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Introduction

Both single-gene and whole-genome duplications

(WGD) are well documented in various organisms

(Brenner et al., 1995; Zhang, 2003; Vogel & Chothia,

2006), and it is estimated that single-gene duplications

happen at a rate similar to point mutations (Lynch &

Conery, 2000; Lynch et al., 2008). However, such high

occurrence rates alone cannot explain the maintenance

of duplicates over long time. For a duplicate to be

maintained, it faces two evolutionary hurdles. First, it

needs to increase in frequency in the population after its

birth in one or few individuals. Second, there needs to be

enough selective advantage for the duplicate so that both

copies of the duplicated gene are maintained in face of

deleterious mutations. One way to achieve such selective

advantage would be for the duplicate to diversify from its

origin. This is believed to occur through the accumula-

tion of mutations leading to neofunctionalization (Walsh,

1995) and subfunctionalization (Force et al., 1999; Lynch

& Conery, 2000). There is substantial evidence for both

processes (Evangelisti & Wagner, 2004; He & Zhang,

2005; Hughes & Liberles, 2007), with change in gene

expression providing a major mechanism for duplicate

retention (Huminiecki & Wolfe, 2004; Gu et al., 2005;

Duarte et al., 2006; Tirosh & Barkai, 2007). On the other

hand, initial fixation of a duplicate is less well under-

stood. Redundancy (Nowak et al., 1997; Wagner, 2000;

Salathé & Soyer, 2008) and increased dosage (Cook et al.,

1998; Papp et al., 2003) can lead to fixation through

positive selection as shown in certain cases (Moore &

Purugganan, 2003; Landry et al., 2007). However, as

indicated by these studies, such immediate selective

advantage for a duplicate is only expected in certain gene

classes. All other cases of duplicate fixation would occur

through genetic drift.

For a duplicate to fix through genetic drift, its fitness

effect has to be zero or below a critical threshold related

to population size (Gillespie, 2004). Besides energetic

costs (Wagner, 2005), the actual fitness effects of gene

duplication (or loss after a WGD) will closely link to the
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Abstract

Duplications are a major driving force behind evolution. Most duplicates are

believed to fix through genetic drift, but it is not clear whether this process

affects all duplications equally or whether there are certain gene families that

are expected to show neutral expansions under certain circumstances. Here,

we analyse the neutrality of duplications in different functional classes of

signalling proteins based on their effects on response dynamics. We find that

duplications involving intermediary proteins in a signalling network are

neutral more often than those involving receptors. Although the fraction of

neutral duplications in all functional classes increase with decreasing popu-

lation size and selective pressure on dynamics, this effect is most pronounced

for receptors, indicating a possible expansion of receptors in species with small

population size. In line with such an expectation, we found a statistically

significant increase in the number of receptors as a fraction of genome size in

eukaryotes compared with prokaryotes. Although not confirmative, these

results indicate that neutral processes can be a significant factor in shaping

signalling networks and affect proteins from different functional classes

differently.

doi:10.1111/j.1420-9101.2010.02101.x



function and structure of the protein product of the

duplicated gene and its role in the larger biological

system. For example, duplication of genes, whose prod-

ucts function as part of a complex, might have delete-

rious effects (Papp et al., 2003; Deutschbauer et al., 2005;

Sopko et al., 2006). For proteins involved in regulatory

networks, theory suggests that most duplications would

disrupt network dynamics and consequently the medi-

ated gene expression patterns (Wagner, 1994). Similarly,

for proteins involved in signalling networks, disruptions

in network dynamics would be the main fitness effect

associated with duplication. This is most readily imagined

in single-celled organisms. For example, proper chemo-

taxis response in Escherichia coli requires the effector

protein of the chemotaxis network to be in a certain

concentration range (Cluzel et al., 2000). Duplication of

the effector (or any other protein in the network) could

shift the network response out of this range and lead to

loss of proper chemotaxis (Kollmann et al., 2005).

Here, we investigate whether such dynamical effects of

a duplication (or loss after a WGD) and consequently its

fixation relate to its functional role in a signalling

network. In particular, we consider four broad functional

categories of signalling proteins as receptors, activators,

deactivators and effectors. The latter three categories

cover all intermediary proteins that relay the signal

received at the receptor to an output protein such as a

transcription factor or membrane channel, effectively

translating the signal into a physiological response. To

quantify the effects of duplicating a gene from these

functional categories, one needs to systematically analyse

the effect of duplication on response dynamics. However,

there are not enough well-characterized signalling net-

works with experimentally verified reaction rates to

achieve such a systematic analysis. To overcome this

limitation, we rely here on a generic model of signalling

networks that captures the response dynamics of such

networks. Using this model, we create random networks

and analyse the effects of duplication on response

dynamics. By coupling such effects on response dynamics

to organism fitness, we analyse how many duplications

in a given functional class result in fitness effects below a

critical fitness threshold (i.e. are neutral), as the level of

selective pressure on the dynamics of the signalling

network varies. To further support this theoretical anal-

ysis and overcome potential bias resulting from random

models (Artzy-Randrup et al., 2004), we also consider

networks that are evolved in silico under selection for

maintaining a given response dynamics. Analyses from

both random and evolved networks give similar results

and provide a general view of how neutral fixation of

duplicates can be affected based on their functional role

at network level. To see whether one of the main

expectations of the model has any empirical support, we

analyse the family size of signalling proteins in over

371 annotated genomes covering both eukaryotes and

prokaryotes.

