing genomes. The

concept here is that those genomes that are more closely related

have undergone less genomic rearrangement than those that are

more distantly related (4). Studies of gene order (12) have

successfully identified pairs of genes that are conserved in their

proximity in several genomes, and the presence-absence matrices

of these pairs have been used to construct supertrees. Problems

which confound this approach include the effects of selective

pressures and increased chances of lateral gene transfer because

operons in genome rearrangement are generally transferred as one

piece (13).

Another way of reconstructing genome phylogenies is to calculate

the evolutionary distances between pairs of orthologs. Grishin et al.

(14) and Wolf et al. (5) used different methods of identifying

orthologs and calculating the evolutionary distances between them.

They both examined prokaryotic phylogenies, and used the

distances calculated to reconstruct the supertree. The different

approaches to using this method show a wide distribution of results,

probably because of lateral gene transfer, misidentification of

orthologs and sampling error (15). calculating the evolutionary

distances between them. They both examined prokaryotic

phylogenies, and used the distances calculated to reconstruct the

supertree. The different approaches to using this method show a

wide distribution of results, probably because of lateral gene

transfer, misidentification of orthologs and sampling error (15).

Clann manual

 - 8 -

Concatenated sequence alignments have proven to be a very useful

method of reconstructing genome phylogenies. In this method,

orthologs are identified in the genomes in question and their

associated sequences are aligned. Then all the orthologs for each

genome are concatenated (in the same order) and various standard

phylogeny reconstruction techniques are then used on the

concatenated genome sequences (16-20). There are limitations to

this approach however. All the concatenated alignments must

include the same set of species, and forcing them into one

alignment, assumes that the same process of evolution has been

acting on all the genes. Brown (19) tried to overcome this difficulty

by choosing genes that had a function during translation, this

however limited the dataset to 23 orthologous proteins from only 45

species of prokaryotes. Besides these limitations, concatenated

alignments have produced genome phylogenies with good

resolution (16, 19), however the usable datasets have been rather

small.

A final method of constructing genome phylogenies is that of

combining the information of multiple trees. This allows us to

construct phylogenies for individual orthologous genes, and to

combine them into an overall supertree. Baum (21) and Ragan (22)

(MRP) coding schemes have been used for this purpose (2) as well

as calculation of nearest neighbours across many source trees (23),

combination of weighted trees (24) and methods that use maximum

likelihood analysis of quartets (25). This approach suffers from the

problem of reconciling the information from many trees, filtering out

the homoplasy and the possibility of including paralogs in the

analysis. However it does allow for large proportions of each

genome to be included in the analysis, and probably for that reason

better reflects the "true" genomic phylogeny (15).

Clann manual

 - 9 -

Optimality criteria.

At present there are 4 supertree methods implemented in Clann

that combine information from multiple (non-overlapping) trees.

These methods are used as optimality criteria for searching tree-

space.

1. Matrix representation using Parsimony (MRP) (using PAUP*)

2. Most Similar Supertree (dfit)

3. Maximum Quartet fit (qfit)

4. Maximum Splits fit (sfit)

5. Average Consensus (avcon)

1. Matrix Representation using Parsimony (MRP)
Matrix representation using parsimony (MRP) creates a matrix

whose characters refer to the topologies of the source trees. This

method of supertree construction was proposed by Loomis and

Smith (26), and later refined by Baum (21), and Ragan (22). The

method works by examining each internal branch of each rooted

source tree, and assigning a '1' to any taxa contained within the

clade defined by that internal branch. A '0' is assigned to any taxon

that is contained within the source tree, but not in the clade, and a

'?' is assigned to any taxa not present in the source tree (figure 1).

The columns in the matrix each represent one internal branch in

one of the source trees, so the total number of columns in the

matrix is equal to the total number of internal branches across all

the source trees. The matrix is then analysed using parsimony, and

the supertree phylogeny is reconstructed. Strict supertree

construction is conservative however and the result cannot conflict

Clann manual

 - 10 -

with any phylogenetic relationships in any source tree. If MRP is

used with source trees that are not consistent, the reconstructed

phylogeny will contain polytomies reflecting the relationships in

which the source trees conflict. Such conflict among source trees

may be common, becoming more likely as the numbers of source

trees or shared taxa increases (1). MRP handles conflict by weighing

the evidence in different source trees, without any tree having a

power of veto. Incompatible source trees can also be analysed using

MRP by either treating the conflicts with consensus methods or

selective removal of problematic shared taxa until the remaining

sub trees are compatible (1, 27). MRP is also sensitive to the size of

the source trees used, with smaller trees seeming to give a better

result (28). However, the subsequent loss of coverage can be

problematic (29, 30).

Figure 1: Construction of supertrees by matrix representation. A

column represents each internal node of each source tree. If a

taxon is contained within the clade defined by that internal branch a

'1' is placed beside it in the column. If the taxon is not in the clade

Clann manual

 - 11 -

but is on the tree a '0' is placed beside it in the column other wise if

the taxon is not on the tree a '?' is placed beside it in the column.

The matrix is then analysed using parsimony and the most

parsimonious phylogeny is reconstructed (21, 22). Bootstrap values

may be incorporated into the matrix by representing a column

repeatedly proportional to the bootstrap value at the node that it

represents (2).

2. Most Similar Supertree Method (dfit)
This scoring method compares each source tree separately to the

supertree by comparing the distance matrix derived from a source

tree to a distance matrix derived from the supertree. The

differences between the matrices are scored and the sum of the

scores from all the comparisons is calculated. This sum is the score

assigned to the supertree.

The comparison of a supertree to a source tree is only possible if

the two trees are the same size. However most source trees have

fewer taxa than the supertree. How then is a comparison of two

differently sized trees possible? For each comparison the supertree

is reduced to the same size as the source tree. This is achieved by

pruning those taxa from the supertree that are not found in the

source tree (Figure 2). Once the pruning is complete, a distance

matrix is calculated for the supertree by counting the number of

nodes separating each taxon from every other taxa (Figure 3). This

distance matrix is the same size and comparable to the distance

matrix from the source tree.

The differences between the source tree distance matrix and the

supertree distance matrix is calculated as follows. As both of these

matrices contain information on distances between the same taxa,

Clann manual

 - 12 -

it is possible to check if the distance between any two taxa differs in

either matrix. The absolute value of the difference between these

distances is calculated (Table 1). The sum of all these absolute

values arising from the comparison between the two matrices is

then calculated. This score is a measure of the discrepancy between

the source tree and the supertree being examined. If the pruned

supertree and the source tree are the same, then the score is zero.

However there is a correlation between the size of the tree score

and the size of the source tree being examined. Large trees result

in large scores and small trees result in small scores. To normalise

against this effect, the sum of the absolute differences can be

divided by the total number of comparisons in the matrix. The user

must decide whether a normalisation like this (where every tree has

the same vote in the result) is true to the peculiarities of their data.

The user can choose to not normalise, thus allowing larger trees to

have a bigger “vote”.

It is advisable to try several different normalisation techniques on

any data analysed as this can reveal whether or not any results

obtained are biased towards large or small trees.

As an example, in Table 1 there are 5 taxa, this means that there

are 15 possible comparisons between each of these. This is a Table

of the absolute differences between the two matrices in Figure 3.3.

The sum of all the cells in Table 3.1 is 20 and is the sum of the

absolute differences. This is normalised by dividing it by the total

number of comparisons, so the normalised score is 20 divided by

15, which is 1.333.

The total score for any given supertree is therefore given by the

sum of the normalised scores for every source to supertree

Clann manual

 - 13 -

comparison. This represents the similarity of the supertree to the

source trees. Numerous other tree-to-tree distance or fit measures

could be used to define optimal supertrees (31). The present

method is most similar to the Average Consensus procedure with

branch lengths all set at unity (32).

Figure 2: Supertree pruning. a) The supertree contains more taxa

than the source tree, so it is necessary to identify those taxa and

internal branches that are not part of the source tree, shown in

white in b). As can be seen in c) these taxa and branches are then

pruned leaving the supertree the same size as the source tree.

Clann manual

 - 14 -

Figure 3: Calculating distance matrices for unrooted trees. The

numbers in the Tables represent the number of nodes separating

any two taxa. Note the differences in tree (a) and (b) and how it

changes the respective distance matrix.

Table 1: The absolute difference of the matrices in Figure 2. The

sum of these differences gives the score for the similarity between

the two phylogenies, in this case 20. If the two phylogenies were

identical this score would be 0.

Clann manual

 - 15 -

Algorithmic procedure:

The algorithm proceeds as follows:

Calculate a distance matrix for every source tree in memory.

For every supertree in the supertree file (or for each supertree

created during the heuristic search or exhaustive search algorithm)

1) Build the supertree in memory

2) For each comparison to a source tree:

i. Prune the supertree to the same leaf set as the source tree

ii. Calculate a distance matrix for the pruned supertree.

iii. Calculate the absolute sum of the differences between the

distance matrix of the pruned supertree and the

distance matrix of the source tree.

iv. Restore the supertree to its original size.

3) Sum the scores from all the comparisons to the source trees.

This is the score assigned to the supertree.

4) Dismantle the supertree in memory.

Repeat until all the supertrees have been examined (or the optimal

tree has been found).

Clann manual

 - 16 -

3. Maximum Quartet fit. (qfit)
In this method, all the quartets (relationships between any 4 of the

taxa) from any proposed supertree are determined. All the quartets

from the source trees are also determined. A score is then

calculated which is defined by the number of quartets that are

shared between the supertree and the set of source trees. This is

used as an optimality criterion to determine the supertree that has

the maximum quartet fit (i.e. shares the largest number of quartets

with the source trees).

Issues that affect this optimality criterion include large tree bias.

