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Abstract

Biological data, and particularly annotation data, are increasingly being represented in directed acyclic graphs (DAGs).
However, while relevant biological information is implicit in the links between multiple domains, annotations from these
different domains are usually represented in distinct, unconnected DAGs, making links between the domains represented
difficult to determine. We develop a novel family of general statistical tests for the discovery of strong associations between
two directed acyclic graphs. Our method takes the topology of the input graphs and the specificity and relevance of
associations between nodes into consideration. We apply our method to the extraction of associations between biomedical
ontologies in an extensive use-case. Through a manual and an automatic evaluation, we show that our tests discover
biologically relevant relations. The suite of statistical tests we develop for this purpose is implemented and freely available
for download.

Citation: Hoehndorf R, Ngonga Ngomo A-C, Dannemann M, Kelso J (2010) Statistical Tests for Associations between Two Directed Acyclic Graphs. PLoS ONE 5(6):
e10996. doi:10.1371/journal.pone.0010996

Editor: Fabio Rapallo, University of East Piedmont, Italy

Received October 8, 2009; Accepted May 12, 2010; Published June 16, 2010

Copyright: � 2010 Hoehndorf et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The study was funded by the Max Planck Society and the University of Leipzig. The funders had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: hoehndor@ebi.ac.uk

Introduction

An increasing number of discoveries, particularly in biomedi-

cine, are facilitated by statistical analyses of data annotated to

biomedical ontologies [1]. Biomedical ontologies are generally

represented as DAGs, and specific domains are usually represent-

ed in distinct, separate DAGs [2–4].

Statistical tests that utilize a single graph can only consider the

given domain. However, entities from different domain are linked

via biomedical relations [5]. These relations can be vital for the

discovery of novel biomedical knowledge. We have designed a

family of novel statistical tests to identify strong associations

between nodes from two directed acyclic graphs. The tests

combine measures of relevance and specificity.

We evaluated our statistical method through an extensive use-

case in which we applied our tests to the detection of strong semantic

associations between the Gene Ontology [3] and the Celltype

Ontology [6] based on co-occurrence in scientific literature. In this

use-case, we annotated the ontologies with occurrence and co-

occurrence count data of the ontologies category labels in full text

scientific articles. The strongest associations identified through our

tests are biologically relevant relations.

An implementation of the six novel statistical tests to identify

associations between directed acyclic graphs is available as free

software from our project webpage at http://bioonto.de/pmwiki.

php/Main/ExtractingBiologicalRelations.

State of the art
Our approach to the computation of the strength of the association

between two graphs relies on approaches for capturing the semantic

similarity between categories in ontologies and for propagating these

similarities within DAGs. In the following, we give a brief overview of

methods for computing the similarity of categories (a more complete

overview can be found in [7]). Most of the existing semantic similarity

approaches assume that ontologies contain categories Ci that are

annotated with terms ti1 :::tin~w(Ci). Based on this assumption, the

computation of the semantic similarity of two categories C1 and C2

can be carried out by using the structure of the ontology to which C1

and C2 belong (edge-based approaches), the nodes and their

properties (e.g., similarity between w(C1) and w(C2)) (node-based

approaches) or by combining structural knowledge and annotations

(hybrid approaches).

The most common edge-based approach consist of using a

function of the number of edges between C1 and C2 as semantic

similarity measure [8,9]. Other approaches combine the previous

approach with the lenght of the path from the most specific

common ancestor of C1 and C2 and the root node [10,11]. Edge-

based approaches rely on the nodes being elements of the same

graph. Thus, they cannot be utilized when trying to compute the

similarity of two nodes from distinct DAGs.

The second category of approaches, the node-based approaches,

use the properties of the nodes themselves to compute their similarity.

One of the central concept for using annotations to compute

similarity is that of information content, which is the negative log-

likehood {log(p(Ci)) of a term Ci where p(Ci) is the probability of

occurrence of the terms in w(Ci) in a certain corpus. Based on this

value, several similarity metrics have been developed including the

information content of the most informative common ancestor used

in [12,13] or of the disjoint common ancestors [14].
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In recent years, hybrid similarity measures that combine node-

and edge-based approaches have been developed. Most of these

approaches utilize the information content. For example [15]

utilize a combination of edge weights based on node depth and

node link density and of the difference of information content of

the nodes linked by that edge. Other approaches such as that

described in [16] compute edge weights by using a scheme that

takes the type of the edge into consideration. The semantic

similarity between two terms is set to a function of the maximum

of the product of best path between the terms. Again, these

approaches can only compute the similarity of terms from the

same DAG.