Methods

In the following paragraphs, we give a detailed descrip-

tion of the different models and approaches we used for

the theoretical analysis and the empirical study.

Generic model of a signalling network

To capture the dynamics of signalling networks, we use a

generic model similar to those developed previously

(Heinrich et al., 2002; Soyer et al., 2006). In brief, we

describe a network as a set of n interacting proteins. Each

of these proteins is assumed to belong into one of four

functional classes: receptor, activator, deactivator and

effector. Proteins are assumed to have two states, an

active (P�i ) and an inactive state (Pi). Biologically, a

protein can shift between such two states through

phosphorylation, methylation or any other type of

chemical or structural interaction mediated by another

protein. To model such interaction, we assume that each

active protein (P�i ) can affect (depending on its functional

class) the activity state of the other proteins with which it

interacts (see Fig. 1); active activators and receptors

activate their interaction partners, and active deactivators

deactivate their interaction partners. Effectors are not

allowed to act on any of the other proteins that are part

of the network. As such, the activators and deactivators

in the model loosely correspond to kinases and phos-

phates, whereas effectors would correspond to proteins

that mediate a physiological function (e.g. transcription

factors or proteins binding a transporter protein to

facilitate its opening). To capture such physiological

effects, we include a final protein in the network, an

‘output’ protein Pout, which is either activated or inhib-

ited by the effector. We monitor the concentration of this

protein in the presence of a ligand (i.e. signal) to quantify

network dynamics. The ligand is assumed to act only on

the receptor, either activating or deactivating it. Note that

the receptors are modelled as activators, following a large

body of observation that most natural receptors are

kinases themselves or first interact with a kinase (mod-

elling receptors as deactivators produce results similar to

those shown in Figs 2 and 3, data not shown).

The interactions among the proteins result from a

randomly generated network topology and allow us to

write ordinary differential equations that describe the

concentration of each of the proteins in the network. We

assume bimolecular reactions resulting in equations of

the form:

d½P�i �
dt
¼ ½Pi� � kji � ½P�j � þ ai � ½L� þ ai

� �
� ½P�i � � kmi � ½P�m� þ di

� �

ð1Þ

Equation (1) gives the rate of change in the active

concentration of protein i (which is assumed to be

a receptor for illustrative purposes) that is activated
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(deactivated) by protein j (m) and the signal (i.e. ligand).

The interaction coefficients kji and kmi denote the kinetic

rates for the reactions mediated by the respective

proteins, [L] is the ligand concentration and ai is the

kinetic rate for ligand-based activation (or deactivation)

of protein i. Note that for proteins other than the

receptor, there will be no ligand effect. The coefficients

ai and di denote the rates for the unimolecular relaxation

processes involving protein i. We assume that proteins

relax to either their active or their inactive state, but not

to both (i.e. ai Æ di = 0). We assume the total concentra-

tion of each protein to be constant and set it to one for

computational ease (i.e. ½Pi� ¼ 1� ½P�i �).
In summary, the presented network model captures

the basic biochemistry of signalling networks and allows

us to derive time-response to a signal for a given model.

A model consists of the numbers of proteins coming from

different functional classes, the parameters controlling

kinetic and relaxation activity of each protein and a

network topology, defining the set of interactions

between these proteins. For each generated model, the

rate coefficient ai is drawn randomly from a uniform

distribution in the interval [)1.0, 1.0], the coefficients ai

and di are drawn randomly from a uniform distribution

in the interval [)0.1, 0.1] and the interaction coefficients

are drawn randomly from a uniform distribution in the

interval [0, 1]. The low rate for self-reactions reflects the

general observation that these reactions occur much

more slowly compared to reactions mediated by other

proteins (see for example (Porter & Armitage, 2002)).

Models similar to the one presented here have been

used to analyse the dynamics of signalling networks

(Binder & Heinrich, 2002; Heinrich et al., 2002;

Eungdamrong & Iyengar, 2004; Soyer et al., 2006) and

simulate their evolution (Azevedo et al., 2006; Soyer &

Bonhoeffer, 2006; François & Siggia, 2008; Troein et al.,

2009). More particularly, modelling biological systems

with the above-given bimolecular reaction as the basic

element is common, with several examples available in

the modelling literature of signalling (e.g. Binder &

Heinrich, 2002; Heinrich et al., 2002; Kholodenko, 2006;

Behar et al., 2007a,b) and genetic(e.g. Wagner, 2000;

Siegal & Bergman, 2002) networks. However, it must be

noted that this reaction scheme ignores complex forma-

tion and multi-site phosphorylation. Despite this, the

network model used here can display all of the dynamics

that has been observed in real signalling networks (Soyer

et al., 2006).