Large trees have very many more quartets than small trees. The

number of quartets increases non-linearly to very large numbers

very quickly. In an attempt to adjust for this effect the contribution

of any quartet match to the overall score can be normalised in

several ways. Firstly we can leave all quartets to contribute to the

same degree, this is equivalent to stating that bigger trees have

more information and so should be allowed to make a bigger

contribution to the final answer. Secondly we can normalise the

score that any quartet match contributes to the final score by

dividing it by the number of quartets contained in that source tree.

This is equivalent to stating that every tree should contribute

equally, regardless of size, to the final score. Thirdly we can

normalise the score to allow bigger trees have more say than

smaller trees, but not to the extent if we didn’t normalise the score

at all. In this method, the contribution of any quartet is normalised

by dividing it by the number of taxa minus three (n-3), on the

source tree from which it came.

All three of these normalisations are included as part of the

algorithm in Clann, and it is up to the user to decide which works

Clann manual

 - 17 -

best with their data. It is advisable to try several different

normalisation techniques on any data analysed as this can reveal

whether or not any results obtained are biased towards large or

small trees.

4. Maximum Split Fit (sfit).
In this method, all the splits (components) from any proposed

supertree are determined. All the splits from the source trees are

also determined. A score is then calculated which is defined by the

number of splits that are shared between the supertree and the set

of source trees. This is used as an optimality criterion to determine

the supertree that has the maximum split fit (i.e. shares the largest

number of splits with the source trees). This method allows missing

data to be considered as not conflicting, this then allows the

comparison of splits from differing sized trees.

Once again, large tree bias can also affect this optimality criterion.

To try to take this into account Clann implements two options.

Firstly the user can choose to allow the contribution to the final

score of each matched spit to be equal regardless of the size of the

source tree that the split came from. This is equivalent to allowing

larger trees to have more of a say in the result. Secondly, the user

can choose to normalise the contribution of any matched split by

dividing by the number of splits. This has the effect of giving each

tree an equal “vote” in the final result, regardless of the size of the

tree.

Again it is advisable to try several different normalisation

techniques on any data analysed as this can reveal whether or not

any results obtained are biased towards large or small trees.

Clann manual

 - 18 -

5. Average consensus (avcon).
The average consensus method (24, 33) combines the information

from multiple trees by calculating the path length from every taxa

to every other taxa on each of the source trees. This method

utilizes branch lengths (if present) or assumes a branch length of

unity (a branch length of 1) if not present. The resulting supertree

from this method will have branch lengths.

The specifics of the method are as follows:

- The distance from each taxon to every other taxon on a tree is

calculated. This is the equivalent of the sum of the branch

lengths in the path between the two taxa.

- The average distance of each taxa to every other taxa across all

the source trees is calculated.

- In the supertree context, some taxa may never appear together

on an input tree. In this case we would not have a value for the

distance between these two taxa. To remedy this, the value of

the missing cells is estimated using either ultrametric or 4-point-

condition estimates (34). This results in a distance matrix with

distances from each taxa to every other taxa.

- A least squares method is used to estimate a supetree phylogeny

(with branch lengths) that best describes the distance matrix.

(this part is carries out by PAUP* in Clann) You also have the

option of doing a neighbor joining supertree from the calculated

distance matrix (see the command ‘nj’).

Clann manual

 - 19 -

Operations on Data.
For each of the optimality criteria implemented, several different

methods of analysing the phylogenomic content are implemented in

Clann. These methods include exhaustive searches of tree-space,

heuristic methods of searching tree-space, methods of

bootstrapping (with replacement) the trees to examine the

underlying support for any hypothesis and methods for determining

whether any phylogenomic signal present in the data is better than

what would be expected from random data.

Heuristic searches of tree-space:

This leads to the problem of where a supertree comes from. Given

20 taxa there are over 8x1021 different possible phylogenies. How

then can the correct phylogeny be found? One method is to do an

exhaustive search of tree space for the correct phylogeny, however

this is not feasible for anything over 12 taxa datasets as it would

take too long to complete on a single computer. Another method is

to use a heuristic search of tree space. Heuristic searches use

various methods to only search that part of tree space where the

correct tree is likely to be located.

The heuristic methods used in the software are blind hill-walking

algorithms. Heuristic hill-walking algorithms try to find the optimum

answer to a problem without trying all possible answers. Initially an

answer is proposed and is assessed. A modification is then made

and this new answer is assessed. If the new answer is better, then

it is retained and used as the starting point to find the next best

answer. Otherwise, the new answer is discarded and the previous

answer is used as a starting point. Traditionally this is viewed as

Clann manual

 - 20 -

climbing a hill where we are trying to find the top of the hill (the

best answer). Any step that brings us downhill is not taken, and any

step that brings us uphill is taken. As this is a blind hill-walking

algorithm it is not possible to know the surrounding topology and

when the top of a hill is reached it is not possible to ascertain if this

is the highest hill in the landscape or simply a “local optimum”. This

is makes it difficult to have any confidence in the result of a single

heuristic hill-walk and usually it is necessary to perform the hill-

walk several times using different starting points to make sure that

the same answer is found every (or most of) the time.

The two heuristic algorithms implemented in Clann are nearest

neighbor interchange (NNI) and sub-tree pruning and re-grafting

(SPR) as described and implemented in PAUP* (35).

The nearest neighbor interchange algorithm adjusts trees by

swapping the position of two neighboring branches. If this swap

improves the tree then that adjustment is retained, otherwise the

branches are swapped back. A strict NNI only swaps two branches if

they are neighbours, that is if they are only a distance of one node

away from each other. However the algorithm may be expanded to

allow branches to be swapped that are a distance of several nodes

away from each other. An upper limit can be enforced to the

distance separating two branches that may be swapped. This

method of tree searching is considered quite gentle, as it cannot

change the topology of the tree being examined, but merely change

the position of the branches on the tree. Any two branches of a tree

may be swapped (including an internal branch for an external

branch) as long as one branch is not a descendant of the other.

When an internal branch is moved, the entire clade that it defines

(everything below it) also moves.

Clann manual

 - 21 -

The second heuristic algorithm implemented is called sub-tree

pruning and re-grafting (SPR). This method removes a section of

the tree and re-grafts it back onto the tree in a different position. If

an internal branch is moved, then the clade that is defined by that

internal branch is moved also. This method searches tree space far

more rigorously than NNI as the whole topology of the tree is

allowed to change. There are few limitations to this search

algorithm but one is that the formation of polytomies in the

phylogeny is not allowed. This is because of the possibility of

resulting in a completely unresolved tree. However unlike NNI, SPR

has the capability of breaking up and resolving polytomies.

Bootstrapping source trees:
The source trees represent one possible set of trees that could have

been used in the analysis. Choosing a slightly different set of source

trees may result in a different optimal supertree. In order to

estimate the likely nature of the universe of optimal supertrees, the

source trees may be bootstrapped. For each bootstrap replicate, the

source trees are sampled with replacement until a new dataset is

created with the same number of source tree scores as the original

dataset. This means that some source trees may be represented in

the data set more than once, while others may not be represented

at all. For each repetition, the supertree that best represents this

(bootstrapped) set of source trees is determined. Repeating this

procedure a large number of times gives an indication as to how

much support there is for any supertree phylogeny.

YAPTP Test
A randomisation method to test the null hypothesis that the

phylogenetic signal in the gene trees was no better than random is

also implemented in Clann. This is called a YAPTP (Yet Another

Clann manual

 - 22 -

Permutation Tail Probability) test. For each gene tree, we removed

the taxon names and randomly reassigned them to the leaves. This

removes any congruent phylogenetic signal between gene trees,

while leaving the numbers, sizes and shapes of gene trees, the

frequency with which any particular taxon was found across the

gene trees, and the frequency of co-occurrence of any group of taxa

within gene trees unaltered. A search of tree space can then be

carried out and the score of the best supertree recorded. The user

can repeat this test as many times as required and the distribution

of the resulting scores can be compared to the score of the real

data (or the distribution of scores from bootstrapping) to check that

the real data contains a signal that is better than random.

Clann will display the results of an exhaustive or heuristic search

graphically to the screen (as in the box below) but will also print the

tree(s) to a file in nested parenthesis format (for viewing in

programs such as “treeview”

[http://taxonomy.zoology.gla.ac.uk/rod/treeview.html]) and also

graphically in Postscript format to the file “supertree.ps”. The file

“supertree.ps” will be overwritten after every search.

+--- A
|
| +--- B
| |
| | +------------------- F
| | +---------|
+---------| | +------------------- G
 | +---------|
 | | | +------------------- C
 | | +---------|
 | | | +--------- D
 +---------| +---------|
 | +--------- E
 |
 | +----------------------------- H
 +---------|
 | +------------------- I
 +---------|
 +------------------- J
Supertree 1 of 1 score = 104.484085
Time taken: 15 seconds

Clann manual

 - 23 -

Installing and running Clann
Clann is available to download at the website of the Bioinformatics

and Pharmacogenomics laboratory at NUI Maynooth, Ireland.

http://bioinf.may.ie/software/clann

At the moment there are binary executables for four different

Operating systems:

Apple Macintosh OS X (10.x)

Redhat Linux

Microsoft Windows PC.

Downloading:

When you click on the link for whatever operating system you are

using, the appropriate version of Clann is saved to your computer's

hard-drive. This is compressed to increase the download speed. In

Microsoft Windows, and both Apple operating systems this file

should be automatically uncompressed leaving you with the

program ready to run. However, if this does not occur in Microsoft

windows use the program 'winzip' (http://www.winzip.com) to

uncompress Clann, or in either Apple Macintosh operating system

use 'stuffit-expander' (http://www.aladdinsys.com).

In Redhat linux, issue the command "gunzip clann.tar.gz" to

uncompress the executable. Follow that command with “tar –xvf

clann.tar” to complete the installation.

Note:

The versions of Clann for Redhat linux and Mac OS X (10.x) are

command line programs. To run Clann in either of these operating

systems it is necessary to use a terminal window or shell. It may

also be necessary in these operating systems to change the

Clann manual

 - 24 -

permissions to allow clann to be run for the first time. This can be

achieved by typing the command "chmod a+x clann".

