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A NeuroRobotic Model of Infant Looking Behavior
Davide Migliore, Emmett Kerr, Gabriele Spina, Pramod Chandrashekhariah,

Richard Veale, Yiannis Gatsoulis, Jochen Triesch

Abstract—Very young human infants demonstrate visual ex-
ploration behavior. The behavior is modulated by habituation
as stimuli are experienced multiple times. Primate studies have
shown that when neural structures responsible for habituation
are lesioned, the visual exploration behavior is retained while
the habituation (learning) component is abolished. This paper
presents an anatomically-inspired neuro-robotic model of the
visuomotor (oculomotor) sytem that can accomplish looking
behavior similar to that observed in non-learning infants or
in primates with lesioned parahippocampal regions. The neu-
roanatomical basis for the different parts of the model and their
interaction are discussed.

I. INTRODUCTION

Newborn human infants are capable of astounding behaviors
with which they are not commonly attributed. For example,
visual habituation, a type of visual category learning, is present
at least as early as birth [1]. The typical way of testing
these (visual) behaviors is to measure the aggregate looking
time towards a visual stimulus over multiple encounters with
that stimulus [2]. This is compared to the response to a
never-experienced visual stimulus that is matched for some
properties such as complexity and salience. If the looking
time to the “familiar” stimulus is different than the looking
time to the “novel” stimulus, then the ability of the infants
to discriminate between the stimuli, and even the ability to
learn to recognize the stimuli (at least as being “previously
encountered vs. not”), is inferred.

In these preferential looking experiments, looking time is
a measure aggregated over many discrete behaviors of the
infant, such as steady gazes towards a given point (“fixations”),
which occur in between shifts between fixations (“saccades”).
An infant’s gaze is thus constantly moving at a much faster
timescale than the timescale that is usually reported in ha-
bituation studies [3]. This micro-level looking behavior (the
order, length, etc.) of fixations is interesting because it gives
more insight into the mechanisms that are giving rise to the
aggregate looking times. They also are informative for building
artificial systems to mimic desirable capabilities of the human
infants (e.g. developmental learning ability).

Even in the absence of habituation (e.g. with exceedingly
simple stimuli such that habituation is instantaneous, or in
darkness, or with certain brain areas lesioned) infants and pri-
mates demonstrate a visual search behavior. With habituation
removed, when aggregated over time, the looking times for
stimuli will be proportional to properties of the stimuli such
as complexity or salience. It seems there is some intrinsic
visuomotor mechanism/dynamics in place running in a con-
stant loop which ensures that gaze will be allocated around
the visual environment in a way that is roughly proportional

to (probably low-level) properties of the components of the
visual environment. Theories have been suggested (regarding
e.g. minimizing uncertainty, entropy, learning rate, etc.) as to
“why” this might be the case (evolutionarily), but this is not the
question addressed in this paper. This paper rather attempts to
build a (robotic) model of what this visuomotor system might
look like neurally, and how it functions to produce the looking
behavior observed in infants. Habituation’s interaction with the
visuomotor system is addressed, but a model of habituation
is not explicitly built nor tested in this report. The focus is
entirely on the “inside loop” of the system, i.e. the loop which
keeps the eyes moving around the visual environment, fixating
on components of the environment in turns of lengths roughly
proportional to their properties.

The model presented is a “prototype” model containing
the “large” pieces of a more complex model of the same
phenomenon that is exhaustively based on neuroanatomical
evidence. The present model for the sake of prototyping on
the robot and demonstration of concept takes some shortcuts
anatomically. It does not, however, take shortcuts mechanis-
tically – all mechanisms are accomplished via biologically
realistic continuous neural circuit models, and the shortcuts
can all be demonstratably implemented using more complex
circuit models.