Network dynamics and fitness

Duplication of a single gene (or its loss when considering

whole-genome duplications), whose protein product is

involved in a signalling network, will alter the dynamics

of such a network and consequently the response of the

cell to a given signal. Such alteration of signalling

dynamics can have consequences at organism level,

altering fitness (and phenotype) (Kollmann et al., 2005;

Peisajovich et al., 2010). To link changes in dynamics to

organismal fitness, we first need to quantify the former.
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Fig. 1 Cartoon representation of a sample network (right) and its response to an incoming signal (left). The network model consists of proteins

from four functional classes. Receptors relay the signal to intermediary proteins that they activate. These intermediary proteins can be

activators (A) or deactivators (D) of other proteins. Effectors interact only with an output protein, whose active form is considered to mediate

a physiological response. Each signalling protein is assumed to have an intrinsic self-activation (or deactivation). See Methods for further

model details. Note that calculating network response involves monitoring the concentration of active form of each protein in the presence

of a signal. The signal is introduced well after the system reaches initial steady state (at time 2000) and is removed after 500 time steps.
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It has been argued (Heinrich et al., 2002), and more

recently shown experimentally(Sasagawa et al., 2005;

Peisajovich et al., 2010), that some of the most relevant

features of signalling dynamics relate to (i) the steady

state activity of the network prior to a signal, (ii) the

response amount and duration in the presence of a signal

and (iii) the steady state activity post-signal. Here, we

derive a measure for network dynamics based on these

features as described below. In previous work, we and

others have used similar measures to analyse the evolu-

tion of signalling networks under parasite interference

(Salathé & Soyer, 2008) and to understand the key

parameters underlying specific dynamics (Heinrich et al.,

2002).

To obtain response dynamics (D) for a given network,

we first set ½Pi� ¼ ½P�i � ¼ ½Ptot
i �=2 for all proteins in the

network and [L] = 0. We equilibrate the system by

integrating the set of differential equations resulting from

(eqn 1) for 2000 iterations. At the end of this period, we

check whether the system has reached steady state using

an eigenvalue analysis. If stability is reached, we record

the active output protein concentration as the presignal

steady state of the system, ½P�out�
SS
pre. We then introduce a

signal by setting [L] = 1 and integrate the system for 500

iterations, after which the signal disappears (i.e. [L] = 0).

We then continue the integration for another 2000

iterations and again check for system stability. If the

system is stable, we record the active output protein

concentration as the post-signal steady state of the

system, ½P�out�
SS
post. Finally, we measure the response of

the network by recording the change in the concentra-

tion of the active output protein during the time interval

starting with the introduction of the signal and until the

time point where the system first reaches post-signal

steady state (tSS
post), normalized by the maximum possible

response. The exact calculation of the dynamic response

of a network to an incoming signal, r, is given by

r ¼

PtSS
post

t¼2000

½P�out�
SS
pre � ½P�out�t

���
���

tSS
post � 2000

ð2Þ

With these measurements, we can write network

dynamics as

D ¼ r þ ½P�out�
SS
pre þ ½P�out�

SS
post ð3Þ

As mentioned above, any change in D upon the dupli-

cation of a signalling protein might alter the fitness of the

organism. To measure such fitness effects, s, we use

s ¼ 1� e�
dðD;D0 Þ

r ð4Þ

where D’ stands for the dynamics obtained after dupli-

cation (or loss of one gene copy after WG duplication).

Function d returns the sum of the absolute difference

between current and original steady state values and the

response. For duplications (or loss of a gene after whole-

genome duplication) that lead to the network becoming

unstable, we assume a fitness effect of one (i.e. we set

e�
dðD;D0 Þ

r ¼ 0 for such systems). The parameter r in eqn (4)

allows us to control the fitness effects of any shift in

network dynamics. Lower values of r would mean that

the shape of the network response is closely coupled to

fitness, and any shift in dynamics have a large fitness

cost. A biological example for this case would be the

signalling network controlling bacterial chemotaxis,

where effector concentration must remain in a tight

interval for proper chemotaxis(Cluzel et al., 2000;

Kollmann et al., 2005). Conversely, when r is large,

even very big shifts in the network dynamics would not

alter fitness. A biological example would be a switch-like

response in a transcription regulator, where only the

Fig. 2 Fitness effect (s) of gene duplications in each of the functional

classes, receptor (black), activator (red), deactivator (blue) and

effector (green). Data are shown as empirical cumulative distribu-

tions; each vertical line represents fraction of duplications that had

a fitness effect shown on the x-axis. Results shown in top and

bottom panels are obtained by assuming strong (sigma = 0.1) and

weak selection (sigma = 100) on network dynamics, respectively

(see eqn 4). The inset on each panel shows the distribution for the

evolutionarily more relevant fitness ranges. Note that duplications

that caused network instability are assigned the maximum fitness

effect (of one). Data are compiled from 1000 random networks

with connectivity, c = 0.5.