Installing Clann:

In Mac OSX an installation script is included which installs the

readline and ncurses libraries (if needed) before putting Clann into

the folder /usr/bin/. Once in this location (and the user starts a new

terminal window) Clann will be visible to the operating system from

any directory. To run the installation, simply double click the icon

“install.command”, any errors in the installation process will be

reported to screen. An administrative password will be needed to

successfully install Clann.

In Redhat linux, the Clann program should either be located in the

same directory as the input files, or somewhere on your path (like

~/bin/ or /usr/local/bin). If you do not know which directories are

on your path, ask your systems administrator.

Running Clann:

In Microsoft windows double clicking on the icon associated with

Clann will run the program. In these operating systems, the actual

Clann program must be located in the same directory as the input

files, an alias or shortcut to Clann will not suffice.

To run Clann in MacOSx or red-hat Linux, type the command

"./clann" or "clann" in a terminal window.

Clann manual

 - 25 -

The Clann interface.
Clann was designed to have a “Paup*-like” (35) interface. This type

of interface uses user specified commands to run the various

analyses unlike a menu driven program where you are given a

specific set of options. It is hoped that this will enable the evolution

of the software since it will be easy to add extra features and

analyses.

When Clann is started the user is presented with a simple prompt:

 * *
 * Clann 3.0.0 *
 * *
 * web: http://bioinf.may.ie/software/clann *
 * email: chris.creevey@gmail.com *
 * *
 * Copyright Chris Creevey 2003-2005 *
 * *

 clann>

This is the standard prompt, to which the program will return after

completion of any command.

A list of commands is available by typing the command “help”, this

results in the following list:

Clann manual

 - 26 -

Available Commands:

The following commands are always available:

 execute help quit set !

The following commands are only available when there are source trees
in memory:

 alltrees excludetrees rfdists
 consensus generatetrees showtrees
 bootstrap hs usertrees
 deletetaxa includetrees yaptp
 nj

 type a command followed by '?' to get more detailed information
 for example: exe ?

clann>

This gives the user a list of the available commands.

For further information on any of these commands it is possible to

type the name of the command followed by a “?”. This will result in

a detailed list of the options for this command. For example the

commands “alltrees ?” can give the following result.

Clann manual

 - 27 -

clann> alltrees ?

alltrees [options]

Options Settings Current
==

range <treenumber> - <treenumber> *all
savetrees <filename> top_alltrees.txt
create yes | no *no

 weight equal | comparisons comparisons

 *Option is nonpersistent

 ==

clann>

This explains that the command “alltrees” may be followed by

several options that affect the way in which the command runs. A

user could issue the command:

“alltrees range 3 – 100 create weight=equal”

In this method, a command may be followed by as many options (in

any order) as desired. The options (like create and range in above)

and qualifiers (like 3, 10 and equal in above) only need to be

separated by a valid separator. A valid separator may be a space,

minus sign “-“ or equals sign “=”. The important thing to remember

is that you follow any option with its correct qualifier, otherwise the

command will not run. All the valid qualifiers for any option are

listed beside the options in the above help display. There is such a

help display for every available command (except “quit”).

All commands and options must be typed in lower case, otherwise

Clann will not recognize the commands.

Clann manual

 - 28 -

When one of the commands is run, a summary of the settings used

are printed to the screen. This is available for heuristic searches,

bootstrapping and YAPTP tests for all criteria. The summary will lokk

something like the following:

Heuristic Search settings:

 Criterion = Most Similar Supertree (dfit)

 Heuristic search algorithm = Sub-tree Pruning and Regrafting (SPR)

 Maximum Number of Steps (nsteps) = 5

 Maximum Number of Swaps (maxswaps) = 1000000

 Number of repetitions of Heuristic search = 10

 Weighting Scheme = comparisons

 Starting trees = Top 10 random trees chosen from 10000 random

samples

 Output file = Heuristic_result.txt

Progress Indicator:*

The progress indicator increments every 5 seconds. When it is a “*”

the software is carrying out the random sampling of tree-space.

When the indicator is a “=” the software is carrying out the heuristic

searches of tree-space.

Note:

The available options for any command may change depending on

the optimality criterion chosen. Users should check the available

options before running any command.

The rest of this section will deal with each of the commands, one by

one, explaining how to use each option and what will be the result

of each command.

Clann manual

 - 29 -

Execute (or exe) command:

Purpose:

 To read in a file containing source trees for analysis.

Options:

the user must specify the filename after the word “execute”

(or “exe”). For example:

 “exe real.ph”

The one other option available to the user is ‘maxnamelen’.

This option allows the user to specify that the software

should only look at the first x number of characters when

reading the taxon name. This allows the inclusion of other

information along with the name of the taxa.

This file may contain the source trees in phylip format, with

or without branch lengths.

(A,B,(C,(D,E),((F,G),H)));
(B,A,((C,(E,D)),(G,F)),(I,H));
(B,(((E,D),C),A,(F,G)),((I,J),H));
(E:0.2,D:0.01,(H:0.01,(J:0.01,I:0.1):0.2):0.1);
(H,(B,((((E,D),C),(G,F)),A)),(I,J));
(D,E,(C,(A,(B,(H,I)))));
(A:0.1,((E:0.001,D:0.11):0.01,C:0.02):0.3,(F:0.1,G:0.01):0.01);
(G,F,(((C,(E,D)),B),A));
(J,I,(H,((((C,(D,E)),(F,G)),A),B)));
(D,E,(C,((F,G),B,(H,(I,J)))));

The input trees may also contain internal node labels like

bootstrap proportions (clann will ignore these).

Weights for individual trees can also be included and clann will

use these during the supertree analyses.

Clann manual

 - 30 -

For instance:

(A,B,(C,(D,E))) [0.001];

(A,E,(F,G)) [2.1];

This results in the first tree having a weight of 0.001 and the

second tree having a weight of 2.1. Note that the weights in

the square brackes comes before the semi-colon. Anything in

square brackets after the semi-colon will be considered a

label (or name) for the tree.

For instance:

(A,B,(C,(D,E))) [0.001]; [Tree 1]

(A,E,(F,G)); [Tree 2]

Clann will also read nexus formatted input files.

In this format, clann will ignore any data blocks not intended

for its use (like sequences) and will read trees from the file

with or without a translation table.

You may also include further information such as names of

trees or weights.

Finally, you may also include a ‘clann block’ at the end of the

file. This should include any commands that you wish clann to

perform on the data. [Clann will ignore other command blocks

(like for PAUP* or MrBayes)].

For instance:

Clann manual

 - 31 -

#NEXUS
Begin trees; [Test Tree file in nexus format]
Translate
 1 taxon_A,
 2 taxon_B,
 3 taxon_C,
 4 taxon_D,
 5 taxon_E,
 6 taxon_F,
 7 taxon_G,
 8 taxon_H,
 9 taxon_I,
 10 taxon_J,
 11 taxon_K,
 12 taxon_L,
 13 taxon_M,
 14 taxon_N,
 15 taxon_O
 ;
tree PAUP_1 = [&U] [&W 1.5] (1,((((((2,7),8),(((11,(12,13)),15),14)),((3,4),(5,6))),10),9));
tree PAUP_2 = [&W 2.1] (11,((((((2,7),8),(((1,(12,13)),15),14)),((3,4),(5,6))),10),9));
tree PAUP_3 = [&U] [&W 3] (2,((((((1,7),8),(((11,(12,13)),15),14)),((3,4),(5,6))),10),9));
tree PAUP_4 = [&U] [&W 0.001] (6,((((((2,7),8),(((11,(12,13)),15),14)),((3,4),(5,1))),10),9));
End;

Begin Clann;
set criterion=dfit;
hs nreps=1 sample=1;
showtrees;
quit;
endblock;

Clann manual

 - 32 -

Result:

This command reads all the source trees into memory and

performs some simple analyses, the results of which it prints

to screen.

Firstly Clann will determine the number of unique taxa in the

source trees and determine the size of supertree space for

this dataset. These results are printed to screen:

Reading Newhampshire (Phylip) format source tree file

 Input File summary:

 --
 Number of input trees: 920
 Number of unique taxa: 10
 Total unrooted trees in Supertree space?
 2.02702e+06

Next Clann determines the number of times any taxa appears

in a tree. This may be helpful in determining any taxa that are

poorly represented.

Occurrence summary:

 number Taxa name Occurrence

 0 A 672
 1 B 723
 2 C 781
 3 D 830
 4 E 831
 5 F 581
 6 G 519
 7 H 687
 8 I 551
 9 J 425

Clann manual

 - 33 -

Next, Clann determines the co-occurrence of each of the taxa.

That is, the number of times any two taxa appear together in

a source tree. This may enable the user to determine where

weak support for a relationship may be due to low co-

occurrence of the taxa.

Co-occurrence summary:

 Taxa Number

 0 1 2 3 4 5 6 7 8 9
 0 -
 1 582 -
 2 602 628 -
 3 627 653 739 -
 4 622 652 744 806 -
 5 484 496 541 551 552 -
 6 442 452 483 493 497 496 -
 7 518 588 577 617 613 444 402 -
 8 425 462 456 491 489 376 348 504 -
 9 355 376 366 383 379 332 318 390 408 -
 --

Finally, Clann summarises the input file according to the sizes

of the trees. This is shown in a histogram format.

Source tree size summary:

 num taxa
 4 |== (274)

 5 |============================== (210)

 6 |================= (119)

 7 |========== (75)

 8 |======== (59)

 9 |=== (27)

 10 |== (16)

Clann then returns to the prompt for the next command.

Clann manual

 - 34 -

Note:

It is necessary to run the “execute” command before any

other, as all the other commands require that there are trees

in memory.