II. TARGET BEHAVIOR

The target behavior for the model will be to match fixation
times of very young human infants (less than 2 months
postnatal, preferably newborns). The overall looking behavior
should be matched qualitatively (i.e. the infant should not
only look perfectly between the two most salient objects,
it should also look away at e.g. a random point on the
wall for some short period of time every now and then). In
addition, the proportion of looking time should increase as
a function of the stimulus complexity [4]. This function will
be simply linear in this model, but as implemented it can be
exchanged for any function of the complexity. Thus, it should
be matchable to actual infant looking data for e.g. some set
of objects. “Stimulus complexity” in this paper and model
are just a placeholder for some unknown properties of visual
stimuli that draw or hold looking in infants. Particularly, they
are placeholders for those properties that experimenters try
to control for between stimuli when running habituation or
looking time experiments.

III. MODEL DESCRIPTION

Instead of exhaustively enumerating the neuroanatomical,
psychophysical, and neuropysiological support for the various



components, the (prototype) model will be laid out, and
the salient support presented briefly for the various pieces’
functions, maturity at the target postnatal age, connectivity,
and role in producing the behavior.

The “architecture” (i.e. implementation-biased description)
of the model is presented, rather than the mathematical
formalism of the environment and solution. No analysis of
the network dynamics is attempted in this paper except for
informal observations of the behavior of the network in the
robotic infant while it is “behaving”.

The network is made up of several main pieces (Figure 1).
The overall theory of its functionality is illustrated in Figure 2.

A. Saliency Map

Images (frames) come in (actually, one from each eye, left
and right) and are processed by a saliency map ([5]), which
assigns a salience value to each location in the image by
looking for areas of high global “uniqueness” at many spatial
scales. This is accomplished by applying filters at many scales
in parallel to detect feature channels such as motion, color, in-
tensity, orientation, etc., and then subtracting and subsampling
between sequential spatial scales, within feature channels. This
is meant to represent some sort of “fast scene processing”
salience, which does not care so much about the content at
visual locations so much as the “salience” of locations in
relation to the rest of the visual field. It is imagined that this
type of saliency map would be at play in orienting behavior,
which is what the looking behavior in this paper is intended to
represent. Some of the saliency channels (color, orientation)
are not ones that would be processed by the superficial layers
of the superior colliculus (SC)(mostly responds to movement),
nor is there evidence for (explicit) spatial scales even in V1,
so it is not clear where a salience map would actually be
implemented, especially in an infant. Some theories have been
offered arguing that horizontal competition within V1 could
result in a saliency-map-like phenomenon [6], but these are
outside the intended scope of the model presented in this
report.

B. Superior Colliculus - deep (integration, eye control)

The instantaneous salience map calculated for every frame
is treated as “input” into a longer-term map made up of
leaky integrating neurons (non-firing). This is considered to
correspond to the intermediate/deep layers of SC, especially
since this is the last “stop” before eye movement signals in
the model. Each neuron’s membrane potential Vm is described
by the equation:

∂Vm

∂ t
=

−(Vm −Vrest)+Rm · (Ibg + Isyn)

τm
(1)

where Rm is the membrane resistance (uniformly 1.0 MΩ for
all neurons), Ibg the background current (uniformly 0.0 nA for
all neurons) and Isyn the total current impinging from afferent
synapses. The −Vm represents the leakage term, causing the
membrane potential to decay exponentially with time constant
τm (uniformly 30 ms for all neurons, though since update

was per-frame this has no relation to real-time). The resting
potential of the membrane Vrest is assumed to be 0 mV.

Afferent input into a dSC neuron from the instantaneous
saliency map is simply linearly summed into Isyn, after being
multiplied by the efficacy of the synapse connecting it. The
synaptic weights and connections are built initially using a
2-dimensional gaussian, with standard deviation ωw (1.5 for
the experiments) and a cutoff value (i.e. minimum weight
outside of which region there are no connections) χ (0.05
for experiments). This has the effect of slightly blurring (low-
pass-filtering) the instantaneous salmap (thus bringing out
“masses” of high salience more than just isolated pixels of
high salience). It also mimics the increase in receptive field
size one sees when moving more towards the dSC (many pre-
synaptic neurons connect to fewer post-synaptic neurons, in
retinotopically defined areas).