4 O. S. SOYER AND C. J. CREEVEY

ª 2 0 1 0 T H E A U T H O R S . J . E V O L . B I O L . d o i : 1 0 . 1 1 1 1 / j . 1 4 2 0 - 9 1 0 1 . 2 0 1 0 . 0 2 1 0 1 . x

J O U R N A L C O M P I L A T I O N ª 2 0 1 0 E U R O P E A N S O C I E T Y F O R E V O L U T I O N A R Y B I O L O G Y



presence of a response might matter and not its duration

or post-signal level. Note that even under large r,

unstable networks are assigned a fitness of zero, because

we assume that the dynamics of the network is still

relevant for the organism. For example, the network

should still be able to generate a response to an incoming

signal, even though the timing and duration of such

response might not matter. By performing the analysis

under different values of r, we explore how gene

duplications are tolerated in these two scenarios (see

Fig. 3).

Analysis of duplication effects

To analyse the effect of single duplications, we first

generate random network models. Although these net-

works cannot be expected to capture all the intricacies of

real networks, they are shown to be capable of displaying

most of the dynamics seen in real biological networks

(Soyer et al., 2006). As discussed below, we further check

for the possibility of our results being biased owing to the

use of random network structures by analysing networks

evolved in silico. To generate a random network, we first

pick a random number of activators, deactivators and

effectors, limiting the maximum number of proteins from

any functional class to six for computational reasons. We

then connect these with a receptor, an output protein

and among themselves in a random fashion, obeying the

limitations given above (as discussed in the main text,

using multiple receptors in the generated networks do

not alter the general conclusions made here). During this

step, we use a given probability, c, for generating each

connection, resulting in a corresponding average con-

nectivity in the resulting networks. Second, we set the

parameters governing the rate of kinetic (kij’s and ai if i is

a receptor) and relaxation (ai or di) processes for a given

protein by drawing random numbers from a uniform

distribution in the interval [0, 1] and [0, 0.1], respec-

tively. This modelling choice represents the general belief

that self-relaxation process of proteins occurs much

slower than their activation or deactivation mediated

by other proteins. If the so-resulting network model is

viable (i.e. has stable dynamics as explained earlier) and

produces a response to an incoming signal above a given

threshold (set to 0.1), we accept the network, otherwise

we restart the process.

We generate 1000 viable random networks for c = 0.3,

0.5, 0.7 and 1. For each network, we analyse the effect of

duplicating each one of its proteins one by one, except

the output protein. To model duplications, we simply add

a new protein to the system, which is an exact copy of

the one that is being duplicated. Note that this is

equivalent of doubling the concentration of the protein

involved. To model the loss of one copy of a gene after

whole-genome duplication, we halve the total concen-

tration of the involved protein. Such modelling of

duplications explicitly assumes haploidy. In diploidy (or

larger ploidy), we would expect to have more severe

effects of duplication (in any functional class) on

dynamics as this would correspond to a larger perturba-

tion in the parameters of the model. As such, the

observed increase in the number of neutral duplicates

with decreasing population size might be an overestimate

if this decrease in population size is associated with

increasing ploidy.

To quantify the fraction of duplicates that could be

considered neutral, we count the number of duplications

with fitness effect below 1 ⁄ 2Ne, where Ne gives the

effective population size. We use different values for

sigma and 2Ne, with the latter based on realistic estimates

(Lynch & Conery, 2003).

Evolved vs. random networks

Whereas the high numbers of sampled random networks

should give an unbiased view of duplicates’ effects on

network dynamics, it is possible that evolved networks

behave significantly differently from random networks.

Fig. 3 The fraction of gene duplications that are neutral in each of

the functional classes, receptor (R), activator (A), deactivator (D) and

effector (E). Different panels correspond to different assumptions

regarding the effective population size (Ne) and sigma values (as

shown in panel headings). Data are compiled from the same 1000

random networks shown in Fig. 2.
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To check for this possibility, we generated 500 random

networks and analysed duplicates’ effects as before. We

then simulated evolution of these networks and

re-analysed duplicates’ effects (as averaged over the

entire population) at the end of these simulations. The

Supporting Information Fig. S3 summarizes the results of

this analysis for networks with different connectivity.

Although these analyses are not conclusive, they suggest

that our findings from random networks are extendable

to evolved networks.

The evolutionary simulation of networks followed

earlier approaches (Azevedo et al., 2006; Soyer &

Bonhoeffer, 2006). In brief, for each of the 500 random

networks, we generated a homogenous population

consisting of 500 identical copies of that network (i.e.

the original network acted as a founder for the popula-

tion). We then simulated evolution of this population for

1000 generations. At the end of each generation, a new

population is produced from the current one using

random drawing with replacement. A random individual

is picked from the population and is cloned into the new

population with a probability proportional to its fitness.