Clann manual

 - 35 -

alltrees command:
Purpose:

This command starts an exhaustive search of tree-space for

the best supertree. It is advisable not to use an exhaustive

search of tree-space when there are more than 10 taxa in the

dataset, this is due to the prohibitively large number of trees

it would be necessary to assess. Users should always check

the number of trees in supertree space (from the input file

summary) before using this command.

Options:

The following options are generally available with this

command:

all

- Search all of tree-space (This is the default and it is

not usually necessary to specify it specifically)

range <treenumber>-<treenumber>

- Search treespace in the area between tree number x

and y. For example if there were 10 taxa in the

supertree then supertree space would contain

2,027,025 trees. This could take a prohibitively long

time on a single computer, but this option allows the

user to get different computers to search different

parts of tree space. i.e.

“range 1-1000000” or “range 1000001-2027025”

 savetrees <filename>

- By default, the supertree with the best score from an

alltrees search will be written to the file

“top_alltrees.txt”. This file is overwritten each time

an alltrees search is carried out. This option allows

the user to specify a file name to contain the result.

Clann manual

 - 36 -

create

- This option will write all the trees in supertree space

along with their scores to the file “alltrees.txt”. This

command should be used with caution, as with large

numbers of taxa, the resulting file can be very large.

weight

- This option specifies the weight used to normalise

the scoring system for large (or small) tree bias.

Depending on the optimality criteria used (see “set”

command) there are different weighting schemes.

- Using the dfit optimality criterion, the options are:

equal or comparisons

equal applies no normalisation

comparisons normalises so every tree has the same

vote (regardless of tree size).

- Using the qfit optimality criterion, the options are:

equal or taxa or quartets

equal applies no normalisation

taxa applies a normalisation that is calculated as n-3

quartets normalises so every tree has the same vote

(regardless of tree size).

- Using the sfit optimality criterion, the options are:

equal or splits

equal applies no normalisation

splits normalises so every tree has the same vote

(regardless of tree size).

Clann manual

 - 37 -

Usage:

 “alltrees create weight=equal savetrees=mytrees.txt”

Result:

Using whichever optimality criterion is applied, every tree in

supertree-space is assessed. The best tree is identified and

displayed to screen along with its score (the smaller the score

the better the tree).

Clann manual

 - 38 -

hs command:

Purpose:

This command performs a heuristic search of supertree space

for the best tree. This is much quicker than an exhaustive

search and should always be the method of choice for finding

the best supertree, unless the number of taxa in the dataset

is less than 10.

Options:

The following options are generally available with this

command.

sample <integer number>

 This option determines the number of randomly chosen

supertrees are evaluated before heuristic searches are carried

out. The top x number of trees are kept as starting points for

each of the x repetitions of the heuristic search. The default

value is 10,000.

swap <nni | spr>

- This option determines the type of heuristic search

that is to be carried out.

nni specifies that the nearest neighbor interchange

method is to be used

spr specifies that the sub tree pruning and regrafting

method is to be used.

 nsteps <integer number>

Clann manual

 - 39 -

- This option specifies the maximum number of steps

away from its original position that any branch may be

swapped or regrafted. The default value is 5.

 start <nj | random | filename>

- This option determines the starting point for the

heuristic search.

- By default, the heuristic search starts with a

neighbor-joining tree calculated from average

consensus distances (with missing distances

estimated using either ultrametric or 4-point

condition distances). If more than one repetition of

the heuristic search is to be carried out, the first

repetition uses the nj tree as a starting point and

every subsequent repetition uses the nj tree after a

randomly chosen number of SPR operations having

been carried out on it.

- If the user decides to use a randomly chsen tree as a

starting point for the heuristic search, a certain

number of random trees are evaluated (specified by

the option ‘sample’) and the top few are retained

(the number of which is specified by the option

‘nreps’). These top trees are then used as starting

points for each of the repetitions of the heuristic

search.

- Finally, it is possible to specify a filename that

contains trees which are to be used as starting points

If any other word other than ‘nj’ or ‘random’ is

placed after the option “start”, it is assumed that this

is the name of a file containing starting trees. This

overrides the options “sample” and “nreps” .

i.e. “start=random” or “start=mytrees.txt”

Clann manual

 - 40 -

 nreps <integer number>

- This option specifies the number of repetitions of the

heuristic search that are to be carried out. The best

tree found is picked from all the repetitions carried

out.

 i.e. “nreps=10”

 maxswaps <integer number>

- This option specifies the maximum number of

swaps/rearrangements to be tried during the search.

This is set to 1,000,000 by default, but some

searches may take too long so it may be desirable to

set a lower limit. The number of random samples

carried out before the heuristic searches are

not counted for the maxswaps limitation.

i.e. “maxswaps=10000”

savetrees <filename>

- By default, the supertree with the best score from an

alltrees search will be written to the file

“Heuristic_result.txt”. This file is overwritten each

time an alltrees search is carried out. This option

allows the user to specify a file name to contain the

result.

weight

- This option specifies the weight used to normalise

the scoring system for large (or small) tree bias.

Depending on the optimality criteria used (see “set”

command) there are different weighting schemes.

Clann manual

 - 41 -

- Using the dfit optimality criterion, the options are:

equal or comparisons

equal applies no normalisation

comparisons normalises so every tree has the same

vote (regardless of tree size).

- Using the qfit optimality criterion, the options are:

equal or taxa or quartets

equal applies no normalisation

taxa applies a normalisation that is calculated as n-3

quartets normalises so every tree has the same vote

(regardless of tree size).

- Using the sfit optimality criterion, the options are:

equal or splits

equal applies no normalisation

splits normalises so every tree has the same vote

(regardless of tree size).

drawhistogram yes | no

- By default, this option is set to ‘no’. but if set to yes,

it will display in a histogram format the scores of the

source trees compared to the best supertree found.

Those source trees with a score of zero are

completely compatible with the best supertree found.

nbins <integer number>

- By default, this value is set to 20. This is only used if

the ‘drawhistogram’ option has been set to ‘yes’. This

sets the number of bins to be used when drawing the

histogram.

Clann manual

 - 42 -

histogramfile <file name>

- By default, this option is set to

‘Heuristic_histogram.txt’. This is only used if the

‘drawhistogram’ option has been set to ‘yes’. This

specifies the file to which the values from the

histogram are to be saved.

Options only available in MRP Criterion

The available options for Heuristic searches are different under the

MRP criterion:

 analysis <parsimony | nj>

These options allow the choice of carrying out a full

parsimony heuristic search or instead carry out a

neighbor-joining tree from the MRP matrix. The

Neighbor joining tree could be used as a starting point

for heuristic searches using other optimality criteria.

The default is Parsimony.

 swap <nni | spr | tbr>

This specifies the type of heuristic search to carry out in

PAUP* on the MRP matrix. The default is TBR (tree

bisection and reconnection).

 addseq <simple | closest | asis | random | furthest>

This specifies the PAUP* settings for adding sequences

during the parsimony heuristic search.

Options only available in the average consensus (avcon)

Criterion

missing 4point | ultrametric

This specifies the method to use to estimate the missing

data in the average consensus analysis. By default this

is set to 4point which is the 4-point condition estimate

(34).

Clann manual

 - 43 -

Usage: “hs swap=spr start=random nreps=10”

Result:

Using whichever optimality criterion is chosen, the best tree

found from the search(es) is displayed to screen and written

to file (as described above). The score of the tree is also

displayed. The lower the score the better the supertree.

Clann manual

 - 44 -

usertrees command:

Purpose:

This command is designed to allow the user to assess which

of a set of user-defined trees best represented the source

trees (is the best supertree). The trees that the user needs to

be checked must be contained in a file in phylip format.

Usage: usertrees <filename>

Options:
 outfile <filename>

- By default the output filename is

“Usertrees_result.txt”. However, the user may

specify another filename using this option.

weight

- This option specifies the weight used to normalise

the scoring system for large (or small) tree bias.

Depending on the optimality criteria used (see “set”

command) there are different weighting schemes.

- Using the dfit optimality criterion, the options are:

equal or comparisons

equal applies no normalisation

comparisons normalises so every tree has the same

vote (regardless of tree size).

- Using the qfit optimality criterion, the options are:

equal or taxa or quartets

equal applies no normalisation

taxa applies a normalisation that is calculated as n-3

quartets normalises so every tree has the same vote

(regardless of tree size).

Clann manual

 - 45 -

- Using the sfit optimality criterion, the options are:

equal or splits

equal applies no normalisation

splits normalises so every tree has the same vote

(regardless of tree size).

Usage:

 “usertrees intrees.txt weight=equal outfile=mytrees.txt”

Result:

Using whichever optimality criterion is applied, every tree in

the input file is assessed. The best tree is identified and

displayed to screen along with its score (the smaller the score

the better the tree).

Clann manual

 - 46 -

bootstrap (or boot) command:

Purpose:

This command performs a bootstrap analysis of the data. The

bootstrapping is performed by resampling the trees (with

replacement) from the input file and then performing a heuristic (or

exhaustive) search of treespace to find the supertree it best

represents. This is repeated an number of times (usually 100

times).

Options:

 nreps <integer number>

- This option specifies the number of bootstrap

replicates that are to be carried out. By default, this

is set to 100.

 i.e. “nreps=100”

hsreps <integer number>

This option defines how many repetitions of the

heuristic search are to be carried out on each bootstrap

replicate. The default is 10.

 sample <integer number>

This option determines the number of randomly chosen

supertrees are evaluated before heuristic searches are

carried out. The top x number of trees are kept as

starting points for each of the x repetitions of the

heuristic search. The default value is 10,000.

swap <nni | spr | all>

- This option determines the type of heuristic search

that is to be carried out.

- nni specifies that the nearest neighbor interchange

method is to be used

Clann manual

 - 47 -

- spr specifies that the sub tree pruning and regrafting

method is to be used.

- all specifies that an exhaustive search of supertree-

space is to be used rather than a heuristic search to

find the best tree for each replicate. Note: “all”

should not be used with more than 10 taxa due to

the large number of trees in treespace.