The aim of our approach is to provide a means for the

computation of the association between nodes from 2 DAGs,

which are, in general, distinct. We do not make similar

assumptions about the annotation of edges and nodes as other

approaches to semantic similarity. Instead, we go beyong current

semantic similarity measures by providing a measure of statistical

significance in a distribution of arbitrary node and edge

annotations. When applying out method to semantic similarity

between ontologies, we can compute initial semantic similarity

values for categories which do not belong to the same ontologies.

Methods

Statistics on graphs
Preliminaries of directed acyclic graphs. Our tests take as

input two directed acyclic graphs, G1~(V1,E1) and G2~(V2,E2)
that are disjoint (V1\V2~1). From these two graphs, a

graph G~(V1|V2,E1|E2|C) with C~V1|V2|V2|V1 is

constructed. We denote an edge as an ordered pair of vertices. If

an edge connects v1 and v2, e~(v1,v2), we call v2 the child of v1

and v1 the parent of v2. If there is a path from v1 to v2, we call v1 a

predecessor of v2 and v2 a successor of v1.

In addition to the two graphs, two functions d ’1 and d ’2 are given

as input such that d ’1:V1|V2.R and d ’2:C.R. From these two

functions, a graph decoration for G is constructed based on the

assumption that the two input functions are transitive over the

DAG: the decoration d1(v) of a vertex v [ V1|V2 is the union of

d ’1(v) and the values of d ’1(u) for all successors u of v. Similarly, the

decoration d2(e) of an edge e~(v1,v2) for e [ C is the union of

d ’2(e) and the values of d ’2(f ) for all edges f between the successors

of v1 and v2.

The third component of the input is a score function

score : V1|V2|V2|V1.R. We assume that the value of the

score function between the vertices v1 and v2 depends only on the

graph decorations d1(v1) of v1 and d1(v2) of v2 as well as the

decoration d2(e) of the edge e~(v1,v2).

The score function is not symmetric, i.e., it is not necessary that

score(x,y)~score(y,x). It is intended to measure the association

strength between two vertices from the input graphs. Our method

identifies whether the score between two vertices is significantly

high. A graphical overview of our test method is shown in Figure 1.

Determining the Random Distribution. The score

between two vertices v1 and v2 is influenced by the topology of

the input DAGs: a vertex v that is more general has a larger

decoration set d1(v) due to our basic assumption about transitivity

of input graph decorations. Similarily, the cardinality of the

decoration set of the edges between nodes from the two input

DAGs is larger when the edges connect more general vertices.

Therefore, it is insufficient to test for a high score between vertices

to consider the score between two vertices as significantly high. A

random distribution of the scores of each pair of vertices v1 and v2

provides a means for determining the significance of the score

between v1 and v2. This random distribution depends on the

functions d ’1 and d ’2, the score function and the topology of the

input graphs. Hence, we cannot assume any statistical distribution

of scores ab initio. Instead, we simulate the random distribution of

the scores between each vertex pair through multiple random

permutations: the d ’1-values that are given as input for our method

are randomly swapped with the d ’1-values of vertices in the input

DAG from which they originate. There are two options for

permutating the d ’2-values for edges: either they are, mutatis

mutandis, permutated similarily to the d ’1-values of the vertices, or

they are permutated depending on the permutation of d ’1-values;

in the latter case, when the d ’1-values of v1 and v2 are swapped, so

are the values of d ’2(v1,x) and d ’2(v2,x) for any vertex x.

Because our test is intended to identify associations between

vertices, we do not assume that the values of d ’1 and d ’2 are

independent. We therefore prefer to use the second option, i.e.,

that the permutation of the d ’2 values depends on the permutation

of the d ’1-values.

