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Consistent mutational paths predict eukaryotic
thermostability

Vera van Noort', Bettina Bradatsch?, Manimozhiyan Arumugam', Stefan Amlacher?, Gert Bange™, Chris Creevey?,
Sebastian Falk?, Daniel R Mende', Irmgard Sinning? Ed Hurt®" and Peer Bork'**

Abstract

Background: Proteomes of thermophilic prokaryotes have been instrumental in structural biology and successfully

exploited in biotechnology, however many proteins required for eukaryotic cell function are absent from bacteria or
archaea. With Chaetomium thermophilum, Thielavia terrestris and Thielavia heterothallica three genome sequences of
thermophilic eukaryotes have been published.

Results: Studying the genomes and proteomes of these thermophilic fungi, we found common strategies of
thermal adaptation across the different kingdoms of Life, including amino acid biases and a reduced genome size.
A phylogenetics-guided comparison of thermophilic proteomes with those of other, mesophilic Sordariomycetes
revealed consistent amino acid substitutions associated to thermophily that were also present in an independent
lineage of thermophilic fungi. The most consistent pattern is the substitution of lysine by arginine, which we could
find in almost all lineages but has not been extensively used in protein stability engineering. By exploiting
mutational paths towards the thermophiles, we could predict particular amino acid residues in individual proteins

molecular consequences of some of these mutations.

that contribute to thermostability and validated some of them experimentally. By determining the
three-dimensional structure of an exemplar protein from C. thermophilum (Arx1), we could also characterise the

Conclusions: The comparative analysis of these three genomes not only enhances our understanding of the
evolution of thermophily, but also provides new ways to engineer protein stability.

Keywords: Thermophily, Comparative genomics, Protein engineering, Eukaryotes, Fungi

Background

Proteins from thermophilic organisms are not only stable
at higher temperatures, but are also generally more stable
than their mesophilic counterparts. Therefore they are sci-
entifically valuable, e.g. for biochemical and structural stud-
ies, and have multiple applications in industry [1]. However,
many proteins exclusively occur in eukaryotes, and only a
few of the latter are thermophilic (defined as having an op-
timal growth temperature [OGT] above 50°C; [2]. Recently,
the first eukaryotic thermophilic genome, Chaetomium
thermophilum, gave first insights into the potential for
structural biology [3]. Now with two more genomes, Thie-
lavia terrestris and Thielavia heterothallica [4] being
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Biochemie-Zentrum der Universitst Heidelberg, Im Neuenheimer Feld 328,
Heidelberg D-69120, Germany
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published, comparative analysis of their thermophilic na-
ture can be performed.

Thielavia terrestris and Thielavia heterothallica (ana-
morph Myceliophtora thermophila) are filamentous fungi
of the class Sordariomycetes [4] which can be found in
‘unnatural’ habitats like compost. Their natural habitat
seems to be in soils such as in semi-arid grasslands in New
Mexico [5]. They are common in multiple microhabitats
in this region, where high summer temperatures in combi-
nation with episodes of substantial precipitation provide
favourable conditions [5]. Chaetomium thermophilum is a
widely distributed soil-inhabiting fungus and a thermophile
in accordance with its lifestyle in self-heating composting
plant material [6]. It can also be found in composting urban
solid waste [7,8] and wood-chip piles [9,10]. C. thermophilum
is a member of the large genus of Chaetomium, also within

© 2013 van Noort et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.
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Figure 1 (See legend on next page.)
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(See figure on previous page.)

Figure 1 Evolution of thermophily in Sordariomycetes. A) Maximum likelihood tree of Sordariomycetes based on 40 marker genes. Numbers
on branches indicate bootstrap values. The mesophilic fungus Chaetomium globosum clusters within the thermophiles with 100% bootstrap
support. B) Amino acid frequencies in single copy proteins and reconstructed ancestral proteins were normalized for average and standard
deviation. Coloured triangles are according to the colours of the branches in A: blue Cgl; dark green Tht; light green ancestor of Cgl and Tht;
yellow Tht; orange ancestor of Tte and Cgl; purple Cth; red ancestor of Cth and Cgl. Black stars indicate significant differences between the
thermophiles and the mesohpiles, purple stars between C. thermophilum and the mesophiles €C) Amino acid frequencies of single copy proteins
within the sub Class of Eurotiomycetidae, containing two sequenced thermophiles; Thermomyces lanuginosis and Talaromyces thermophilus. Black
stars indicate significant differences between the thermophiles and the mesohpiles.

the Sordariomycetes, that are found in soil, air, and plant
debris [11]. Close relatives of these thermophilic fungi
are the mesophilic mould fungus Chaetomium globosum
(OGT 24°C), a frequent indoor contaminant that produces
mycotoxins and acts as an allergen [11], and Neurospora
crassa, another mesophilic filamentous fungus of which
the genome has been published [12].