By default, this option is set to spr.

 start <nj | random | filename>

- This option determines the starting point for the

heuristic search.

- By default, the heuristic search starts with a

neighbor-joining tree calculated from average

consensus distances (with missing distances

estimated using either ultrametric or 4-point

condition distances). If more than one repetition of

the heuristic search is to be carried out, the first

repetition uses the nj tree as a starting point and

every subsequent repetition uses the nj tree after a

randomly chosen number of SPR operations having

been carried out on it.

- If the user decides to use a randomly chsen tree as a

starting point for the heuristic search, a certain

number of random trees are evaluated (specified by

the option ‘sample’) and the top few are retained

(the number of which is specified by the option

‘nreps’). These top trees are then used as starting

points for each of the repetitions of the heuristic

search.

- Finally, it is possible to specify a filename that

contains trees which are to be used as starting points

Clann manual

 - 48 -

If any other word other than ‘nj’ or ‘random’ is

placed after the option “start”, it is assumed that this

is the name of a file containing starting trees. This

overrides the options “sample” and “nreps” .

i.e. “start=random” or “start=mytrees.txt”

nsteps <integer number>

- This option specifies the maximum number of steps

away from its original position that any branch may

be swapped or regrafted. The default value is 5.

treefile <filename>

- By default, the supertree(s) with the best score from

each bootstrap replicate is written to the file

“bootstrap.txt”. This file is overwritten each time an

bootstrap search is carried out. This option allows the

user to specify different file name to the default.

maxswaps <integer number>

- This option specifies the maximum number of

swaps/rearrangements to be tried during the search.

This is set to 1,000,000 by default, but some

searches may take too long so it may be desirable to

set a lower limit. The number of random samples

carried out before the heuristic searches are

not counted for the maxswaps limitation.

i.e. “maxswaps=10000”

weight

- This option specifies the weight used to normalise

the scoring system for large (or small) tree bias.

Depending on the optimality criteria used (see “set”

command) there are different weighting schemes.

- Using the dfit optimality criterion, the options are:

Clann manual

 - 49 -

equal or comparisons

equal applies no normalisation

comparisons normalises so every tree has the same

vote (regardless of tree size).

- Using the qfit optimality criterion, the options are:

equal or taxa or quartets

equal applies no normalisation

taxa applies a normalisation that is calculated as n-3

quartets normalises so every tree has the same vote

(regardless of tree size).

- Using the sfit optimality criterion, the options are:

equal or splits

equal applies no normalisation

splits normalises so every tree has the same vote

(regardless of tree size).

consensus strict | majrule | minor | <proportion>

By default Clann will perform a majority-rule

consensus (with minor components) of the results of

the bootstrap analysis. The option allows the user

the type of consensus to be carried out.

’Strict’ specifies that the consensus should only

include relationships that appear 100% of the time in

the bootstrapped trees.

‘majrule’ specieis that the consensus should only

include relationships that appear great than 50% of

the time in the bootstrapped trees.

‘minor’ specifies that that the consensus should only

include relationships that appear great than 50% of

the time in the bootstrapped trees, but that the

Clann manual

 - 50 -

minor components that are compatible wth the

majority-rule tree should also be included

Finally, the user has the option of specifying a

proportion (greater than 0.5 and lessthan 1.0) that

should be the minimum proportion that any

relationship should appear in the bootstrapped trees

before being included in the consensus analysis.

Usage:

 “bootstrap nreps=100 weight=equal outfile=mytrees.txt”

 or

 “boot nreps=1000 weight=equal nsteps=10”

Result:

For each Bootstrap replicate, the best tree(s) found (using

whatever criterion is set) is written to file (boostrap.txt by

default). Where multiple trees are found as optimum for a

bootstrap replicate, the trees for this replicate are down-

weighted, by a value which is equal to 1/(number of optimum

trees). This down-weighting is shown in the result file as a

number in square brackets before the semi-colon (;). The

score received by the trees for each replicate is displayed in

square brackets after the semi-colon.

Clann manual

 - 51 -

yaptp command:

Purpose:
This command means “Yet another permuted-tail-

probability” test. This performs a randomisation test,

where the signal in the source trees is destroyed and

the data reanalysed to see how the score of the best

tree compares to that from the un-permuted data. This

test is generally carried out several times (usually 100

repetitions).

Options:
 method <equiprobable | markovian>

This option specifies the method of randomizing the

input trees. Ideally, an equiprobable approach is

preferable, where, when a input tree is randomised, any

other tree in tree-space with its leaf-set, is equally likely

to be chosen. This however is not always possible,

because this requires that we know the number of trees

in tree-space in advance. This is difficult to calculate

with large numbers of taxa. In this case a second

approach (markovian) must be taken where we don’t

need to know the number of trees in supertree-space in

order to create random trees. This has a disadvantage

however in that this approach is biased towards palmate

(balanced) versus pectinate (unbalanced) trees.

The default option is equiprobable, but it may be

necessary to use a markovian approach with large

numbers of taxa.

nreps <integer number>

- This option specifies the number of bootstrap

replicates that are to be carried out. By default, this

is set to 100.

Clann manual

 - 52 -

 i.e. “nreps=100”

hsreps <integer number>

This option defines how many repetitions of the

heuristic search are to be carried out on each YAPTP

replicate. The default is 10.

 sample <integer number>

This option determines the number of randomly chosen

supertrees are evaluated before heuristic searches are

carried out. The top x number of trees are kept as

starting points for each of the x repetitions of the

heuristic search. The default value is 10,000.

search <nni | spr | all>

- This option determines the type of heuristic search

that is to be carried out.

- nni specifies that the nearest neighbor interchange

method is to be used

- spr specifies that the sub tree pruning and regrafting

method is to be used.

- all specifies that an exhaustive search of supertree-

space is to be used rather than a heuristic search to

find the best tree for each replicate. Note: “all”

should not be used with more than 10 taxa due to

the large number of trees in treespace.

By default, this option is set to spr.

nsteps <integer number>

- This option specifies the maximum number of steps

away from its original position that any branch may

be swapped or regrafted. The default value is 5.

treefile <filename>

- By default, the supertree(s) with the best score from

each bootstrap replicate is written to the file

“yaptp.ph”. This file is overwritten each time an

Clann manual

 - 53 -

bootstrap search is carried out. This option allows the

user to specify different file name to the default.

maxswaps <integer number>

- This option specifies the maximum number of

swaps/rearrangements to be tried during the search.

This is set to 1,000,000 by default, but some

searches may take too long so it may be desirable to

set a lower limit. The number of random samples

carried out before the heuristic searches are

not counted for the maxswaps limitation.

i.e. “maxswaps=10000”

weight

- This option specifies the weight used to normalise

the scoring system for large (or small) tree bias.

Depending on the optimality criteria used (see “set”

command) there are different weighting schemes.

- Using the dfit optimality criterion, the options are:

equal or comparisons

equal applies no normalisation

comparisons normalises so every tree has the same

vote (regardless of tree size).

- Using the qfit optimality criterion, the options are:

equal or taxa or quartets

equal applies no normalisation

taxa applies a normalisation that is calculated as n-3

quartets normalises so every tree has the same vote

(regardless of tree size).

- Using the sfit optimality criterion, the options are:

equal or splits

Clann manual

 - 54 -

equal applies no normalisation

splits normalises so every tree has the same vote

(regardless of tree size).

Usage:

“yaptp nreps=100 swap=spr weight=equal treefile=myresults.txt”

Result:

For each yaptp replicate, the best tree(s) found and their

scores (using whatever criterion is set) is written to file

(yaptp.ph by default). The purpose of this test is to assess the

distribution of scores received when the data is randomised

and to compare that to the scores from the real data. The

scores received for each replicate is display in square brackets

after the tree in the result file.

Clann manual

 - 55 -

includetrees command:

Purpose:

This command allows the user to include source trees for

subsequent analysis (that have been previously excluded).

Using this command it is possible to include source trees from

different categories (like “with a certain number of taxa” or

“containing a certain taxon” etc…).

Options:

 range <integer value> - <integer value>

- This option re-includes all the trees within the

specified range for subsequent analyses.

size equalto <integer value>

 lessthan <integer value>

 greaterthan <integer value>

This option re-includes all previously excluded source

trees that contain the specified number of taxa.

The option ‘equalto’ specifies that the trees to be

included must have that specified number of taxa.

The option ‘lessthan’ specifies that the trees to be

included must have less than the specified number of

taxa.

The option ‘greaterthan’ specifies that the trees to

be included must have more than the specified

number of taxa.

namecontains <character string>

This option re-includes all previously excluded source

trees that contain the string specified in their name.

The string may be a subset of the name of the tree

or identical to the name.

 containstaxa <character string>

Clann manual

 - 56 -

This option re-includes only those previously

excluded source trees that contain the taxa specified.

A substring of the taxa name may be specified. Only

one character string can be used per usage of the

option ‘containstaxa’ but the option ‘containstaxa’

may be used more than once per command.

 score <min score> - <max score>

This option re-includes all source trees that have a

score within the range specified. This option requires

that there is a supertree in memory.

Usage:

 “includetrees range=10-12”

 or

 “includetrees size lessthan=5”

 or

 “includetrees containstaxa=Arabadopsis”

Result:

The result of this command, re-includes all the source trees

specified by the options used in the command. This command

does not include anything exclusively, it only adds these

certain sets of source trees to those to be subsequently

analysed. To include anything exclusively, it is necessary to

exclude all the source trees first and then re-include those

required for the analysis.

Clann manual

 - 57 -

excludetrees command:

Purpose:

This command allows the user to exclude source trees for

subsequent analysis. Using this command it is possible to

exclude source trees from different categories (like “with a

certain number of taxa” or “containing a certain taxon” etc…).

Options:

 range <integer value> - <integer value>

- This option excludes all the trees within the specified

range for subsequent analyses.

size equalto <integer value>

 lessthan <integer value>

 greaterthan <integer value>

This option excludes all source trees that contain the

specified number of taxa.