Figure 1. Schematic representation of our method.
doi:10.1371/journal.pone.0010996.g001
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Based on these permutations, we first rebuild the graph

decorations d1 and d2. Then, we calculate and record the values

of the score function score(v1,v2) for all pairs of vertices v1 and v2.

In addition, for each vertex u, such that v1 is a direct successor

of u, we calculate and record the score difference

score(v1,v2){score(u,v2). Further, for each vertex w with the

direct predecessor v1, we calculate and record the difference

score(w,v2){score(v1,v2).

Hence, the results of this step are threefold. First, we

approximate the random score distribution for each pair of

vertices through multiple random permutations. Second, each

triple of vertices u, v and w [ children(u) gives rise to a random

distribution of score differences between (u,v) and (w,v). Third,

each triple u, v and w [ parents(u) yields a random distribution of

score differences between (w,v) and (u,v).

Ontologies as graphs
While the tests we develop can be applied to any DAG that

satisfies the conditions specified above, their primary application is

to test the significance of an association between categories from

two ontologies. An ontology is the specification of a conceptual-

ization of a domain [17,18]. Many biological ontologies are

represented as directed acyclic graphs (DAGs) and are available in

the OBO flatfile format [2]. In these DAGs, nodes represent

categories and edges represent relations between these categories. A

category, also called kind, class or universal, is an entity that is

general in reality. Examples are dog, apoptosis or red. Categories may

have instances, of which some may not be further instantiated.

These are called individuals. We call the set of all categories in an

ontology O Cat(O).

Categories may be related to other categories. The most

important relation between two categories A and B is the isA

relation, isA(A,B). The relation isA(A,B) can be defined by using

the instantiation relation: when isA(A,B), then all instances a of A

are instances of B [18]. This definition implies that the isA relation

is reflexive, transitive and antisymmetric.

A set of categories with the isA relation among them form a

taxonomy. These taxonomies are often the backbone of the OBO

ontologies’ DAG structure. We call the set of all successors of a category

A the sub-categories subcat(A)~fBDisA(B,A)g and its predecessors

the super-categories supcat(A)~fBDisA(A,B)g. The direct suc-

cessors of A in the taxonomy are called children (children (A) ~

fB D is A (B,A) ^ B =A ^ V X (is A (B,X ) ^ is A (X ,A) ?X ~

B)g), while the direct predecessors are called parents.

In the OBO flatfile format, ontologies are assigned a name-

space. Category identifiers are prefixed with the namespace of the

ontology to which they belong. Identifiers are therefore unique

within the OBO ontologies. In addition to a unique identifier,

categories are assigned a name and a set of synonyms. Neither the

name nor the set of synonyms must be unique.

Results

Statistics on graphs
To identify strong associations, we designed a family of tests for

the score of each edge between the two input DAGs that considers

a fragment of the path in the DAG. The tests are designed to

measure the significance of the score between vertices v1 and v2

based on three criteria: (1) the score score(v1,v2) for the association

should be higher than expected; (2) for each child u of v1,

score(v1,v2){score(u,v2) should be higher than expected; and (3)

for each parent w of v1, score(w,v2){score(v1,v2) should be lower

than expected.

The first criterion of our tests identifies hypothetical associations

between nodes from two graphs. The second and third criteria are

used to verify whether the pair is the best selection, or whether a

more specific or more general association is preferable. For this

purpose, the second and third criteria test for novelty of the

association (compared to the child and parent nodes).

Within this section, let u and v be fixed vertices from the DAGs

G1 and G2, respectively. Furthermore, let N be the number of

permutations that were used to determine the random distribu-

tions. The first test we designed, H1, depends on the vertices u and

v, the DAG structure and the number of permutations N . It tests

for the following properties:

N the score between u and v is high,

N the difference between score(u,v) and score(u’,v) for every

child u’ of v is high,

N the difference between score(u,v) and score(u’’,v) for every

parent u’’ of v is low.

‘‘Being high’’ and ‘‘being low’’ are captured using the values of

the cumulative distribution functions (CDFs) obtained by the N
permutations performed in the previous step: one function for

each pair of categories u and v, one function for each triple of

categories u, v and u’ where u’ is a child of u, and one for each

triple u, v and u’’ where u’’ is a parent of u. We combine the p-

values of the score differences to children in a single value using

their geometric mean. A similar combination of the score

differences’ p-values to the parent categories of u is carried out:

here, the combined value is the geometric mean of 1{x, where x
is the p-value in the corresponding CDF.