Due to their thermostable nature, proteins from thermo-
philic fungi have recently gained considerable attention in
industry and structural biology. Several crystal struc-
tures of proteins from these thermophilic fungi have
been determined such as those of two beta 1,4-galactanases
from T.heterothallica [13], a glycoside hydrolase from
T. terrestris [14], and Get3, Get4 and beta 1,4-xylanase
from C. thermophilum [15-17]. The paper-industry uti-
lizes members of the beta 1,4-xylanase family for bio-
bleaching of kraft-pulp [18,19]. The biotechnological
potential of C. thermophilum is also illustrated by the puri-
fication and characterization of its thermostable superoxide
dismutase (SOD) [20], an enzyme which is utilized in cos-
metic products to reduce free radical damage to the skin.
Furthermore, the genomes of C. thermophilum, T. terrestris
and T. heterothallica provide a source of thermostable cel-
lulolytic enzymes, such as the glycoside hydrolases that can
be used in the production of third-generation biofuels [14].

Here, we identify commonalities and differences of
thermophilic adaptation between eukaryotes and prokar-
yotes and exploit the close relationship of the thermophilic
to mesophilic fungi to gain detailed insight into the molecu-
lar evolution of thermophily. By comparing the genomes of
thermophilic fungi to each other and to mesophilic relatives
we can clarify the evolutionary trajectory that has been
obscured by inconsistent naming conventions [4] and de-
termine whether there are independent events of gain of
thermophily in these fungi. We further use the observed
adaptation biases to predict mutations that can increase the
thermostability of proteins and verify them experimentally.

Results and discussion

Taxonomic position of thermophilic fungi within
Chaetomiaceae

To determine the phylogenetic relationships between
thermophilic and mesophilic fungi of the Sordariomycetes,

we searched for the presence of 40 phylogenetic marker
genes [21] in published and unpublished genomes of
this clade using Hidden Markov Models (HMMs; see
Materials and Methods), and used bootstrapping and
Maximum Likelihood to calculate a phylogenetic tree
(Figure 1A). Despite the different naming, the three
thermophilic species closely group together, implying that
the most parsimonious scenario is a single invention of
thermophily. However, Chaetomium globosum, the closest
mesophilic neighbour of these three thermophilic species
is monophyletic within the thermophiles with 97% boot-
strap support and most likely lost thermophily. As this
was surprising, we also generated phylogenetic trees using
2,064 universal single copy orthologs established specifi-
cally for the Sordariomycetes using the eggNOG pipeline
[22]. We indeed could confirm the taxonomic positions
implying loss of thermophily (Additional file 1: Figure S1).
Thus, by studying this lineage we can gain insight both in
the gain and loss of thermophily.

Genome reduction in thermophiles

The genomes of C. thermophilum (Cth), T. terrestris (Tte)
and T. heterothallica (Tht) are significantly smaller than
their close mesophilic relatives such as Chaetomium
globosum (Cgl) and Neurospora crassa (Ncr). In agree-
ment with previous studies of prokaryotic thermophiles,
the genome size reduction is due mainly to fewer protein
coding genes (Cth 7,267; Tte 9,813; Tht 9,110 vs Cgl
11,124 and Ncr 10,620), but also to shorter introns and
shorter intergenic regions (Additional file 1: Figure S2)
and [4]. Since C. globosum is derived from the ancestor of
these three species, there are two possibilities. Either, this
ancestor had a small genome and C. globosum has gained
genes by duplications or horizontal transfers or the three
thermophiles have independently lost genes in a parallel
adaptation process. Although larger genomes in the out-
groups makes a loss and gain scenario more likely, we
investigated all orthologous groups from the complete ge-
nomes of 20 members of the Sordariomycetes (sorNOGs)
to clarify the gene content evolution of eukaryotic thermo-
philes. Firstly, we analysed the phylogenetic presence/
absence patterns of these sorNOGs. In total, 4,542 protein
coding genes are present in equal copy numbers in each of
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the four species Cth, Tte, Tht and Cgl. Present in one copy
but absent from either of the four are 330 (Cgl), 125 (Tte),
130 (Tht) and 440 (Cth) orthologs, meaning that lineage
specific loss alone does not account for the differences in
genome size. C. globosum specific duplications are respon-
sible for ca. 150 extra genes. It must be noted that some
lineage specific losses may also be accounted for by differ-
ence in genome quality, but the tendencies will remain.

On the other hand, there are 845 orthologous groups
covering 1,004 genes of C. globosum that are absent in
all three others. These numbers are 181 (190), 325 (353)
and 543 (579) orthologous groups (genes) for Cth, Tte
and Tht. The difference in genome size can thus partly
be assigned to these orthologous groups. A large num-
ber of these are related to transposable elements, in-
cluding 30 transposases, 74 reverse transcriptases, 30
DNA helicases. The lack of these elements in the
thermophilic fungi may indicate that transposition is
unfavourable at higher temperatures.