C. Reticular Formation (arousal response to complexity)

Physiological functions (arousal, measured by heart rate)
have been shown to be correlated with attentional phases in
infants [7]. Some have hypothesized the underlying circuits
for these include e.g. the reticular formation (RF) which is
responsible for the ascending transport of neuromodulators
(horomones) to diverse regions of the brain [8]. Such areas
could become more active in response to stimulating environ-
ments (i.e. with more complex stimuli, more variation, etc.)
and are also responsible for the lack of responsiveness of
infants without sufficient stimulation. It’s important to note
that endogenous factors guide a majority portion of the very
young infant’s arousal/attentional state at any time. It’s difficult
to get very young infants to respond to exogenous stimuli if
they are not already in an “alert” state. This report/model does
attempt to deal with these factors either.

The complexity-responsive functionality of the RF circuits
are used as a mechanism for determining (soft) looking time
towards an object. Really, it could be implemented via other
methods such as simply probabilistic microsaccades that are
more likely to get “caught” locally in the more complex
stimulus. Since usually the amount of looking time towards a
stimulus during e.g. habituation experiments is postulated to be
a function of “encoding” of the stimulus (and thus, longer for
more complex stimuli), yet we have explicitly lesioned those
areas that are “making progress” in any sense (or learning),
there must be some other mechanism than simply “learning”
that drives looking time towards stimuli (though when present,
feedback from those learning regions certainly may play a
role). Since in habituation experiments the salience etc. of
stimuli is controlled, it is not trivial to decouple the habituation
response from the “baseline” stimulus response. Note also that
more complex mechanisms, e.g. encoding into some sort of
short-term memory, waiting for a non-transient response/cycle
of some minimal error threshold in response to the stimulus,
could also be how this stimulus complexity causes longer
looking times. The current mechanism at least attempts to
capture the phenomenon, if not the mechanism. This is perhaps
one of the least understood areas of oculomotor behavior –



Fig. 1. Graphical overview of connectivity and regions of network, and the general function of each region. Full-model anatomical correlates listed next to
regions. Links between regions are not intended to imply direct anatomical connections since the model has been simplified.

namely, in the absence of any scene change, what causes the
infant to look away? Several observations exist that correlate
with the phenomenon, e.g. the dying out of activity in fixation
neurons in dSC [9], changes in activity in SNr [10], CD, and
the buildup of burst neurons in dSC [11], but the real dynamics
and mechanisms and how all these work together to move
attention (fixation) are not well understood. This is one of the
things this model and, later, the more neurally accurate one
hope to offer explanations for.

In the model the RF is modeled as a single leaky neuron.
One can think of it as population coding of the activity of some
region that got a shot of neuromodulator/horomone cocktail
in response to exciting foveal stimuli. The RF neuron inhibits
every region of the dSC, so that more activation of the RF will
result in more inhibition of SC (pushing the neurons there to
very negative potentials), and thus it will take longer for SC
neurons to recover via the normal continuous input coming
from e.g. the instantaneous saliency map and the gaussian
noise from SNr. However, to prevent the continuous fixation
over multiple “refixations” of the central area (which might not
be coded in mammals, i.e. we wouldn’t have to worry about
the currently foveated area ever getting burst neurons activated
since there are no corresponding burst neurons there) the
weighting of this inhibitory projection is topologically mod-
ulated, such that more foveal/central positions have stronger
inhibitory weights than the periphery (which still have some
baseline inhibitory weight).

Thus, the weight of a point in the retinotopic projection as
a function of distance from the centre of the fovea is equal
to the value at that point of a gaussian centred on the centre,
with amplitude α (6.0), variance σ (1.5), and baseline (i.e.
y-shift) β (1.0).

When a gaze shift is made, the “complexity” c f of the

current foveal content is scaled and injected into the RF neuron
(the RF neuron’s Vm is set to c f ). In this case, as a stand-in,
the complexity is calculated as simply the number of Harris
feature points (thresholded 1-d gaussians LPFs run along the
x- and y-dimensions) within a radius r of the centre of the
image. In binocular cases the two eyes are simply summed
together linearly.