Formally, let u and v be fixed vertices from the directed acyclic

graphs G1~(V1,E1) and G2~(V2,E2), respectively, and let

N N be the number of permutations,

N scoren(u,v) be the score between u and v in the nth

permutation,

N NQ(x,u,v)~P(scoren(u,v)ƒx), 1ƒnƒN, be the cumulative

distribution function (CDF) of score(u,v).

N DQuj (x,u,v)~P(scoren(u,v){scoren(uj ,v)ƒx), 1ƒnƒN, be

the CDF of the difference between the vertex u and its jth child

vertex,

N DQ(x,u,v)~fDQuj (x,u,v)Duj [ child(u)g,
N MQuk (x,u,v)~P(scoren(uk,v){scoren(u,v)ƒx), 1ƒnƒN, be

the CDF of the score difference between the vertex u and its

kth parent vertex,

N MQ(x,u,v)~fMQuk (x,u,v)Duk [ parent(u)g,
N VQNQ(x)~P(Var(NQ(x,x1,x2))ƒx), for all x1 [ V1 and

x2 [ V2, be the CDF of the variances Var of the distribution

NQ(x,x1,x2), and VQDQ and VQMQ for the distributions

DQ(x,x1,x2) and MQ(x,x1,x2), respectively.

For each child uj of u, we calculate the difference in scores

dd (uj)~score(u,v){score(uj ,v). Then, we compute the geometric

mean j of all values DQ(dd (uj),u,v). Similarly, we calculate

dm(uk)~score(uk,v){score(u,v) for each parent uk of u, and the

geometric mean y of all values MQ(1{dm(uk),u,v). Then we

define as our first test

H1(u,v)~NQ(score(u,v),u,v):j:y ð1Þ

All other tests are extensions of the first test. The second test,

H2, uses the minimum function instead of the geometric mean to

Testing Graph Associations
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combine the p-values in the CDFs of the score differences to

parents and children.

The first two tests H1 and H2 do not consider the variances of

the distributions of scores, differences in scores to children and

differences in scores to parents. Therefore, we extend these tests by

weighting all three components of the tests with the variances of

their corresponding distributions. In these tests, high variance

lowers the impact of the result, while lower variance strengthens it.

We define three new distributions for the variances and choose

the p-value in the respective CDF as a weight in our tests. We

compute the scores for each pair of category N times, resulting in

one distribution of scores for each pair of categories. Each of these

distributions has a variance. The score variance distribution is the

finite distribution (containing N elements) of the variances of each

of these distributions. We define the variance distribution for score

difference to parent and child analogously.

The tests H3 and H4 use only the variance distribution of scores,

while H5 and H6 use all three variance distributions. These tests

are one-sided, i.e., they are not symmetric. We define two-sided,

symmetric tests ti(u,v) for all vertices u and v as

ti(u,v)~Hi(u,v):Hi(v,u) ð2Þ

Table 1 lists the combination of properties for all tests. The precise

formulation of all six tests can be found in the supplement S1.

Application to biomedical ontologies
Occurrence and co-occurrence count data as graph

decoration. To verify whether the tests we designed yield

reasonable results, we applied our method to the detection of

significant co-occurrences between ontological categories in

natural language texts, as a precursor to the detection of

relations between ontological categories. For this purpose, we

make the following assumptions:

1. A term occurs in a portion of text if it is an exact substring of

this portion of text.

2. Terms can designate ontological categories; the terms that

designate the same category are henceforth called the

category’s synset. Every occurrence of an element of the

category C’s synset is called an occurrence of C. Every co-

occurrence of an element of the category C’s synset with an

element of the category D’s synset is called a co-occurrence of

C and D.

3. If A is a sub-category of B, then every co-occurrence of A with

C is a co-occurrence of B with C. Additionally, every

occurrence of A counts as an occurrence of B.