Then, it is put back into the current population and a

new draw is made, and the process continued until the

new population contains 500 individuals. During repli-

cation of individual networks, mutations can occur with

a probability of 0.001 per network and result in a small

change (sampled from a normal distribution with mean

zero and standard deviation one) in the kinetic param-

eters of a randomly selected protein. During evolution,

network fitness, w, was defined by the distance of its

dynamics to that of the founder network as before (i.e.

w ¼ e�
dðD;D0 Þ

r ). In other words, networks were evolved

under stabilizing selection for response dynamics of the

founder network. The parameter r controls the strength

of selection and was set to one for these simulations.

Compilation and analysis of genomic data

Definitions of gene families from 371 genomes across all

three domains of life were retrieved from the EGGEGGNOG

database (version 1) (Jensen et al., 2008) (see Supporting

Information Data S1 for a complete list of genomes used).

The eggNOG database contains precalculated gene fam-

ilies for various taxonomic levels, for instance ‘metazoa’

or ‘vertebrates’. For the purpose of this analysis, the gene

families that spanned all three domains of life were used,

i.e. clusters of orthologous groups (COG) and nonsuper-

vised orthologous groups (NOG). These two are non-

overlapping data sets; the first are based on a seed set of

manually annotated gene families, and the second are

the rest of the genes classified automatically into different

orthologous groups. See Jensen et al. (Jensen et al., 2008)

for more details.

The annotation of the gene families in eggNOG was

searched with appropriate keywords (see Supporting

Information Table S1) to identify genes of the categories

‘receptors’, ‘effectors’ and ‘signallers’. The latter category is

taken to correspond to the activators and deactivators of

the model. The resulting gene families are then further

examined, and any families containing genes that are not

clearly involved in signalling are purged. This manual

curation involved picking sample genes from each

retrieved gene family and going through their functional

annotation given in the InterPro database (Mulder et al.,

2008). The final resulting database contained 699 gene

families for receptors, 293 gene families for signallers and

69 gene families for effectors (see Supporting Information

Data S2–S4 for a complete list of each). Any species that is

completely missing genes from one of the three functional

classes is removed from further analysis, resulting in the

final data set spanning 293 species (see Supporting

Information Data S1).

The same approach was taken to analysing a second data

set focussed on groups in the eukaryotes that have

differing effective population sizes. For this analysis, all

fungal (the fuNOGS) and vertebrate (the veNOGS) gene

families were retrieved from the EGGEGGNOG database (ver-

sion 2) (Jensen et al., 2008). These were compiled from 14

and 28 genomes, respectively. To minimize the effect of

poor annotation in some genomes, only genomes with

> 80% of their genes assigned to a gene family in each

phyla were retained. This resulted in the retention of 7

fungal and 27 vertebrate genomes (see Supporting

Information Data S5). Numbers of receptor, signaller and

effector genes were calculated using the same technique as

before, and all gene families that were assigned to more

than one category were discarded (see Supporting In-

formation Data S5 for species used and the genome and

gene class size for each).

We used these data sets to compile the number of

genes in a given functional class in each genome. This

number is then normalized by the number of genes in

the corresponding genome. We used the Wilcoxon rank-

sum test (with continuity correction) as implemented in

the statistical package ‘R’ (http://www.r-project.org/) to

assess the effect of smaller effective population sizes on

the expansion of receptor gene families. The distribution

of receptors from eukaryotes is compared to the values

from prokaryotes and on a more fine-grained level

between fungi and vertebrates. These comparisons rep-

resent extremes of the scale of effective population size

(Lynch & Conery, 2003) across domains and within

eukaryotes, respectively. The same analysis is repeated

on this data set using an alternative normalization

scheme and also on another data set, which contained

more specific data for prokaryotes (see Results and

discussion).

Results and discussion

To quantify dynamical effects of duplications in a

systematic fashion, we use a realistic model of signalling

networks (see Methods). In particular, we generate
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signalling networks consisting of a receptor, an ‘output’

protein, and a set of activators, deactivators and effectors,

each modelled as two-state proteins (i.e. active, inactive).

The receptor is coupled to an external signal, which can

enhance or inhibit its activity, and effectors act on the

output protein. The cascade of reactions mediated by

the activators and deactivators relay the signal from the

receptor to the effectors, which can either activate or

deactivate the output protein. This model allows us to

monitor the temporal changes in the concentration of the

active form of each protein in the network in the

presence of a signal. Hence, we can derive the response

dynamics for a given network model consisting of a

connectivity structure (i.e. network topology) and kinetic

parameters (see Fig. 1).

To analyse the effects of gene duplications on network

dynamics, we first generate random networks. For each

network, we first derive the ‘wild-type dynamics’ and

then duplicate each protein in the network one by one,

recording the disruption caused in network dynamics

(see Methods). The fitness effects of such disruption will

depend on the importance of maintaining a given

network dynamics. Here, we capture this dependency

using a particular function, whose shape is tunable by a

single parameter, sigma (see eqn 4). A high sigma value

would correspond to a situation where the network

dynamics is not relevant for fitness, i.e. the organism is

not under selection for the exact dynamics of the

network. Conversely, a small sigma would indicate that

network dynamics is closely coupled to fitness, and any

shift in dynamics would have a high fitness cost (e.g. the

chemotaxis system described in the Introduction). Fig-

ure 2 shows the cumulative distribution of duplicates’

fitness effects obtained from 1000 random networks and

calculated for two different sigma values. Independent of

the sigma value used, we find that a large fraction

(approximately 70%) of the duplications result in the

networks becoming unstable (i.e. network dynamics do

not reach steady state at the end of simulation time),

shown as a fitness effect of one.