The RF neuron’s membrane potential (VRF ) decays exponen-
tially with some time constant τRF (500ms, though again since
in the experiments update of the saliency model is not locked
to real time but rather to the refresh speed of the cameras,
the units are arbitrary w.r.t. the experiments). At any rate, the
equation stands:

∂VRF

∂ t
=

−VRF

τm
(2)

The membrane potential of RF is injected directly into all
(e.g. dSC) post-synaptic neurons, linearly scaled by the weight
of the synapse connecting RF with that neuron.

D. Substantia Nigra pars reticulata (Gaussian noise)

Caudate Nucleus (CD) and SNr neurons show visual and
habituation responses [10], which implies they are at play
in normal visual search behavior and/or habituation learning.
Assuming it’s just habituation or even considering they are
engaged in disgengagement and thus normal visual looking be-
havior ([12]), these disengagement and habituation behaviors
are not seen in infants or in limbic-cortex lesioned primates, re-
spectively [13]. This suggests that the SNr itself, it’s afferents,
or its efferents to dSC are undeveloped in the young infants.
SNr-dSC projections are known to be strongly GABAergic and
thus inhibitory, and to receive inhibitory projections from CD
(“dis-inhibitory”, which in turns gets input from a variety of
cortical regions as well as having interesting intrinsic dynamics



Fig. 2. Intended loop dynamics of the model through several fixation-saccade
iterations. Intended local circuit response properties listed where predictable.

involving dopamine via SN pars compacta (SNc)). We model
these dynamics and the product of immaturity of this area
or its dSC efferents by simply considering the baseline of
SC as already receiving some amount of inhibition from the
tonically firing SNr GABAergic neurons, and then add or
sutract gaussian noise (gaussian random variables) from the
synaptic input to each dSC neuron on every time step. The
probability of drawing an input of strength of δ is based on
the mass of the gaussian at the point, thus small numbers
are likely, and very extreme numbers are less likely. In the
experiments, the noise is drawn from a gaussian with σ of
0.01 and amplitude (scale of output inputs) of 1.0.

IV. IMPLEMENTATION ON ICUB ROBOTIC PLATFORM

The prototype model was implemented on an iCub robot
head (Figure 3). It has two pan-tilt-vergence eyes mounted in
the head supported by a yaw-pitch-twist neck. It has 6 degrees
of freedom (3 for the neck and 3 for the cameras). We make
use of stereo information to select the most salient point in
the scene. The saliency maps from both the eyes are input to
the decision module to select the single most salient point in
the scene irrespective of which eye the saliency point comes
from (intended to model the result of contralateral connections
between the two lateral dSC, and the known diffuse inhibitory
input from the contralateral SNr [14]). However, the saliency
points only at the interest points in the scene are considered
for selecting a target for a saccade.

Fig. 3. The iCub head that was used for the experiments.

A. Interest points add stability to the scene information

An interest point is a point in the image which has a
well-defined position in image space that is rich in terms of
local information content around it and is stable against the
variations such as brightness, scale etc so that it is repeatable
from frame to frame. It is not clear as to how much the ability
to locate such interest points is pronounced in infants, however,
studies show that V1 areas of visual cortex are sensitive to
many simple features such as orientations at a very early age
[15]. At the very least there exists a mechanism to identify
discriminant features in growing infants, since they without
fail begin to identify and distinguish objects at some point.

In this work, we use Harris corner points as interest points.
A corner point is defined as the intersection of two edges or
as a point for which there are two dominant and different edge
directions in a local neighborhood of the point. Corner points
serves the characteristic of an interest point as it has a well-
defined position and can be robustly detected. To determine a
Harris corner point the autocorrelation matrix of the second
derivative of images over a small window around each point
is calculated and the two largest eigenvalues are tested to
determine whether they are greater than a threshold. Only
those points that pass the threshold are considered.

B. Choosing the attention point in stereo

Once the Harris corner points are calculated on the left
and right images, we attempt to find corresponding points
in the left and right images. Those points that do not have
a matching point in the other image are removed. We then
evaluate the value of saliency at the regions containing the
remaining harris corner points on both the images. The weight
distribution from the instantaneous saliency map to the long-
term saliency map implements a gaussian kernel, and thus the
dSC values for those points in the image represent an average
response of the saliency map around the harris points. We
select the most salient point from these values and find its
corresponding location on the other eye by its best matched
feature. This location in the stereo vision is where iCub’s eyes
should be directed (see figure 4).