To test our method, we used the Gene Ontology (GO) [3] and

the Celltype Ontology (CL) [6] as input DAGs. The GO is an

ontology specifically designed to describe gene products. It

contains three separate ontologies: the biological process, molec-

ular function and cellular component ontologies. Gene products

can be tagged with ontology categories to describe and classify

them. The CL is an ontology for types of cells. It classifies cells

based on criteria such as structure or function.

Based on the input requirements of our test, we constructed

synsets from the synonyms attached to each category in the input

ontologies, and counted the occurrences and co-occurrences of the

categories based on two contexts: single sentences and sentences in

documents. The second context refers to whole documents, but co-

occurrence is based on single sentences. Therefore, when two

terms co-occur in two or more sentences within one document,

their co-occurrence is only counted once. The functions that assign

the occurrence and co-occurrence count values to a synset of a

category for each context are called d and f , respectively.

We used exact string matching to identify terms in text. Our

evaluation was conducted using a 2.2 GB text corpus containing

60143 fulltext articles from Open Access journals listed in Pubmed

Central. The aim of our method is to test for significant co-

occurrences between categories.

Text Processing. First, we counted the number of

occurrences and co-occurrences of the terms contained in

synsets of categories from the input ontologies. Table 2 shows

examples for the synsets of categories. We counted the total

number of sentences and documents in which at least one element

of a synset was found by using exact matching. For each pair of

categories, we counted the total number of co-occurrences of

elements of their respective synsets in sentences. Furthermore, we

counted the number of documents in which they co-occured

within at least one sentence. We used exact matching and

abstained from using any more sophisticated methods for

recognizing the ontologies’ categories in text [19,20] to evaluate

our method. Exact matching provides a large dataset for the

evaluation of our method. For practical applications such as

relationship extraction, more advanced methods should be chosen.

The text processing yielded, for each category C, both its

frequency f (C) and the total number of documents in which C

occurred, d(C). Furthermore, for each pair of categories C1 and

C2, we obtained both the total number of co-occurrences in

sentences f (C1,C2) and the total number of documents containing

these co-occurrences d(C1,C2).
Count data over ontologies. The first component in our

method implements the assumption that the input graph

decorations are transitive over the DAG structure. In the case of

ontologies, this implements the assumption that occurrence and

co-occurrence between categories is transitive over the isA relation

between categories.

We assumed that when two categories C and C’ stand in the isA

relation, isA(C,C’), then every occurrence of C is also an

occurrence of C’. This means that the synset-closure synclos(C) of

a category C can be constructed as follows:

syn(C)(synclos(C) ð3Þ

isA(C,C’)?(syn(C)(synclos(C’)) ð4Þ

Table 1. Elements of the test score of ti .

combining p-values in the
CDF’s of score differences
from parents to children

variance
distribution
of scores

variance
distributions
to children
and parents

t1 geometric mean

t2 minimum

t3 geometric mean X

t4 minimum X

t5 geometric mean X X

t6 minimum X X

doi:10.1371/journal.pone.0010996.t001
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For count data, the decoration value of a vertex v in the DAG is

equal to the sum of the input value pair d(v) and f (v) and the

corresponding input values for v’s successors. Therefore, for all

categories C, we define ft(C) and dt(C) to represent the sum of the

values f (C’) and d(C’) over all of C’s sub-categories C’.
Furthermore, for all categories C1 and C2, we compute the

cumulated f - and d-values dubbed ft(C1,C2) and dt(C1,C2):

ft(C1,C2) :~
X

a[subcat(C1)

X

b[subcat(C2)

f (a,b) ð5Þ

dt(C1,C2) :~
X

a[subcat(C1)

X

b[subcat(C2)

d(a,b) ð6Þ

Again, for count data, co-occurrence values between nodes v1 and

v2 can be summed up over the successors of v1 and v2 to yield the

decoration of the edge between v1 and v2.

A score for occurrences and co-occurrences. For all

categories C1 and C2, we defined the following score function:

score(C1,C2)~
log ft(C1,C2)

log(1zft(C1))zlog(1zft(C2))
:

log(dt(C1,C2))

log(1zmax(dt(C1),dt(C2)))

ð7Þ

The first component of the score function implements the natural

logarithm of the Pointwise Mutual Information (PMI) [21] score

achieved by the categories with respect to their co-occurrence

within sentences. PMI has been successfully used in several text

mining tools (see, e.g., [22]). To avoid divisions by 0, the

denominators of all members of the score function were

incremented. The second component measures a similar value

using documents as context. The aim of the score function is to

ensure that categories that co-occur relatively often are assigned a

high score. The range of the score function is between 0 and 1.