From an evolutionary point, the important part of the

data presented in Fig. 2 is the lower end of the cumu-

lative distributions, where the duplication resulted in an

effect of nearly zero. Theory suggests that for a nonben-

eficial mutation to possibly fix in the population, it has to

have a fitness effect lower than a critical value in the

order of 1 ⁄ 2Ne, where Ne corresponds to effective

population size (Gillespie, 2004). Although it is difficult

to measure Ne, estimates suggest that it is generally > 108

for prokaryotes and in the range of 104–106 for inverte-

brates and vertebrates (Lynch & Conery, 2003). Given

these estimates, we analyse the fraction of duplicates that

resulted in fitness effects below 1 ⁄ 2Ne. Figure 3 summa-

rizes the results for different values of Ne and sigma.

Interestingly, we find that a higher fraction of duplica-

tions are neutral for intermediary proteins, in particular

activators, in comparison with receptors. For receptors,

neutral duplications are almost nonexistent. This result

makes intuitive sense; duplication of a receptor would

have a direct and strong effect on network dynamics as

all incoming signals have to pass through the receptors,

while effects of duplicating intermediary proteins could

be dampened by the overall network structure (and

dynamics). In other words, receptor duplications would

bear a higher fitness cost because of error propagation

through the network. In line with this view, we find

that using random networks, where each network

contains multiple receptors that can sense and relay

signals in different ways, results in an increase in the

fraction of neutral duplicates for receptors (see Sup-

porting Information Fig. S1). Biologically, such a ‘multi-

ple receptors’ model would correspond to cross-talk

among different networks (i.e. signals). Although cross-

talk seems to be exploited by the cell in certain cases

(McClean et al., 2007), most signals are believed to be

processed by isolated networks, and several mecha-

nisms for avoiding cross-talk are documented (Alves &

Savageau, 2003; Behar et al., 2007a,b; Csikász-Nagy

et al., 2010). As such, we concentrate here on the ‘one

receptor per network’ model.

We find that the fraction of neutral receptor duplica-

tions becomes detectable only when we assume a low

Ne (=104) combined with a high sigma (=100) (see

Fig. 3). This scenario corresponds to signalling networks

in organisms with small population size (e.g. verte-

brates) and for which the exactness of dynamics is not

important for organism fitness. Although these condi-

tions result in neutral fraction of duplicates to increase

for any functional class, we find this effect to be most

pronounced for receptors. This is because of the differ-

ences in the distribution of duplicates’ fitness effects for

the different functional classes (see inset, Fig. 2). To

check for the effect of network connectivity (the ratio

between existing and all possible interactions in a

network) on these results, we constructed random

networks with different average connectivity, c. As

expected, we find that increasing c results in a decrease

in neutral duplicates. The more reactions an average

protein participates in, the less likely it is for its duplicate

to have a small effect on the network dynamics. In the

extreme case of fully connected networks, there are no

neutral duplication events any more (see Supporting

Information Fig. S2). Interestingly, the fact that most

neutral duplicates result from the intermediary proteins

remains unaffected by network connectivity, although it

is most pronounced for low to medium connectivity.

This main result seems to strengthen when we consider

networks evolved under stabilizing selection (see Meth-

ods) rather than randomly generated networks. As

shown in Supporting Information Fig. S3, analysis of

such evolved networks gives qualitatively the same

results as the analysis of random networks, indicating

that the effects of duplication events are not biased by

the model structure.
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The single duplication events we considered so far are

only one way of generating duplicate gene copies.

Another major event is the duplication of entire genomes

(Aury et al., 2006; Semon & Wolfe, 2007), resulting in

double copies of each gene in the organism. This is an

intrinsically neutral event in terms of network dynamics

as doubling the concentration of each protein in a

signalling network would not alter its dynamics. However,

any subsequent loss-of-function mutations would possi-

bly result in disruption of the network dynamics. Here, we

model such events (i.e. gene copy loss after a WGD) by

halving the concentration of each of the genes in a given

network. As before, we generate 1000 random networks

and repeat the procedure for each gene in each network.

Surprisingly, we find results highly similar to single

duplication case. As shown in Supporting Information

Fig. S4, the fraction of neutral gene copy losses is highest

for activators, followed by deactivators and effectors.

Again, events involving receptors are rarely tolerated.