Oxygenases and enzymes hydrolyzing complex sugars
are in particular frequently lost in the thermophiles. This
does not always mean that metabolic capabilities are com-
pletely absent; often multigene families in N. crassa and
C. globosum have only one counterpart in C. thermophi-
lum, but also non-homologous isoforms are reduced to
one enzyme, implying a reduction in robustness. Proteins
that are completely missing in C. thermophilum but not in
the two Thielavias include WC1, WC2 and FRQ which
are involved in the regulation of the circadian clock
[23,24]. We hypothesize that due to the localization far in-
side the compost away from light (implied by the high
temperature optimum) the day-night rhythm does not
play a role for C. thermophilum.

There are no major gene family expansions in the ther-
mophiles compared to their relatives, only a few ortholo-
gous groups have been slightly expanded against the
reductionist trend. The majority of them are uncharacter-
ized, but some indicate life style adaptation such as a cello-
biose dehydrogenase of which C. thermophilum has three
copies and C. globosum and N. crassa only two, reflecting
an increased wood degradation capacity. T. terrestris has
five copies of a S-adenosyl-L-methionine (SAM) dependent
methyltransferase that is likely to employ arsenite as sub-
strate where its relatives have only one or two. The largest
lineage specific expansion in T. heterothallica is an ortholo-
gous group with three copies of a scytalone dehydratase
involved in fungal melanin biosynthesis. Melanin provides
resistance to UV radiation, drought and high temperatures
[25] and thus this expansion likely represents a thermo-
philic adaptation. The lack of major expansions suggests
that the metabolisms of the thermophilic fungi have not
undergone major niche adaptations requiring additional
functionality, and that the dominating adaptation was in-
deed the one to higher temperatures.
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Convergent evolution of thermophily across all domains
of life

It has been previously shown that the amino acid fre-
quencies vary with the OGT, specifically the summed
frequency of the amino acids IVYWREL shows the high-
est correlation with OGT in both bacteria and archaea
[26]. In these domains of life, the ancestor was likely a
thermophile and adaptation happened to colder environ-
ments [21].

We therefore investigated whether the molecular princi-
ples of thermostability in fungal proteins are similar. In
alignments of the 2,064 single copy orthologs universal in
Sordariomycetes (see Methods and Table 1 for species
list), we find that the total frequency of IVYWREL amino
acids as in thermophilic archaea and bacteria is signifi-
cantly higher in C. thermophilum compared to the other
Sordariomycetes but not in T. heterothallica and T. terres-
tris (P-value < E'°). This is explained mainly by the ex-
tremely high frequencies of isoleucines, tryptophans and
tyrosines in C. thermophilum (Figure 1B). Addition of
these large hydrophobic amino acids is likely to play a role
in filling the hydrophobic cores of proteins (e.g. [27] and
below). Only part of this signal, the increased levels of
arginine and tryptophane are present in all three thermo-
philes. Specific to the two Thielavias is an enrichment in
alanine. Furthermore, consistent differences between the
three thermophilic and the mesophilic fungi are lower fre-
quencies of aspartic acids and lysines in the thermophiles
(Figure 1B). The more extreme reduction of genome size
together with the IVYWREL bias in C. thermophilum
leads us to hypothesize that this fungus might survive at
higher temperatures than the two Thielavias for which
optimal growth temperatures have not been published yet.

Analyzing the amino acid frequencies from bacterial
(Additional file 1: Table S1) and archaeal (Additional file 1:
Table S2) clades with thermophilic members, we observe a
striking difference with eukaryotes; an overrepresentation
of cysteines in C. thermophilum proteins (Figure 1B); in
total 15% of cysteines in aligned positions are unique to
C. thermophilum. The major categorized roles of cysteines
are in catalytic residues, disulfide bridges and metal binding
(e.g. zinc fingers), whereby the latter two contribute to fold-
ing and stability. Cysteines have also been shown to con-
tribute to thermal stability in their free form, when they
form interactions inside the core of a protein [28]. This
unique adaptation of C. thermophilum may be another
indication that its proteins are better adapted to high tem-
peratures than the other two thermophilic Sordariomycetes.
Another difference between prokaryotes and eukaryotes
that we observe is that glycines are strongly depleted in
C. thermophilum whereas they are enriched in C. globosum
compared to the complete clade of Sordariomycetes. The
exchange of alanines with glycines has been shown to
destabilize alpha-helices, particularly in the center of the
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helix [29]. It seems as if C. globosum has indeed used this
strategy to make proteins less thermo-stable, and C. ther-
mophilum has evolved in the opposite direction, lowering
its glycine content.

We verified the generalizability of these trends by exam-
ining two more unpublished thermophilic fungal genomes,
Thermomyces lanuginosus and Talaromyces thermophilus
of the subclass Eurotiomycetidae, a different fungal clade
that also includes Aspergillus fumigatus and Emericella
nidulans. Compared to their mesophilic neighbours, these
species both have a significantly higher total frequency of
IVYWREL amino acids (P < 1le-7). They also show a dep-
letion of glycines and significant enrichment in arginines
and alanines (Figure 1C) consistent with the biases in the
thermophilic Sordariomycetes. This shows that some of the
trends are indeed universal between different clades of
fungi.