C. Vergence control Mechanism

The iCub has to move its gaze towards the salient point
for the object to be focused in the center of the camera view.
This task is accomplished using a tracking scheme that is com-
pletely object model free (Democratic Cue Integration [16]).



Fig. 4. Saliency values at the Harris corner points are calculated and the
maximum is used to steer the eyes. The blue circle indicates the maximum
salient point in each eye and the yellow circle indicates the winning point
with the highest saliency between the eyes.

Democratic cue integration is a multi-cue tracking system that
provides a fast and robust way to track unknown objects in
a changing environment (lighting, background, noise, object
motion). It combines information from various cues each
with a weighting coefficient that depends on their agreement
with all other cues. This makes the system adaptive to a
given situation as the cues that are not suitable quickly lose
prominence. In our work we use motion, kalman prediction,
template matching, color kernel tracking and contrast based
kernel as different cues.

Tracking executed in the above manner provides a very
robust coordinated movement of the head and eyes, which is
usually a challenging problem especially in binocular vision.
One can observe that the movements accomplished by this
method of a vergence-control run in a closed loop with visual
input. It is not clear how the problem of vergence is solved
in infants but it seems to be clear that saccades are not
closed loop or vision-driven but are rather ballistic and motor-
driven [17]. Since the salience model was “turned off” during
eye movements, this had no effect on the collected data,
though from a real-time point of view it was somewhat slow
compared with actual saccades (limitations of the motors and
the algorithms for vergence). Coordinated movement of the
head and eyes is likewise probably unrealistic in such young
infants.

D. Segmenting out the target object from the salient location

For the next step, we use stereo disparity information to
coarsely segment the focussed object from the background.
We calculate the stereo disparity at all interest points in the
scene. To do this we calculate Gabor-jets at interest points on
both left and right images. We then compare jets at all interest
points in the left image with all points on the right image and
we choose the best matching pairs of points by comparing
the similarity between the jets (inner product between the

Fig. 5. Stereo segmentation by matching Gabor-jets at the interest points on
left and right camera images.

Fig. 6. A picture of the experimental setup that was used during the
experiments. The type of environment presented can be seen in front of the
iCub head in the upper-left corner.

vectors should be above a threshold value set to 0.93). We then
calculate the stereo disparity (horizontal as well as vertical)
for each matching pair. The disparity of the interest points
falling on the object that has been focussed is considered as
the reference value and the points that are away from this value
(more than 2 in both +ve and -ve directions) are considered to
be from the other objects or background and hence removed.
This procedure gives us a rough segmentation of the object or
at least segregates the interest points (and hence the feature
points i.e. gabor jets) belonging to the object from the rest
(see figure 5. This would be helpful for initiating a learning
process of the object for future work that integrates learning
with the looking behavior which was the focus in this report.

E. Fixation guided by complexity

When the robot looks at a point, the time spent in looking
at the point (usually and “object”) should be dependent on
the complexity of the point (in our experiment, it is made
dependent on the number of Harris corner points as already
discussed in the previous section). The trajectory (i.e. ordering)
of looking among the objects is recorded.

Based on runs on single frames (see testonppm.cpp) the
decaying-inhibition dynamics of the model work as intended.
To demonstrate this, see Figure 7, plotting the results of
automated experiments with the model measuring the time



Fig. 7. Plot of the time between fixations (i.e. fixation time to that foveal
region) for varying levels of foveal complexity (the manipulated variable
in these experiments). Note the logarithmic pattern that emerges: for very
low complexities, fixation is disengaged quickly, and for slightly different
complexities the looking time differs, but as complexity increases, the looking
time saturates to a maximum.

between first fixation and second fixation as a function of the
complexity of the foveal image (x-axis).

This is the desired behavior, and would result in (at
least) fixation times that follow the desired model of fixation
time. For the longer-term looking dynamics, however, since
foveation of the salient stimulus is assumed (which entails
a change in the visual field since the eyes/head move), it’s
impossible to test the looking dynamics without running on
the robot or in a simulation environment that moves the visual
field.