To summarize, this theoretical analysis shows that

response dynamics would constrain neutral fixation of

duplication (and gene copy loss after a WGD) events in

receptors more strongly than in intermediary proteins of

a signalling network. More importantly, we find that the

distribution of fitness effects of receptor duplications has

a significantly different shape (see Fig. 2) than that found

for other signalling proteins. As a result, we find neutral

fixation of duplications in receptors is possible only in

organisms with small population size and in signalling

networks where exactness of dynamical response is not

crucial. It is possible to extrapolate from this prediction

that an expansion of receptor numbers could occur only

in organisms with small effective population size or that

have undergone multiple rounds of WGD events. This is

difficult to test as the actual protein family sizes in

different organisms would be determined by several

factors including rate of duplication and nature of

selective forces acting on duplicates (and on the organ-

ism). Further, the theoretical analysis presented here is

only relevant for cases where early fixation of duplicates

is driven through genetic drift and does not account for

potential adaptive fixation events. Determining which
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Fig. 4 The distribution of the fraction of genes in the receptor, effector and signaller gene families, over all species analysed. Panels from

top to bottom show the fraction of genes in a given genome that is coding for functional families receptor, signaller and effector. On the x-axis,

we have all analysed species, with eukaryotes ordered to the right. The distribution of these values for the eukaryotes was compared to

the distribution for the prokaryotes. This analysis shows that eukaryotic genomes harbour a significantly higher fraction of receptors

compared to prokaryotes (Wilcoxon rank-sum test: W = 8317, P < 2.2e)16). The same observation is also significant in the case of

signallers (Wilcoxon rank-sum test: W = 8352, P < 2.2e)16) but not for the effectors that showed the opposite trend (Wilcoxon rank-sum

test: W = 3007, P = 0.009).
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mode of fixation applies to different proteins is very

difficult, if not impossible, further confounding any

empirical analysis. Despite these difficulties, we analysed

the family size of different protein families involved in

signalling to see whether there would be any indication

of expansion of number of receptors in organisms with

small population size.

We compiled a data set of all signalling protein families

from 371 species with fully sequenced genomes. The

final data set contained 65 592 proteins spanning 1061

gene families in 293 species (see Methods for data

compilation and analysis). We classified these proteins

based on their annotated function as receptors, effectors

and signallers, where the latter class corresponds to

deactivators and activators of the model. Using eukary-

otes and prokaryotes as two ends of the scale of predicted

effective population size (Lynch & Conery, 2003), we

find that species with smaller effective population sizes

(the eukaryotic genomes) harbour a significantly larger

fraction of receptors compared to species with larger

effective population sizes (the prokaryotic genomes) as

shown in Fig. 4. The same observation holds for signal-

lers but not for effectors (but see also Supporting

Information Figs S5 and S6).

There are several possible caveats with this empirical

analysis. It is possible for example that annotation of the

genomes is incomplete or biased. Even for the fully

annotated genomes, the annotations can be erroneous.

Further, both our classification of signalling proteins and

the use of keywords to retrieve genes belonging to such

functional classes may be incomplete and crude. We

have tried several approaches to reduce the possible

effects of such caveats. First, we have used an alterna-

tive normalization scheme with the above data set and

normalized the data by the total number of genes

involved in signalling in a given genome (rather than by

the total number of genes in that genome). As both the

number of genes in each family and the total number of

signalling genes result from the same analysis, such

normalization might give a more reliable comparison

among different genomes, reducing any effects from

biased or incomplete annotations. Using such normali-

zation, we still find eukaryotes to harbour significantly

more receptors than prokaryotes (Supporting Informa-

tion Fig. S5). Secondly, we have used an alternative

data set, which specialized on signalling proteins in

bacteria (Galperin, 2005). This manually curated data

set contained all signalling proteins in bacterial genomes

and presents possibly the best resource for such proteins

over all sequenced bacterial genomes. In particular, this

data set lists the following functional gene families in

each of the analysed genomes: histidine kinases,

methyl-accepting receptors, adenylate cyclases, response

regulators, Tyr-specific protein kinases, proteins with

phosphodiesterase activity and proteins involved in the

turnover of secondary messengers. Following the de-

scribed activities of these proteins (Galperin, 2005), we

classified the first three classes of genes as receptors, the

response regulators as effectors and the remaining genes

as signallers. To further refine this classification, we

used the information in the same data set in the

presence of transmembrane (TM) regions in these

proteins. In particular, we classified histidine kinases

with TM regions as receptors, and those without as

signallers. We then combined this bacterial data set with

the data we compiled on eukaryotic genomes and

analysed the resulting data set as before. This analysis

shows that eukaryotic genomes harbour significantly

more receptors compared to prokaryotes (Supporting

Information Fig. S6).

Finally, we carried out a more fine-grained analysis

between the unicellular eukaryotes (represented by

fungi) and multicellular eukaryotes (represented by

vertebrates) to see whether the same trend held within

domain as across (see Supporting Information Fig. S7).