Mutational paths towards thermophily

In contrast to thermophilic prokaryotes, the genomes of
thermophilic fungi have very close, known mesophilic
relatives and thus, for the first time, we can trace and
quantify the mutational paths by which the differences in
amino acid composition arise (Methods). We therefore
have quantified the mutation biases between pairs of
amino acids in all branches of the Sordariomycetes tree
and determined how different they are in one branch
compared to the rest of the tree (Figure 2). This is similar
to but more specific than a previous analysis on biases
between pairs of prokaryotic thermophiles and mesophiles
[30]. In the prokaryote study the mesophile-thermophile
species pairs were much more dissimilar than our
mesophile-thermophile relatives and thus there would be
a large effect of multiple substitutions at each site result-
ing in 139 out of 190 amino acid pairs showing a bias.
Likely because of the difference in evolutionary distance
we observe a smaller number of significantly biased amino
acid pairs (65 out of 190) in the branches leading to
thermophilic fungi (Figure 3). We observed that mutation
bias between several small amino acids and prolines has led
to higher frequency of prolines already in the ancestor of
the thermophilic Sordariomycetes (Figure 3A). Analyzing
the amino acid frequencies from bacterial (Additional file 1:
Table S1) and archaeal (Additional file 1: Table S2) clades
with thermophilic members we also found that proline fre-
quency is increasing with higher OGT (Additional file 1:
Table S3) which is significant in bacteria but not in archaea;
Prolines make the protein structure more rigid and less
likely to unfold as has been shown before in case studies
[31-33]. This strengthens the hypothesis that the ancestor
of the thermophilic Sordariomycetes and C. globosum was
also thermophilic. Furthermore, there are significantly more
mutations from lysine to arginine than vice versa; the
replacement of lysine by argnine has been shown to lead to
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Table 1 Genomes used for amino acid bias analysis

Sordariomycetes Eurotiomycetidae

Acremonium alcalophilum Arthroderma otae

Chaetomium globosum Aspergillus aculeatus
Chaetomium thermophilum Aspergillus carbonarius
Colletotrichum higginsianum Aspergillus fumigatus
Cryphonectria parasitica Aspergillus niger
Fusarium oxysporum Aspergillus terreus
Gibberella moniliformis Blastomyces dermatitidis
Gibberella zeae Coccidioides immitis h538
Glomerella graminicola Coccidioides immitis rs
Hypocrea jecorina Emericella nidulans
Hypocrea virens Histoplasma capsulatum h143
Magnaporthe grisea Histoplasma capsulatum h88
Nectria haematococca Microsporum gypseum
Neurospora crassa Paracoccidioides brasiliensis
Neurospora discreta Talaromyces thermophilus
Neurospora tetrasperma Thermomyces lanuginosus
Thielavia heterothallica Trichophyton equinum
Thielavia terrestris Trichophyton rubrum
Trichoderma atroviride Trichophyton tonsurans
Verticillium dahliae Trichophyton verrucosum

Uncinocarpus reesii

less fluctuations in side groups [34]. This lysine to arginine
bias is present in four out of five branches leading to ther-
mophily in Sordariomycetes (Figure 3A) [30]. Other con-
sistent biases are between aspartic and glutamic acid as
well as between threonine and alanine, where we observe
the opposite trend in the branch where the thermophily is
lost, leading to C. globosum. The increased level of lysine to
arginine mutations as hallmark of eukaryotic thermophilic
adaptation was confirmed in two out of three branches
in Eurotiomycetidae leading to the two monophyletic
thermophilic species T. lanuginosus and T. thermophilus
(Figure 3B). Moreover the strong bias of serine to alanine
is also present in these species. Apart from these consis-
tent biases, there are also unique, individual biases in the
branches. As in prokaryotes it seems to be also the case in
eukaryotes that increased thermostability can be achieved
in many ways depending on the context.

Considering the consistent biases, we analysed par-
ticular residues in orthologous groups shared between
Sordariomycetes and Eurotiomycetidae. We found that
where the same biases exist, the overlap between posi-
tions where e.g. arginines have been introduced instead
of lysines is significant but small, i.e. 92 out of a total of
7,335 positions that are changed from lysine to arginine
in any of the thermophiles are shared between all five.
This leads us to believe there are some positions that
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are more likely to increase stability and may even be es-
sential; however mutations at many other positions can
contribute independently.

In contrast to prokaryotes where GC content has been
found to cause a bias in amino acid frequencies of lysines
and arginines [35,36], as previously reported in these fungi
the GC content does not differ significantly between
mesophiles and thermophiles [3]. There is an elevated GC
content at the third codon position as reported by [4],
however the frequencies of G at C and the third codon
position do not differ between lysine and arginine. There-
fore, in thermophilic fungi the lysine-arginine bias has
arisen independently of the GC content.