The option ‘equalto’ specifies that the trees to be

excluded must have that specified number of taxa.

The option ‘lessthan’ specifies that the trees to be

excluded must have less than the specified number

of taxa.

The option ‘greaterthan’ specifies that the trees to

be excluded must have more than the specified

number of taxa.

namecontains <character string>

This option excludes source trees that contain the

string specified in their name. The string may be a

subset of the name of the tree or identical to the

name.

 containstaxa <character string>

Clann manual

 - 58 -

This option excludes only those source trees that

contain the taxa specified. A substring of the taxa

name may be specified. Only one character string

can be used per usage of the option ‘containstaxa’

but the option ‘containstaxa’ may be used more than

once per command.

 score <min score> - <max score>

This option excludes all source trees that have a

score within the range specified. This option requires

that there is a supertree in memory.

Usage:

 “excludetrees range=10-12”

 or

 “excludetrees size lessthan=5”

 or

 “excludetrees containstaxa=Arabadopsis”

Result:

The result of this command, excludes all the source trees

specified by the options used in the command. This command

does not exclude anything exclusively, it only adds these

source trees to whatever has been excluded previously. To

exclude anything exclusively, it is necessary to include all the

source trees first and then exclude those required for the

analysis.

Clann manual

 - 59 -

showtrees command:

Purpose:

This command allows the user to display source trees to the

screen or count the number of sourcetrees, which have

certain properties. (like “with a certain number of taxa” or

“containing a certain taxon” etc…).

Options:

 range <integer value> - <integer value>

- This option shows all the trees within the specified

range.

size equalto <integer value>

 lessthan <integer value>

 greaterthan <integer value>

This option shows all source trees that contain the

specified number of taxa.

The option ‘equalto’ specifies that the trees to be

shown must have that specified number of taxa.

The option ‘lessthan’ specifies that the trees to be

shown must have less than the specified number of

taxa.

The option ‘greaterthan’ specifies that the trees to

be shown must have more than the specified number

of taxa.

namecontains <character string>

This option shows source trees that contain the

string specified in their name. The string may be a

subset of the name of the tree or identical to the

name.

 containstaxa <character string>

Clann manual

 - 60 -

This option shows only those source trees that

contain the taxa specified. A substring of the taxa

name may be specified. Only one character string

can be used per usage of the option ‘containstaxa’

but the option ‘containstaxa’ may be used more than

once per command.

 score <min score> - <max score>

This option shows all source trees that have a score

within the range specified. This option requires that

there is a supertree in memory.

savetrees yes | no

This option specifies whether or not the trees displayed

to the screen are to bo saved to file. This allows the

user to create files containing subsets of the original

dataset according to the criteria specified.

filename <output filename>

If the user has specified that the trees shown are to be

saved to file, then this command allows the user to

specify the file to which they are saved. By default the

file is called ‘showtrees.txt’.

display yes | no

This option specifies whether or not the trees that meet

the conditions are to be displayed individually to the

screen. If this is set to ‘no’ then only a total of the

number of trees that meet the criteria specified is

displayed. By default, this is set to ‘yes’.

Usage:

 “showtrees range=10-12”

 or

 “showtrees size lessthan=5”

 or

 “showtrees containstaxa=Arabadopsis”

Clann manual

 - 61 -

Result:

The result of this command, shows all the source trees that

meet the criteria specified by the options. This command

works in conjunction with the includetrees and excludetrees

command so that trees that have been excluded from the

analysis are not displayed in the showtrees command.

Clann manual

 - 62 -

consensus command:

Purpose:

This command is used construct a consensus tree for all the

universally distributed source trees (all the source trees that

contain all the taxa).

Options:

method strict | majrule | minor | <proportion>

By default Clann will perform a majority-rule

consensus (with minor components) of the

universally distributed trees. This option allows the

user to specify the type of consensus to be carried

out.

’Strict’ specifies that the consensus should only

include relationships that appear 100% of the time in

the bootstrapped trees.

‘majrule’ specieis that the consensus should only

include relationships that appear great than 50% of

the time in the bootstrapped trees.

‘minor’ specifies that that the consensus should only

include relationships that appear great than 50% of

the time in the universally distributed trees, but that

the minor components that are compatible with the

majority-rule tree should also be included.

Finally, the user has the option of specifying a

proportion (greater than 0.5 and lessthan 1.0) that

should be the minimum proportion that any

relationship should appear in the universally

Clann manual

 - 63 -

distributed trees before being included in the

consensus analysis.

filename <output file name>

This option allows the user to choose the name of the

file to which the consensus tree is to be saved. By

default this is set to ‘consensus.ph’

Usage:

 “consensus method=majrule”

 or

 “consensus method=.7 filename=myconsensus.txt”

Result:

This command will calculate the consensus of the universally

distributed trees source trees. The output will look as follows:

Consensus settings:
 Consensus of 17 universally distributed source trees
 Only relationships with 50% support or greater (including
congruent minor components) are included in the consensus
 Consensus file = consensus.ph

Sets included in the consensus tree
 .********.****** 1.00
 *...*.... 1.00
 **.. 0.94
 ..**............ 0.94

Minor Components included in the consensus tree
 .********.****.* 0.41
 .***..*......... 0.35
 .***............ 0.29
 *........**...*. 0.12
 **..*.... 0.06
 *****.*********. 0.06
 ****..******..*. 0.06
 *.......**.. 0.06

Clann manual

 - 64 -

Sets not included in the consensus tree
 *.*....... 0.12
 .*....*......... 0.06
 ** 0.06
 .********..***** 0.06
 .****........... 0.06
 .*..*........... 0.06
 *...****.******* 0.06
 .***..*.*....... 0.06
 ..**..*......... 0.06
 ...*.******* 0.06

 +------------------- Taxon_A
 +---------| 1.00
 | +------------------- Taxon_B
 +---------| 0.12
 | |----------------------------- Taxon_C
 | |
 | +----------------------------- Taxon_D
 |
 | +------------------- Taxon_E
 | +---------| 0.29
 | | | +--------- Taxon_F
 +---------|---------| 0.35 +---------| 0.94
 | | | +--------- Taxon_G
 | | |
 | | +----------------------------- Taxon_H
 | |
 | | +------------------- Taxon_I
+---------| 0.06 | +---------| 1.00
| | +---------| 0.06 +------------------- Taxon_J
| | |
| | +----------------------------- Taxon_K
| |
| | +--------------------------------------- Taxon_L
| +---------| 0.06
| | +----------------------------- Taxon_M
| +---------| 0.94
| +----------------------------- Taxon_N
|
| +--- Taxon_O
+---------| 0.41
 +--- Taxon_P

clann>

In this output, the number of universally distributed trees in the

dataset are displayed and the different relationships along with the

number of times they were found are displayed to screen. In this

summary each line of dots ‘.’ Or stars ‘*’ represent a single split

Clann manual

 - 65 -

found in the dataset. The taxa are in the same order as they were

displayed in the input file summary. All the taxa with a dot under

them are found on one side of the split and all the taxa with a star

were found on the other side of the split. The numbers represent

the proportion of universally distributed input trees that contained

that particular split.

Based on the type of consensus specified by the user, the

relationships are grouped into three categories:

- Sets included in the consensus tree

- Minor Components included in the consensus tree

- Sets not included in the consensus tree

The minor components, if included, are those that are compatible

with the major components included in the consensus tree.

Finally Clann displays the tree in Graphical ascii format along with

the level of support found for each internal branch.

Clann manual

 - 66 -

deletetaxa command:

Purpose:

This command is used to delete particular taxa from the

dataset. The taxa is pruned from each source tree that

contains it. If any trees have less than 4 taxa after the taxon

is pruned they are removed from the dataset. This is a

permanent action, once a taxon has been deleted it cannot be

re-included without re-loading the original dataset.

Usage:

deletetaxa <taxa name> <taxa name> <taxa name> ….

User may specify as many taxa names as desired after the

command ‘deletetaxa’. Substrings of the taxon names may also be

used.

For instance:

‘deletetaxa taxon_A taxon_E’

or

‘deletetaxa Arabidop’

Clann manual

 - 67 -

generatetrees command:

Purpose:

This command is used create random supertrees and assess

them against the source tree dataset in memory. This allows

the user to assess the shape of supertree space.

Options:

 method equiprobable | markovian

- This option sets the method to be used to construct

the random supertrees. The most desirable method

is ‘equiprobable’ as this gives any tree in supertree

space an equal chance of being chosen. This however

is not always possible to use as it requires the

knowledge of how many supertrees there are in

supertree space. This becomes difficult to calculate

when the number of taxa becomes large. By default

the generatetrees command will use the

equiprobable method.

- The ‘markovian’ method of creating random

supertrees does not need to have any knowledge of

the size of supertree space. It uses a random-star

decomposition method of constructing the random

tree. This makes it equally likely for a palmate

relationship to be included in the tree as a pectinate

one. However, this does not reflect supertree space,

where there are far more pectinate relationships than

palmate ones. This means that the markovian

method will create proportionally more palmate

(balanced) trees than it should.

Clann manual

 - 68 -

ntrees all | <integer number>

This option sets the number of random supertrees to be

assessed. By default this is set to 100. The user may

specify ‘all’, this will make clann try all possible

supertrees, which may take some time if the number of

taxa is large.

nbins <integer number>

This option sets the number of bins into which the

scores of the random supertrees are to be organized for

the histogram summary of the results. By default this is

set to 20.

outfile <output file>

This option sets the name of the output file to which the

results of the analysis are to be written. By default this

is set to ‘histogram.txt’.

sourcedata real | randomised | ideal

This option sets the kind of data to which, the random

supertrees are to be compared.

‘real’ specifies that the random supertrees are to be

compared to the real source data. This is the default

setting.

‘randomised’ specifies that the supertrees are to be

compared to a randomised version of the source trees.