Discussion

Evaluation
We applied the tests to the biological process (BP) branch of the

GO and the CL. To recognize the categories in text, we used the

identifier of the category, the name and all exact synonyms of the

category. On average, every category had 2.1 synonyms. Using

exact matching, we identified 3,751 out of BP’s 14,542 (26%)

categories in our text corpus. We found 491 of 754 (65%)

categories from the CL. Categories from the BP co-occurred

70,967 times with CL categories.

Using our method, we identified a total number of 202,627 co-

occurrences between categories. After applying our tests, 157,894

co-occurrences produced test values distinct from 0. The

remainder obtained a test value of 0 due to numerical restrictions.

They were subsequently excluded, because they were indistin-

guishable from the absence of co-occurrence. We illustrate the

quantiles obtained for different p-values in our six tests, ti, in

Table 3. The distribution of scores for t1 and t6 are shown in

Figure 2. The remaining plots are included in the supplement S1.

We found that the tests using the minimum instead of the

geometric mean of p-values of score differences to parent and child

categories are generally more restrictive, i.e., they include fewer

co-occurrences for a given cutoff. Similarly, tests including the

variance for scores are generally more restrictive than tests that are

not weighted by the variance of score distributions. In this sense,

the tests t5 and t6 are the most restrictive.

Table 4 shows example associations, and Table 5 shows the

kind of relationship between categories that our tests identified for

the 100 top-scoring results with respect to the test t1. The has-

participant relation is defined in the OBO Relationship Ontology

(RO) [5] as a relation that holds between two categories, where

every instance of one category participate in some instance of the

other. We define the Participates-in relation as a relation between

two categories: C1 Participates-in C2 uVx,t1(instanceOf (x,C1,t1)?
At2,y (instanceOf (y,C2,t2) ^ participates - in (x,y,t2))), where

participates-in is the primitive participation relation between individuals

as defined in the RO. We extend the definition of located-in in the RO to

a relation Located-in between processes and objects, which holds when

all participants of a process are located-in a structure during the entire

duration of the process.

In our sample, 38 associations do not fall under one of the three

relations that we investigated. We discovered several kinds of

unclassified relations. First, mismatches in granularity lead to

strong associations for unrelated categories. For example, xanthine

transport and erythrocyte are closely related according to t1.

Erythrocytes are involved in the transport of xanthine. However,

the GO category xanthine transport refers to the inter- and

intracellular level of granularity, while erythrocytes transport

nutrients between organs. Second, some categories are indirectly

related via another category. For example, osteoclasts and lymph

node development are related via the protein RANK. Third, when

cells have closely related functions, we sometimes identify too

specific or too generic cell types as in the case of the association

Table 2. Example synsets taken from the GO and the CL.

ID Label Synonyms

GO:0001574 globoside biosynthetic process ganglioside biosynthesis; ganglioside formation; ganglioside
synthesis

CL:0000114 surface ectodermal cell cell of surface ectoderm; surface ectoderm cell

doi:10.1371/journal.pone.0010996.t002

Table 3. p-quantiles for different p-values for all tests.

p-value t1 t2 t3 t4 t5 t6

0.5 0.075 0.017 0.024 0.003 0.007 0.001

0.8 0.288 0.145 0.141 0.047 0.061 0.016

0.9 0.522 0.433 0.298 0.168 0.220 0.120

0.95 0.806 0.790 0.472 0.412 0.456 0.400

0.99 0.952 0.950 0.863 0.826 0.859 0.824

Given a p-value (first column), the quantiles show the result of each test for
which p-values are below the quantile.
doi:10.1371/journal.pone.0010996.t003
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between basophil degranulation and mast cell. Finally, 6 out of 100
associations in our sample seem erroneous.