Scoring scheme for adaptive mutations
Based on our observations, we developed a scoring scheme
to give weight to individual mutations for their contribution

to thermophily (Figure 2). We used the mutation bias
between pairs of amino acids in the branches leading to the
thermophilic ancestor as well as to C. thermophilum to
arrive at these scores (see Methods). We predict that those
positions with a high score are responsible for the thermo-
philic adaptation of individual proteins. In this way, we can
distinguish which thermophile specific mutations are likely
to be adaptive and which are likely to be neutral. Since the
thermophilic nature of proteins has been lost in C. globosum,
we can also predict which mutations have been responsible
for this loss. In this way we predicted 38,385 thermophilic
adaptive mutations in 2,064 single copy proteins for which
we could trace the ancestral amino acid sequences.

Mutations important for thermophilic stability
To validate some of these predictions experimentally, we
applied them to a protein from C. thermophilum, which is
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Figure 3 Biases in pairwise mutation rates. Alignments were made of all single copy orthologous groups and subjected to parsimony
reconstruction using the marker gene tree as a guide tree. The frequencies of mutations between all pairs of amino acids were analysed.

The ratios between all pairs of amino acids were compared to the ratios in the reconstructed phylogeny between mesophiles. In principle,

it is expected that there are as many mutations from X to Y as from Y to X. Thus a bionomial test can be used to assess a bias. However,

there are also biases in the complete groups of Sordariomycetes and Eurotiomycetidae. Therefore the expected ratio is not set to 1:1, but to the
actual ratio in the mesophilic neighboring species. Amino acid pairs with significant bias are connected by coloured lines, with an arrowhead
proportional to the bias in the direction of the more frequent mutations. A histogram of bias pairs is showing how often among all nine
branches the bias pair is observed, colours are used to connect the amino acids in A) thermophilic Sordariomycetes and B) thermophilic

Chaetomium globosum

Talaromyces thermophilus

Thermomyces lanuginosis

homologous to yeast pre-ribosomal export factor Arxl
(Associated with Ribosomal eXport complex) [37]. C.
thermophilum Arx1 (ctArx1) is thermostable (soluble) up
to 53°C at a concentration of 8 mg/ml, whereas the Arx1
from the mesophilic C. globosum (cgArxl; Figure 4A, B)

precipitates already at 35°C (Figure 4C), corresponding to
the OGTs of both organisms. Circular dichroism (CD)
spectra showed that ctArx1 began to unfold in vitro at 55°C
and reached complete unfolding at ~70°C (Figure 5). To
test whether the predicted adaptive and neutral mutations
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Figure 4 Amino acids responsible for thermostability. A) Alignment of Arx1 protein of the three thermophilic Sordariomycetes, C. globosum
and N. crassa. Arrows represent positions of introduced mutations that we predict to be adaptive to thermophily (red) or neutral (blue).
Secondary structure elements are indicated above the alignment (cylinder: a-helix; arrow: -strand; line: loop regions; dotted line: not solved in
crystal structure). Violet squares represent mutations in the cgArxTmut11 and yellow squares represent all other differences between ctArx1 and
cgArx1. Amino acids are colored with the default color scheme of ClustalX [38]. B) Arx1 from C. thermophilum (ctArx1) is thermostable and its
thermostability can be influenced by mutating residues predicted to be adaptive for thermophily. Recombinant wildtype ctArx1 and mutant
ctArx1-nondestab and ctArx1-destab proteins were affinity-purified and incubated at the indicated temperatures for one hour. Then the proteins
were separated into supernatant (S) and pellet (P) fractions by centrifugation and subjected to SDS-PAGE and Coomassie stain in comparison to
the input (1). PS, protein standard. The five mutations present in ctArx1-nondestab and ctArx1-destab were predicted to be neutral or adaptive
mutations to thermophily. The fraction of protein present in the supernatant fraction was analyzed by quantifying the Coomassie stained protein
bands with Aida Image Analyzer v. 4.00. The input was set to 100%. C) Recombinant cgArxTmut11 protein contains mutations in 11 residues
predicted to have destabilized the protein of C. globosum. Thermostability analysis of recombinant cgArx1 and cgArgxTmut11 as described in (B).

have an effect on the thermostability of our model protein,  55°C (6-fold diluted; Figure 4B). However, the predicted
we generated two mutant ctArx1 proteins with either five  destabilizing (adaptive residues) ctArxl mutant remained
predicted adaptive or five predicted neutral positions in  soluble only up to 49°C (8 mg/ml) and 50°C (6-fold
ctArxl changed to the respective ancestral residues diluted; Figure 4B; Additional file 1: Figure S3). This con-
(Figure 4A, B). The predicted non-destabilizing (neutral  firms our prediction scheme to find mutations that in-
residues) ctArxl mutant behaved like wild-type ctArxl  crease thermostability. Furthermore, we identified eleven
and remained soluble up to 53°C (at 8 mg/ml) and up to  C. globosum specific mutations that we think are likely to



van Noort et al. BVIC Evolutionary Biology 2013, 13:7
http://www.biomedcentral.com/1471-2148/13/7

1.1

09 ctArx1

0.7

Z o5 .