V. AN EXPERIMENTAL BOARD FOR LEARNING SEQUENCES
OF ACTIONS BASED ON VISUAL REWARDS

One aspect of the extensive work described in this report
was to give to encourage the robot to learn particular sequence
of gazes/actions.

This would be achieved by using an experimental board
which has been designed and developed by the IMCLeVeR
consortium for this particular purpose, i.e. to be able to pre-
program sequences of actions that lead to rewards. The board,
which is shown in Figure 8, consists of two main types of
modules:

Fig. 8. Experimental board

• Actions modules which the agent interacts with
– These are buttons () that can be pressed down

• Rewards modules that are activated according to pre-
programmed sequences of the actions modules

– Lights that switch on/off
– Small cabinets with lights that can open up
– Audio feedback

More details about the board can be found in the IMCLeVeR
project website1.

The current software interface of the board is written in
Labview, and allows the activation of any of the rewards
for pre-programmed sequences of actions. Although this con-
trol interface provides a quick way of pre-programming the
behaviour of the board in a user-friendly way, it has the
main limitation that it does not allow dynamic online re-
configuration of the board from the controller program of
the agent. In our case there was an additional motivation for
requiring dynamic control of the board from the controller of
the agent; as the available robot platform consisted of only an
iCub head, the lack of any actuators prohibited any interaction
with the actions modules. For this reason, it was decided to
devise a scheme of “telekinesis”, in which the actions modules
could be pushed when the iCub focussed its gaze on them and
certain rewards would be given, e.g. lights switch on. As such,
we implemented an interface that provides dynamic and online
control of the lights rewards through the serial port, and can
be used by any controller.

A. Technical

On the board there is a usb hub which connects a number
of I/O usb cards controlling the lights, the buttons, the motors
of the rewards draws, the audio, etc. For the serial control
interface the I/O cards are connected directly to the usb ports
of a PC. The usb-to-serial converter may require a driver which
can be found in the manufacturer’s website2, although no
installation was necessary as the driver seems to be included
in the linux kernel 2.6.32-31, and as such I assume in any
more recent ones.

The serial control interface was written in python (2.6.5),
and the development platform was running Ubuntu Linux
10.04 64-bit with kernel 2.6.32-31-generic.

The board we had available had a slightly different wiring
from the original one shown in Figure 9. Its differences are
highlighted in Figure 9.

For the control of the lights, the writing of a 3 − byte
message to the (usb-to-)serial port which is connected to
the PC is needed. The order of the bits are shown in Fig-
ure 9. The main file is board_serial_control.py,
which provides the class C_BoardSerialControl that
consists of C_LightsSerialControl that is responsible
for controlling the lights. If the wiring of another board is
different from the one provided, all is needed is to change the
mapping dictionary (line 60) to the correct mapping. A small
utility (board_quick_test_serial_lights.py) can
be used to identify the wiring of your board. Also the programs

1http://www.im-clever.eu/
2http://www.ftdichip.com/Drivers/VCP.htm



Fig. 9. Experimental board that was available

demo.py and demo_sections.py demonstrate the use
of the provided interface. Lastly, the interface can be easily
extended for the rest of the modules on the board if they follow
a similar interface.

VI. CONCLUSION

By design, the mechanism to determine looking time to-
wards a foveal stimulus as a function of its complexity
was successful, but this is not the interesting result since
these dynamics are predicted and necessitated by the simple
mechanism.

The interesting result will be the inter-object looking be-
havior in a real environment. Will, and how often will, the
system make saccades to “noise” areas but then quickly look
away because of lack of complexity?

In the future, the model will be implemented as the more
complex anatomical circuit, the saliency map replaced with
proper neural code from the eye-up, and the actual neurons
“fudged” in most of the areas and their dynamics actually
simulated. The benefit of building the more realistic model
will be to actually look at the different dynamics of the model
in reaction to the changing environment, since that kind of
interaction can not be easily predicted or simulated.

In addition, in the future we intend to explore the interaction
of a learning system (i.e. a habituation mechanism) and
how it interacts with the simple ocular-motor control system
implemented in this report.
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