In this analysis, each of the source trees are

randomised so that any congruent signal between them

should be broken. This allows the comparison of the

distribution of supertrees to randomised data to that of

real data.

Clann manual

 - 69 -

‘ideal’ specifies that the supertrees are to be compared

to an ‘idealised’ version of the real dataset. This means

that each of the source trees are changed so that they

are completely compatible with a ‘best’ supertree

calculated elsewhere. This allows the user to compare

the distribution of ‘ideal’ data to the ‘real’ data.

savescores yes | no

This option sets whether or not all the score of the

random supertrees are to be saved to file. By default

this is set to ‘no’. If this is set to ‘yes’ all the scores of

the random supertrees are saved to the file

‘allscores.txt’.

supertree memory | <supertree file name>

This option is only valid when “sourcedata” is set to

“ideal”. This specifies the location of the supertree to

use when creating the ideal dataset. By default this is

set to “memory” and if there is no supertree in memory,

it will return an error.

savesourcetrees yes | no

This option specifies whether or not the source trees

used during the analysis are to be saved to file. This

allows the user to save an ‘idealised’ or ‘randomised’

version of their data to file. By default this is set to ‘no’.

If this option is set to ‘yes’ the trees are saved to the

file called ‘sourcetrees.ph’.

Clann manual

 - 70 -

Usage:

‘generatetrees ntrees=1000 sourcedata=ideal savesourcetrees=yes’

or

‘generatetrees’

Results:
The following is an example of the results from ‘generatetrees’

Results as follows:

395.06 - 397.02 | (2)
397.03 - 398.99 |=== (7)
399.00 - 400.96 |===== (11)
400.97 - 402.93 |============ (25)
402.94 - 404.90 |=============== (33)
404.91 - 406.87 |========================== (54)
406.88 - 408.84 |====================== (47)
408.85 - 410.81 |================================= (69)
410.82 - 412.78 |===================================== (77)
412.79 - 414.75 |=================================== (74)
414.76 - 416.72 |==================================== (76)
416.73 - 418.69 |== (83)
418.70 - 420.67 |=================================== (74)
420.68 - 422.64 |=================================== (73)
422.65 - 424.61 |=============================== (65)
424.62 - 426.58 |======================================= (82)
426.59 - 428.55 |==================== (43)
428.56 - 430.52 |================== (38)
430.53 - 432.49 |=========== (23)
432.50 - 434.46 |===================== (44)

Moments of the Distribution:

 Mean = 417.344067
 Variance = 74.647698
 Standard Deviation = 8.639890
 Skewness = 0.023036
 Standard deviation of skewness = 0.077460

The two columns on the left represent the range of score of the

supertrees, the histogram represents the number of trees having a

score that falls in that range. At the bottom are some simple

statistics about the distribution. These are only descriptive statistics

and hold no statistical significance.

Clann manual

 - 71 -

nj command:

Purpose:

This command is used calculate a neighbor-joining tree from

average consensus distances. Missing data are estimated

using either a 4-point condition or ultrametric distances.

Options:

 missing 4point | ultrametric

By default this is set to 4point. This is the more robust

of the two methods but needs more information than

the ultrametirc method.

 savetrees <file name>

This command saves the neighbor-joining tree to file.

By default the tree is saved to the file ‘NJtree.ph’.

Usage:

 ‘nj’

 or

 ‘nj missing=ultrametric savetrees=mytree.ph’

Clann manual

 - 72 -

rfdists command:

Purpose:

This command is used calculate robinson-foulds (sometimes

called symmetric) distances between the source trees. For

each comparison between two source trees, the two trees are

pruned down to their shared taxa and (if they share more

than 3 taxa) a robinson-fould distance is calculated.

Options:

 filename <output file name>

This option sets name of the file to which the calculated

distances are to be written. By default this is set to

‘robinson_foulds.txt’.

output matrix | vector

This option sets the output style. By default this is set

to matrix.

 missing none | 4point | ultrametric

This option allows the user to calculate estimates for

comparisons between trees which were incomparable

because there was not enough taxon overlap. By

default this is set to ‘none’ as calculating this may not

make any sense. The two methods here to calculate

missing values are ‘4point’ [4-point condition estimates]

or ultrametric [from the ultrametric distances].

Clann manual

 - 73 -

set command:

Purpose:

This command is used to set global user defined options. The

options set using this command are valid for all analyses.

Options:

 criterion < dfit | sfit | qfit | mrp >

- This option sets the optimality criterion to be used to

search supertree space. Presently there are 4

optimality criteria implemented:

- dfit is the optimality criterion called the most similar

supertree method (Creevey et al 2004). This is the

default for this option.

- sfit is the optimality criterion called the maximum

splits (or components) fit.

- qfit is the optimality criterion called the maximum

quartet fit.

- mrp is the optimality criterion known as matrix

representation using parsimony. Note clann uses

Paup* (35) to carry out the parsimony step of the

MRP analysis. It is necessary to have Paup* (35)

installed for this purpose.

Usage:

 “set criterion=sfit”

 or

 “set criterion=dfit”

Clann manual

 - 74 -

! command:

Purpose:

The purpose of this command is to return the user to a c-shell

on the operating system, while keeping clann running in the

background. This allows the user to check the contents of

result files or run other programs without effecting clann. To

return to Clann, type “exit” at the c-shell prompt.

Usage:

 “!”

 or

 “!”

quit command:

Purpose:

 To quit Clann and return to the operating system.

Usage:

 “quit”

Clann manual

 - 75 -

Tutorial:
This short tutorial will bring the user step by step through the

process of analysing a dataset using different optimality criteria and

methods of investigating the data. For the purposes of this tutorial,

a file called “tutorial_trees.ph” has been included with the

distribution of the software. Please note that these are only

suggestions as to the commands to use when analysing data, there

is no excuse for just following a “recipe” and not thinking about

your data.

1) There are two ways of reading in a file of source trees into Clann.

The first is to use the “exe” command at the “clann>” prompt.

For example:

“clann>exe tutorial_trees.ph”

The second way is to place the name of the file as an

argument when you start Clann. For example:

“%> clann tutorial_trees.ph”

 This starts Clann and immediately executes the source trees.

The after the execution of the source trees file a summary of

the number of trees etc (as described in the section “exe

command”) is displayed to the screen.

Clann manual

 - 76 -

Source tree summmary:

 --
 Number of input trees: 22
 Number of unique taxa: 6
 Total unrooted trees in Supertree space?
 105

 Occurrence summary:

 number Taxa name Occurrence

 0 Human 22
 1 Mouse 19
 2 Apple 19
 3 Horse 21
 4 Lemon 19
 5 Donkey 18

 Co-occurrence summary:

 Taxa Number

 0 1 2 3 4 5
 0 -
 1 19 -
 2 19 16 -
 3 21 19 18 -
 4 19 16 17 18 -
 5 18 15 17 17 17 -

 Source tree size summary:

 num taxa
 4 |================= (6)
 5 |===== (2)
 6 |== (14)

2) Next it is necessary to decide which optimality criteria is to be

used to find the best supertree. By default Clann will use the dfit

(most similar supertree method) criterion, and we will use this.

3) To carry out a quick analysis type ‘nj’ to get a quick neighbor-

joining tree. The result will look something like this:

Clann manual

 - 77 -

 +----------- Human

 +-----------|

 +-----------| +----------- Mouse

 | |

 +-----------| +----------------------- Donkey

 | |

+-----------| +----------------------------------- Horse

| |

| +--- Apple

|

+--- Lemon

This is a quick tree and the results can be misleading. Immediately

we can see that the Donkey and Horse are not grouping together.

4) Next perform a heuristic search of supertree space to get a

better idea of the ‘true’ tree,

type:

“hs”

 The result of the analysis looks like this:

+--- Human
|
+--------------------------------------- Mouse
+--------------------------------------- Donkey
+------------------- Apple
+-------------------
+-------------------| +------------------- Lemon
 |
 +--------------------------------------- Horse

Supertree 1 of 1 score = 9.200000

This is the best tree that Clann found with the DFIT criterion.

Immediately we can see that there is something wrong, as the

Clann manual

 - 78 -

Donkey seems to be grouping with the Mouse to the exclusion of

the Humans.

Ideally we would have liked the donkey and the Horse to group

together, but there is something in our data telling us differently.

5) From the source tree size summary we can see that there are 14

trees that are universally distributed (have all 6 taxa). So we can

carry out a consensus of those trees: Type ‘consensus’ and the

following is the result:

Consensus of 14 universally distributed source trees
 Only relationships with 50% support or greater (including
congruent minor components) are included in the consensus
 Consensus file = consensus.ph

Sets included in the consensus tree
 ..*.*. 0.71
 **...* 0.57
 **.... 0.50

Minor Components included in the consensus tree

Sets not included in the consensus tree
 ..*.** 0.36
 .*...* 0.29
 0.21
 ** 0.21
 ...*.* 0.07
 ..*..* 0.07

 +------------------- Human
 +-------------------| 0.50
+-------------------| 0.57 +------------------- Mouse
| |
| +--------------------------------------- Donkey
|
| +--------------------------------------- Apple
|-------------------| 0.71
| +--------------------------------------- Lemon
|
+--- Horse

Clann manual

 - 79 -

The consensus of the universally distributed trees seems to

agree with the neighbor-joining tree. Next lets try to assess the

level of support across all the source trees by bootstrapping:

6) To perform a Bootstrap analysis, simply type the following:

“boot”
If further options are required (like the type of search to be

used and the number of bootstrap repetitions) type something

like the following:

 “boot nreps=10”

The results will look something like this:

Sets included in the consensus tree
 **.*.* 0.80
 **...* 0.70
 **.... 0.60

Minor Components included in the consensus tree

Sets not included in the consensus tree
 .*...* 0.40
 **.*.. 0.30
 ****.. 0.20

 +------------------- Human
 +-------------------| 0.60
+-------------------| 0.70 +------------------- Mouse
| |
| +--------------------------------------- Donkey
|
| +--------------------------------------- Apple
|-------------------| 0.80
| +--------------------------------------- Lemon
|
+--- Horse