0.3 %

0.1 .

-0.1 25 35 45 55 65 75 8 95
Temperature[°C]

Figure 5 CD spectrum of ctArx1. The protein core of ctArx]
unfolds around 62°C. Unfolding of ctArx1 at ~0.1 mg/ml
concentration is monitored by CD at 222.6 nm under a temperature
gradient. The normalized ellipticity is plotted against the
temperature.

have destabilized this protein (Figure 4A, C). Introducing
the ancestral amino acid for all these eleven mutations
indeed increased the temperature at which the protein
remained soluble. Thus we could turn back time and create
a thermostable from an unstable protein.

Structural context for adaptive mutations

To reveal mechanistic roles for adaptive residues, we deter-
mined the 3D structure of ctArx1 that shares the pita-bread
fold with methionine-aminopeptidases [39] and Ebpl [40]
(Figure 6). Expression, purification, crystallization and x-ray
structure determination of this protein was successful,
supporting the value of C. thermophilum as a model system
for structural studies. The two selected adaptive proline
mutations (P41, P104) indeed occur in loops of ctArx1
(Figure 6A) preventing unfolding as mentioned above
[31-33]. Another fundamental concept in thermo-
adaptation of proteins is an increased bulkiness of
hydrophobic amino acids within the protein core.
According to some models, unfolding is due to the
transfer of water into the protein hydrophobic core that
progressively breaks hydrophobic contacts and swells
the protein interior [27]. Direct sequence comparison
of ctArx1l with cgArx1l indeed shows that 80% (16/20)
of the hydrophobic amino acid exchanges lead to
increased bulkiness. Several of these adaptive bulky
hydrophobic residues in ctArx1 (F146, F362 and W357)
together with V128 form an extended hydrophobic
cluster, which together with adaptive C335 leads to a
tight packing of helices a3 and a9 to the central beta-
sheet (Figure 6A, E). Acquired electrostatic interactions
are found between the imino-group of W357 and D124
(P4) linking P4 to a3 more tightly (Figure 6C) and
between adaptive R350 in 13 and E154 stabilizing p13
with respect to helix a3. Mutation of F146, W357 and
R350 reduces the thermostability of ctArx1l by about
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2°C to 51°C (Figure 6B, C). In addition, mutation of the
two hydrophobic residues (F146, W357) on top of the
five adaptive mutations leads to a further decrease of
ctArx1 thermostability to 47°C (Figure 6B, D). Taken
together, these examples of adaptive mutations in the
context of the 3D structure of ctArx1 illustrate how in-
dividual residues and their interactions contribute to a
thermophilic adaptation.

Conclusions

Here, we show that the principles of thermophilic adap-
tations in fungi are similar to that in prokaryotes, with
the notable exception of cysteines that are enriched in
C. thermophilum and that might contribute to thermo-
phily in several ways. The close relation of mesophilic
species allows predicting particular mutations that are
directly responsible for thermo-adaptation, which we
could confirm experimentally by protein engineering. By
solving the 3D structure of a single thermophilic protein
(Arx1 of Cth), we could identify three different types of
adaptive mutations : (i) loop rigidity by increased proline
frequency, (ii) increased protein core hydrophobicity,
and (iii) increased electrostatic interactions stabilizing
neighboring secondary structure elements.

By now, several structures have been determined
already based on C. thermophilum, T. terrestris and T.
heterothallica proteins [13-17] and we and others have
determined the thermostable nature of several other
proteins [3,41]. This, together with our finding of thou-
sands of mutations towards thermophily in this lineage,
implies that the thermostability of proteins is a major con-
tributor to the increased OGT of these organisms, in par-
ticular in C. thermophilum. C. thermophilum is, as are T.
terrestris and T. heterothallica promising resources for
(thermo)stable proteins for industrial purposes as well as
for biochemical and structural studies that rely on stable
eukaryotic proteins and the assembly of complex molecu-
lar machines. With experimental tools such as genetic
transformation protocols and a number of independent
lineages containing thermophilic eukaryotes, a rapidly
increased understanding should lead to precise predic-
tions which particular mutation increases thermophily
via which mechanisms for a vast amount of important
eukaryotic proteins.

Methods

Fungal orthologous groups

Published genomes were downloaded from NCBI. Un-
published genomes were downloaded from ftp-sites of the
Joint Genome Institute, the BROAD institute and Genome
Canada. Non-supervised orthologous groups (NOGs)
were constructed for 20 Sordariomycetes and 21 Eurotio-
mycetidae (Table 1) through identification of reciprocal
best BLAST [42] matches and triangular linkage clustering
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as implemented in eggNOG v2 [22]. This resulted for
Sordariomycetes in 17,325 and for Eurotiomycetidae in
14,979 non-supervised orthologous groups (NOGs). Out
of 7,227 C. thermophilum proteins, we find orthologs in
other Sordariomycetes for 7,045 of them. We found 2,064
NOGs that contain exactly one copy from each Sordario-
mycetes proteome (universal single copy orthologs) and
1,436 that contain exactly one copy from each of the Euro-
tiomycetidae. HMMs of 40 marker genes [21] were used
to search all 20 Sordariomycetes proteomes. These were
aligned using MUSCLE [43], pruned with GBLOCKS [44]
and a tree was built using RAXML [45]. Trees were dis-
played using iTOL [46]. The same procedure was applied
for all 2,064 universal single copy orthologs.