These two groups represent two extremes of effective

population size in eukaryotes. The results mirrored those

of the across-domain analysis (i.e. eukaryotes vs. prok-

aryotes), showing there had been a significantly larger

expansion (Wilcoxon rank-sum test: W = 0, P = 6.238e)
05) of receptor genes in the vertebrates when compared to

the fungi, whereas there was no significant difference in

the proportion of signaller genes (Wilcoxon rank-sum

test: W = 91, P = 0.89) or effector genes (Wilcoxon rank-

sum test: W = 103.5, P = 0.71).

Conclusions

Here, we analysed the initial fate of a duplicate in the

context of a signalling network. In particular, we

quantified the effect on response dynamics when genes

from different functional classes in a signalling network

are duplicated (or lost after a WGD). We find that most

duplications in all functional classes cause strong dis-

ruptions in network dynamics. Considering fitness

effects of such disruptions in network dynamics, we

find that only a small fraction of gene duplications can

fix through genetic drift (i.e. neutrally). Among all

functional classes considered, receptors have the lowest

chance for neutral fixation (and neutral gene copy loss

after a WGD). As expected, the fraction of duplications

that can fix neutrally increases in all functional classes

with decreasing population size and selective pressures

on network dynamics. Interestingly, this effect is most

pronounced for receptors. Such a differential effect of

decreased population size on the neutral fixation

of duplicates might manifest itself as an expansion of

receptors in species with small population size (i.e.

vertebrates) or in those that have undergone multiple

WGDs.

In line with such a possibility, we find that eukaryotic

genomes harbour more receptors compared to prokary-

otes. Further, this possibility fits well with more specific

analyses of signalling proteins; it has been observed that
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G-protein-coupled receptors are selectively maintained

following WGDs (Semyonov et al., 2008), and protein

kinases, which would loosely correspond to activators in

the presented model, are overrepresented in mouse

(Forrest et al., 2003). It is important to note, however,

that these empirical analyses cannot be taken as proof of

the model findings. This is because the empirically

observed patterns (e.g. expansion of receptors in eukary-

otes) can have a variety of causes, including both

adaptive and neutral processes. Although disentangling

these causes requires a much more in-depth analysis, the

presented model indicates that neutral processes can

have a significant contribution.

This work concentrates on the initial fixation of a

duplicate through genetic drift at network level. As such,

its findings do not exclude possible cases of positive and

negative selection in the retention (i.e. fixation and

subsequent divergence) of duplicates in signalling net-

works, which can arise from redundancy under certain

conditions (Nowak et al., 1997; Wagner, 2000; Salathé &

Soyer, 2008) or from dosage effects (Cook et al., 1998;

Papp et al., 2003; Aury et al., 2006; Hakes et al., 2007).

The presented analysis provides a null hypothesis for the

expected number of signalling proteins in different

organisms based on neutral fixation alone. As such, it

is conceptually similar to previous analyses concentrat-

ing on the effects of neutral processes on genome (Lynch

& Conery, 2003) and network complexity (Soyer &

Bonhoeffer, 2006). In particular, the former analysis

indicates that larger genome size observed in eukaryotes

is a result of decrease in population size, leading to

higher instance of duplicate retention. This view is

extended to signalling networks in this work, resulting in

the finding that decreasing population size can affect

duplicates from different functional classes in these

networks differently.

As noted before (Lynch, 2007), models focusing on

neutral processes provide the right context to evaluate

findings from high-throughput and system-level studies.

Furthermore, the extension of the presented model and

the data analysis can be used to detect selective devia-

tions from neutral expectations as has been carried out at

sequence level (Mustonen & Lässig, 2007).
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Appendix S1 Legends to Figures S1 to S7.

Figure S1 The fraction of gene duplications that are

neutral in each of the functional classes, receptor (R),

activator (A), deactivator (D) and effector (E) when using

a model that allows for multiple receptors per network

(see main text).

Figure S2 The fraction of gene duplications that are

neutral in each of the functional classes, receptor (R),

activator (A), deactivator (D) and effector (E).

Figure S3 The fraction of gene duplications that are

neutral in each of the functional classes, before (dark

grey bars), i.e. for randomly generated networks, and

after in silico evolution (light grey bars).

Figure S4 The fraction of gene loss events that are

neutral in each of the functional classes, receptor (R),

activator (A), deactivator (D) and effector (E).

Figure S5 The distribution of the fraction of genes in the

receptor, effector and signaller gene families, over all

species analysed and using total number of genes

involved in signalling as a normalization factor.

Figure S6 The distribution of the fraction of genes in the

receptor, effector and signaller gene families, over all

species analysed (using a dedicated data set for bacterial

genomes as explained in the main text).

Figure S7 Proportion of receptor, signaller and effector

gene families in fungal and vertebrate genomes.

Table S1 Keywords used to identify gene families from

each of the three categories used.

Data S1 List of genomes used in the empirical analysis

presented in Figure 4.

Data S2 List of genes classified as ‘effector’ for the

empirical analysis.

Data S3 List of genes classified as ‘receptor’ for the

empirical analysis.

Data S4 List of genes classified as ‘signaller’ for the

empirical analysis.

Data S5 List of genomes used in the empirical analysis

presented in Figure S7.
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