We find that there is reasonable support for the different

relationships in the tree, but to our eye we think that the position of

Donkey and Horse is wrong. Also the Bootstrap support doesn’t

seem very high. The next test we could try is to test for signal

Clann manual

 - 80 -

within our data. Although with bootstrap support as high as we

found it is unlikely that the data will fail this test. To run a yaptp

test, type ‘yaptp’. The results are as follows:

14.13 - 14.55 |============== (6)
14.56 - 14.98 |========= (4)
14.99 - 15.40 |======= (3)
15.41 - 15.83 |================================ (14)
15.84 - 16.26 |=================================== (15)
16.27 - 16.68 |===================================== (16)
16.69 - 17.11 |== (17)
17.12 - 17.54 |========================= (11)
17.55 - 17.96 |========================= (11)
17.97 - 18.39 |========= (4)

Moments of the Distribution:

 Mean = 16.273928
 Variance = 3.957324
 Standard Deviation = 1.989302
 Skewness = -6.455708
 Standard deviation of skewness = 0.243733

These are the results of 100 repetitions of the YAPTP test. The

histogram represents the distribution of the scores of the best trees

found for each repetition. We find that the best score we found was

14.13 and from the earlier heuristic search we know that the score

of the best tree from the real data is 9.2. This data passes the

YAPTP test because the score of the best tree is better than any of

the repetitions from the YAPTP test.

7) Next we will try to examine the individual source trees to look for

anomalies. Type ‘showtrees’ and all the source trees will display

to the screen like this:

Clann manual

 - 81 -

Tree number 3
Tree name = fast 3
Weight = 1.000000
Score = 0.800000

 +------------------- Human
 +-------------------|
+-------------------| +------------------- Donkey
| |
| +--------------------------------------- Mouse
|
+--------------------------------------- Apple
+--------------------------------------- Lemon
+--- Horse

Tree number 4
Tree name = slow 1
Weight = 1.000000
Score = 0.800000

+--- Human
|
+--------------------------------------- Apple
+-------------------
+------------------- Lemon
+--- Horse

Each tree is drawn to screen along with its number, name, weight

and score. The name of the tree is defined by the user in the input

file [open the input file to see how that’s done]. It can be useful to

use the name to describe something about the data underlying the

tree. For instance in this case all the trees were either labeled “fast”

or “slow”, representing whether the gene in question was thought

to be fast or slowly evolving. We can use the names to just analyse

those genes that are evolving either fast or slowly. (the same

commands can be used to single out subsets of the dataset based

on many different criteria).

Clann manual

 - 82 -

First we will exclude the fastlly evolving genes and only analyse the

slowly evolving ones. Type ‘excludetrees namecontains=fast’.

Next Re-analyse the dataset using a Heuristic search and consensus

analysis. The result is still not very well supported.

Re-include the fast evolving trees and exclude the slowly evolving

trees by typing the commands:

‘includetrees namecontains=fast’

then

‘excludetrees namecontains=slow’

This doesn’t seem to solve the problem either. There must be

something else about the data that is causing the low support.

Re-include the slowly evolving genes and re-examine the data using

the showtrees command. Look at the positions of the taxa with

particular reference to the Horse and Donkey. Notice anything?

Clann manual

 - 83 -

For instance:

Tree number 3
Tree name = fast 3
Weight = 1.000000
Score = 0.000000

 +------------------- Human
 +-------------------|
+-------------------| +------------------- Donkey
| |
| +--------------------------------------- Mouse
|
+--------------------------------------- Apple
+--------------------------------------- Lemon
+--- Horse

Tree number 4
Tree name = slow 1
Weight = 1.000000
Score = 1.000000

+--- Human
|
+--------------------------------------- Apple
+-------------------
+------------------- Lemon
+--- Horse

Tree number 5
Tree name = slow 2
Weight = 1.000000
Score = 0.000000

 +--------------------------------------- Human
+-------------------|
| | +------------------- Mouse
| +-------------------|
| +------------------- Donkey
|
+--------------------------------------- Apple
+--------------------------------------- Lemon
+--- Horse

Clann manual

 - 84 -

Here in these three trees we can see a problem with the taxon

‘Donkey’, In these three trees alone it is grouping with three

different taxa, none of which are the Horse.

Upon examination of the rest of the trees you can see that the

trend continues throughout the rest of the data.

The low support that has been received by the data may be because

of the taxon ‘Donkey’ moving around in the dataset.

Lets try to delete the taxon ‘Donkey’ and check the results. To do

this type: ‘deletetaxa Donkey’. Clann will ask you if you are sure

you wish to continue as this is a permanent action. Type yes.

Now do a bootstrap analysis. The result will look like this:

 +----------------------------- Human
+-----------------------------| 1.00
| +----------------------------- Mouse
|
| +----------------------------- Apple
|-----------------------------| 1.00
| +----------------------------- Lemon
|
+--- Horse

We seem to have found the problem. Now try the other analyses we

did earlier to see if it has improved their results too.

We would always recommend that users investigate their data as

much as possible. Clann has been designed to make this as easy as

possible for phylogenetic data.

Clann manual

 - 85 -

References:

1. M. J. Sanderson, A. Purvis, C. Henze, Trends in Ecology &
Evolution 13, 105 (Mar, 1998).

2. V. Daubin, M. Gouy, G. Perriere, Genome Research 12, 155
(2001).

3. F. Tekaia, A. Lazcano, B. Dujon, Genome Research 9, 550
(Jun, 1999).

4. W. C. Lathe, B. Snel, P. Bork, Trends in Biochemical Sciences
25, 474 (Oct, 2000).

5. Y. I. Wolf, I. B. Rogozin, N. V. Grishin, R. L. Tatusov, E. V.
Koonin, BMC Evolutionary Biology 1 (2001).

6. B. Snel, P. Bork, M. A. Huynen, Nature Genetics 21, 108 (Jan,
1999).

7. S. T. Fitz-Gibbon, C. H. House, Nucleic Acids Research 27,
4218 (Nov 1, 1999).

8. C. H. House, S. T. Fitz-Gibbon, Journal of Molecular Evolution
54, 539 (Apr, 2002).

9. J. J. Wernegreen, Nature Reviews Genetics 3, 850 (2002).
10. A. L. Reysenbach, E. Shock, Science 296, 1077 (2002).
11. A. L. Hughes, Adaptive evolution of genes and genomes

(Oxford University Press, Oxford, 1999), pp. 288 p.: p., ill.,
24 cm.

12. J. O. Korbel, B. Snel, M. A. Huynen, P. Bork, Trends in
Genetics 18, 158 (2002).

13. J. G. Lawrence, Trends in Microbiology 5, 355 (1997).
14. N. V. Grishin, Y. I. Wolf, E. V. Koonin, Genome Research 10,

991 (Jul, 2000).
15. Y. I. Wolf, I. B. Rogozin, N. V. Grishin, E. V. Koonin, Trends in

Genetics 18, 472 (2002).
16. S. A. Teichmann, G. Mitchison, Journal of Molecular Evolution

49, 98 (Jul, 1999).
17. O. Matte-Tailliez, C. Brochier, P. Forterre, H. Philippe,

Molecular Biology and Evolution 19, 631 (2002).
18. C. Brochier, E. Bapteste, D. Moreira, H. Philippe, Trends in

Genetics 18, 1 (2003).
19. J. R. Brown, C. J. Douady, M. J. Italia, W. E. Marshall, M. J.

Stanhope, Nature Genetics 28, 281 (Jul, 2001).
20. S. Hansmann, W. Martin, International Journal of Systematic

and Evolutionary Microbiology 50, 1655 (2000).
21. B. R. Baum, Taxon 41, 3 (Feb, 1992).
22. M. A. Ragan, Biosystems 28, 47 (1992).
23. T. Sicheritz-Ponten, S. G. E. Andersson, Nucleic Acids

Research 29, 545 (Jan 15, 2001).
24. F.-J. Lapointe, G. Cucumel, Syst Biol 46, 306 (1997).
25. O. Zhaxybayeva, J. P. Gogarten, BMC Evolutionary Biology 3

(2002).

Clann manual

 - 86 -

26. W. F. Loomis, D. W. Smith, Proceedings of the National
Academy of Sciences of the United States of America 87,
9093 (Dec, 1990).

27. M. Steel, Journal of Classification 9, 91 (1992).
28. O. R. P. Bininda-Emonds, J. L. Gittleman, A. Purvis, Biological

Reviews of the Cambridge Philosophical Society 74, 143
(May, 1999).

29. O. R. P. Bininda-Emonds, M. J. Sanderson, Systematic Biology
50, 565 (2001).

30. N. Salamin, T. R. Hodkinson, V. Savolainen, Systematic
Biology 51, 136 (2002).

31. J. L. Thorley, M. Wilkinson, in Bioconsensus. DIMACS Series in
Discrete Mathemetics and Theoretical Computer Science F. S.
Roberts, Ed. (The American Mathematical Society, New York,
2003), vol. 61, pp. 185-194.

32. F.-J. Lapointe, G. Cucumel, Systematic Biology 46, 306
(1997).

33. C. Levasseur, F. J. Lapointe, Dimacs series in discrete
mathematics and theoretical computer science (2003).

34. F. J. Lapointe, C. Levasseur, in Phylogenetic Supertrees:
Combining information to reveal the Tree of Life O. R. P.
Bininda-Emonds, Ed. (Kluwer Academic, Dordrecht, 2004),
vol. 4.

35. D. L. Swofford, PAUP*. Phylogenetic Analysis Using Parsimony
(*and other methods). Version 4 (Sinauer Associates,
Sunderland, Massachusetts., 2002), pp.

	Clann3 Manual.pdf
	Clann3 Manual.2.pdf
	Clann3 Manual.3.pdf