Amino acid overrepresentation

Alignments of universal single copy orthologs were made
using MUSCLE [43] with standard settings. Amino acid
frequencies were counted in all aligned positions that do
not contain gaps. The frequencies in C. thermophilum were
compared against frequencies in mesophilic Sordariomy-
cetes and Z-tests were done to obtain significant differences
in all aligned positions. Similarly, T-tests were done to ob-
tain significant differences between the three thermophiles
and their ancestral nodes on the one hand and the me-
sophiles and their ancestral nodes on the other hand.
Significant differences are shown as stars in Figure 1B and
C. A similar analysis was done in a group of seven bacteria
(Additional file 1: Table S1) and in a group of seven archaea
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(Additional file 1: Table S2) with large variance in the opti-
mal growth temperatures. In this case there was not one
species that was thermophilic, therefore, rather than a Z-
test, correlations of the AA-frequencies with OGT were
calculated (Additional file 1: Table S3) and t-tests were
done between the AA-frequencies of (hyper)thermophilic
and mesophilic species to obtain significances (Additional
file 1: Table S3).

Mutational paths

Parsimonious reconstructions of ancestral states were
made using PROTPARS from the Phylip package [47]
with the fungi tree as user tree for all single copy NOG
alignments. From the output file, steps at each position
were parsed and counted only if they were unambiguous.
The frequencies of mutations between all pairs of amino
acids were analysed. The ratios between all pairs of
amino acids were compared to the ratios in the whole
reconstructed phylogeny. In principle, it is expected that
there are as many mutations from X to Y as from Y to
X. Thus a bionomial test can be used to assess a bias.
However, there are also biases in the complete groups of
Sordariomycetes and Eurotiomycetidae. Therefore the
expected ratio is not set to 1:1, but to the actual ratio in
the mesophilic neighboring species.

Scoring of amino acid substitutions

We developed a scoring scheme to give a weight to indi-
vidual mutations for their contribution to thermophily.
We used the mutation bias between pairs of amino acids
to arrive at these scores. We calculate the binomial prob-
ability of the number of mutations from amino acid X to
Y vs Y to X, given the average ratio between X to Y and Y
to X in the whole Sordariomycetes tree. The logarithm of
this probability is multiplied by -1 to come to a score S
for pair X and Y. If in a phylogenetic reconstruction, there
is a mutation from X to Y and there is a significant bias
from X to Y, this mutation will get the positive score S, if
there is a significant bias from Y to X, it will get the nega-
tive score S, otherwise the mutation is not scored.

Purification of recombinant protein

OREFs for cgARXI, ctARXI, ctarxI-destab and ctarxI-non-
destab were synthesized and sequenced by Eurofins MWG
Operon (Ebersberg, Germany) or GenScript (Piscataway,
NJ, USA) and subcloned into pET-24a(+) vector. Proteins
were expressed in E. coli BL21 (DE3) grown in LB-medium
at 37°C under vigorous shaking. Cell pellets were resus-
pended in buffer A (20 mM Hepes-NaOH pH 8.0, 350 mM
NaCl, 10 mM KCl, 10 mM MgCl,, 40 mM imidazol). Cells
were lysed by a Microfluidizer (M-110 L, Microfluidics)
and the lysate was cleared by ultracentrifugation at
91,000 x g for 20 minutes. Recombinant protein was
purified by Ni-ion affinity chromatography (Ni-NTA-
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HisTrap, GE-Healthcare) via an N-terminal hexa-histidine
tag and eluted with buffer A supplemented with 460 mM
imidazol. ctArx1 was further purified by size exclusion
chromatography (S200-26/60, GE-Healthcare) in a buffer
containing 20 mM Hepes-NaOH pH 8.0, 200 mM NadCl,
10 mM KClI and 10 mM MgCl,.

Crystallization and structure determination of ctArx1

Crystals of ctArx1 were grown at 18°C by the sitting drop
vapour diffusion method. Sitting drops were prepared by
mixing 0.5 pl of fresh ctArx1 (15 mg/ml) with 0.5 pl of res-
ervoir solution containing 0.2 M LiAcetate and 2.2 M
(NH4),SO,. Prior X-ray analysis crystals were flash-frozen
in liquid nitrogen after cryo-protection by transfer into a
cryosolution containing mother liquor and 25% v/v
glycerol. Data-collection was performed at ID23/1 at the
European Synchrotron Radiation Facility in Grenoble
(France). Data were processed in iMosflm and Scala [48].
The structure of ctArx1l was solved by molecular replace-
ment using ccp4 implemented PHASER [49] and the crystal
structure of Ebpl as the search model [40]. The structure
was manually built in Coot [50] and refined with Refmac5
[51]. Data and refinement statistics are given in Table 2.
Figures were generated with Pymol (www.pymol.org).