We were not able to compute precision or recall for our method

due to the absence of a gold standard. However, we compared our

method with the GO-CL crossproducts available from the OBO

Foundry. The dataset contains manually verified relations between

categories from the GO and the CL that have been extracted using

pattern matching on category names [23]. As this method is based

on the compositional nature of terms in the GO, it exclusively

identifies relations in which one category name (usually a type of

cell) is a substring of another category name (usually a GO

category).

The GO-CL crossproduct contains 396 relations between GO

and CL categories. From these 396, we identified 73 that co-

occurred in our text corpus. Table 6 shows the percentage of

significant co-occurrences within these 73 relations for different

cutoffs in our six tests. Figure 2 shows the distribution of the 73

pairs with respect to t1 and t6.

As our method relies exclusively on the distribution of terms and

not on their syntactic structure, it permits the recognition of

associations between categories that cannot be recognized using

syntactic patterns. An example of such an association is myoepithelial

cell (cells located in the mammary gland) and milk ejection.

Important potential applications for our tests arise from the fact

that annotations of a large set of biomedical ontologies satisfy the

conditions for our tests. Annotations satisfy the True Path Rule

[3]: if two categories C and D stand in the is-a or part-of relation,

then any annotation of C is also an annotation of D. Therefore, if

gene annotations are used as graph decorations for the two input

graphs of our method, the conditions for applying our tests are

satisfied. For detecting associations between annotations, an

appropriate score function must be chosen based on the hypothesis

that is to be tested.

Another potential application of our tests lies in the field of

relation extraction. The evaluation of our tests with the GO and

Figure 2. Distribution of test results. The plot on the left shows the distribution of the test results for t1 . On the right, the same is shown for t6 . It
can be seen that a test using the minimum function (t6) is more restrictive than a test using the geometric mean (t1). Furthermore, weighting the
tests with the CDFs of the variances (t6) produces stronger results than the basic test (t1). The test results of the GO-CL dataset for each test are
displayed below the distributions.
doi:10.1371/journal.pone.0010996.g002

Table 4. Association examples.

CL GO

Myoepithelial cell Milk ejection

Oocyte Meiotic anaphase I

Osteoclast Protein geranylgeranylation

Neuroblast Neuron recognition

Keratinocyte Keratinization

Sensory neuron Optic nerve formation

Motor neuron Spinal cord development

Protoplast Photosynthesis

Lymphocyte Chloroplast fission

The results in this table were above the quantile 0:9 in all six tests. While the
kind of relation between the categories is apparent for most results, some, like
the relation between lymphocytes and chloroplast fission, remain dubious.
doi:10.1371/journal.pone.0010996.t004

Table 5. Manually identified ontological relations in the 100
top-scoring association results with respect to t1.

Relation Number of occurrences

has-participant 62

Participates-in 13

Located-in 2

unclassified 38

doi:10.1371/journal.pone.0010996.t005
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CL reveals that we are able to detect biologically relevant

associations between these ontologies. 94 of the best 100
associations retrieved by t1 have biological meaning, as shown

in Table 5. Although our approach is unable to detect the types of

the biological relations, the associations provide a good starting

point for an elaborate approach to the extraction of biological

relations.

Our method is designed for the detection of associations

between two DAGs. However, it can be generalized to test for

associations between n graphs. The result of the tests would then

be significant n-ary associations between n nodes from n graphs.

Conclusions
We developed a family of novel statistical tests for associations

between two directed acyclic graphs. The tests account for the

graphs’ topologies and test for relevance and specificity of

associations. The tests are suitable for the detection of associations

between categories from two biomedical ontologies, in particular

those which comply with the OBO criteria [24].

In an extensive use-case, we applied our tests to the discovery of

associations between categories from the Gene Ontology and the

Celltype Ontology that were decorated with the number of

occurrences and co-occurrences of the categories’ labels in a large

corpus of full-text articles. Our results show that a large proportion

of the associations discovered by our tests are biologically relevant

relations.

The family of tests is implemented in a Java library, which is

available as free software from our project webpage at http://

bioonto.de/pmwiki.php/Main/ExtractingBiologicalRelations.

Supporting Information

Supplement S1 Statistical tests for associations between two

directed acyclic graphs and their application to biomedical

ontologies.

Found at: doi:10.1371/journal.pone.0010996.s001 (0.14 MB

PDF)
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