Thermostability tests
Thermostabilites of ctArx1 and c¢gArx1 were determined by
testing an in vitro aggregation. For this assay, recombinant

Table 2 Crystal data of Arx1 from C. thermophilum

Data collection

Space group P2,2:2

Unit cell parameters (A) 192.0, 1933, 70.9

©) 90, 90, 90

Resolution (&) 864 - 2.3 (242 - 23)

Rverge @ 0.127 (0.53)

Unique reflections 118103 (17031)

Completeness (%) 100 (100)

Multiplicity 59(59)

<l/ol> 13.7 (4.0)
Refinement

Number of used reflections 112170

Resolution limits (A) 570-23

R factor P (%) 202

Free R factor © (%) 242

Rmsd bond lengths (A) 0016

Rmsd bond angles (°) 1.535

a. Rmerge = ZnZj|lnj - <In>|/ZnZ;, where | is the intensity of the jth observation
of the unique reflection h.

b. R factor = Z||Fon| - |Fenll/Zh|Fonl, where Fon and Fep, are the observed and
calculated structure factor amplitudes for reflection h.

c. The free R factor is equivalent to the R factor, but is calculated using 5% of
reflections excluded from the maximum-likelihood refinement stages.
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ctArx1 and cgArx1 were purified from E. coli and incubated
at the indicated temperatures (see Figure 3B, D, Additional
file 1: Figure S7B) for one hour in buffer 2 (50 mM
Tris—HCl pH 7.5, 200 mM NaCl, 10 mM KCl, 10 mM
MgCl,, 5% (v/v) glycerol, 0.01% (v/v) MTG). Following cen-
trifugation at 20,000 rpm at 4°C for 30 minutes, an equiva-
lent sample of the supernatant and the pellet fraction was
separated by SDS-polyacrylamide gel electrophoresis
(PAGE; NuPAGE 4-12% Bis-Tris Gel, Invitrogen). Proteins
were visualized with Coomassie (Brilliant Blue G — colloidal
Concentrate, Sigma-Aldrich).

Circular dichroism

For measuring unfolding of czArx1 the circular dichroism
(CD) was recorded at different temperatures. Dichroism
spectra from ctArx1 were recorded at a protein concentra-
tion of ~0.1 mg/ml on a Jasco J-810 spectropolarimeter in
a 0.1 cm path length cuvette at 20°C. Proteins were
exchanged into 10 mM potassium phosphate, pH 7.5.
Four scans were measured from 250 to 200 nm in 1 nm
increments with a 1 s averaging time and a bandwidth of
1 nm. The scans were averaged, and the buffer spectrum
was subtracted. Mean residue ellipticity ®yryw was calcu-
lated according to Equation 1, where ® is the raw signal
in millidegrees, 1 is path length in cm, n is the number of
amino acids, and c is the concentration of the protein in
moles per liter.

®
® = 1
MRW 10x1xnxc ()

Thermal denaturation

Thermal unfolding transitions of ctArx1 were followed by
circular dichroism at 222.6 nm with 1 nm bandwidth in
2 mm cells and a heating rate of 1°C per minute using a
Jasco J-810 spectropolarimeter in 10 mM potassium phos-
phate, pH 7.5, at a protein concentration of ~0.1 mg/ml

Additional file

Additional file 1: Table S1. Bacterial genomes and Optimal Growth
Temperature. Table S2. Archaeal genomes and Optimal Growth
Temperature. Table S3. correlations with OGT in bacterial and archaeal
clades containing thermophiles. Figure S1. Phylogenetic tree of
Sordariomycetes. A maximum likelihood tree was calculated with RaXML
based on the concatenated alignments of 2,064 single copy orthologs in
Sordariomycetes. Numbers on the branches indicate bootstrap support.
Figure S2. Intergenic length distribution of N. crassa, C.globosum and C.
thermophilum. Intergenic regions of C. thermophilum (blue) are
significantly smaller than Neurospora crassa (red) and Chaetomium
globosum (green), due to genome compaction. Figure S3.
Thermostability of Wild-type and Mutant ctArx1. The critical temperature
for thermostability is higher at lower protein concentration.

The thermostability test (in vitro aggregation assay) with ctArx1 mutant
proteins was performed at a 6-fold lower concentration (~1.3 mg/ml)
than in Figure 4B. ctArx1-nondestabilizing and ctArx1-destabilizing with
five neutral or adaptive mutations, respectively (see Figure 4A, B), and
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ctArx1 wild-type recombinant proteins were affinity-purified and
incubated at the indicated temperatures for 1 hour, separated into
supernatant (S) and pellet (P) fractions by centrifugation and subjected to
SDS-PAGE and Coomassie stain in comparison to the input (I). PS: protein
standard.
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