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On the dynamics of active categorisation of

different objects shape through tactile sensors

Elio Tuci, Gianluca Massera, and Stefano Nolfi

ISTC-CNR, Via San Martino della Battaglia, n. 44
00185 Rome, Italy

{elio.tuci,gianluca.massera,stefano.nolfi}@istc.cnr.it

Abstract. Active perception refers to a theoretical approach to the
study of perception grounded on the idea that perceiving is a way of
acting, rather than a process whereby the brain constructs an inter-
nal representation of the world. In this paper, we complement previous
studies by illustrating the operational principles of an active categorisa-
tion process in which a neuro-controlled anthropomorphic robotic arm,
equipped with coarse-grained tactile sensors, is required to perceptually
categorise spherical and ellipsoid objects.

Key words: Active perception, categorisation, evolutionary robotics.

1 Introduction

Categorical perception is a fundamental cognitive capacity displayed by natu-
ral organisms, and it can be defined as the ability to divide continuous signals
received by sense organs into discrete categories whose members resemble each
other more than members of other categories [1]. Most of the work in litera-
ture focuses on categorization processes that are passive (i.e., the agents can
not influence their sensory states through their actions) and instantaneous (i.e.,
the agents are demanded to categorise their current sensory state rather than a
sequence of sensory states distributed over a certain time period). Active cat-
egorical perception can be studied by exploiting the properties of autonomous
embodied and situated agents, in which categorical perception is strongly influ-
enced by the agent action [see also 2, 3, on this issue].

The works described in [4, 5, 6, 7, 8, 9, 10] contributed to the study of active
categorisation by showing that relatively complex categorisation tasks can be
solved by autonomous agents equipped with simple sensory-motor and cogni-
tive apparatus that lacks some of those elements previously assumed necessary
to recognise and categorise various types of objects or environmental circum-
stances. By following this line of investigation, the work described in [11] focuses
on the study of categorical perception in a task in which a simulated anthropo-
morphic robotic arm is demanded to actively categorize un-anchored spherical
and ellipsoid objects placed in different positions and orientations over a pla-
nar surface. Populations of evolving robots are left free to determine the way in
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which they categorize the shape of the objects within the limits imposed by the
experimental scenario and by the computational power of their neural controller.
This implies that the robots are left free to determine (i) how to interact with
the external environment (by eventually modifying the environment itself); (ii)
how the experienced sensory stimuli are used to discriminate the two categories;
and (iii) how to represent in the categorisation space each object category. The
analysis of the obtained results indicates that the robots are indeed capable of
developing an ability to effectively categorize the shape of the objects despite
the high similarities between the two types of objects, the difficulty of effec-
tively controlling a body with many degrees of freedoms (hereafter, DOFs), and
the need to master the effects produced by gravity, inertia, collisions etc. More
specifically, the best individuals display an optimal ability to correctly categorize
the objects located in different positions and orientations already experienced
during evolution, as well as an excellent ability to generalize their skill to objects
positions and orientations never experienced during evolution.

This paper complements the results and analysis shown in [11] by describing
interesting operational aspects of the categorisation ability of the best evolved
agent. In particular, we look at (i) how the robot acts in order to bring fourth
the sensory stimuli which provide the regularities necessary for categorizing the
objects in spite of the fact that sensation itself may be extremely ambiguous,
incomplete, partial, and noisy; (ii) the dynamical nature of sensory flow (i.e.,
how sensory stimulation varies over time and the time rate at which significant
variations occur); (iii) the dynamical nature of the categorization process (i.e.,
whether the categorization process occur over time while the robot interacts with
the environment).

2 Methods

In this Section, we provide only a minimal description of the methods employed
to design successful controllers. More details on the methods of this study can be
found in [11]. The simulated robot consists of an anthropomorphic robotic arm
with 7 actuated DOFs and a hand with 20 actuated DOFs (see Fig. 1a). Propri-
oceptive and tactile sensors are distributed on the arm and the hand (see Fig. 1b
and 1c). The robot and the robot/environmental interactions are simulated using
Newton Game Dynamics (NGD), a library for accurately simulating rigid body
dynamics and collisions (more details at www.newtondynamics.com). The active
joints of the robotic arm are actuated by two simulated antagonist muscles im-
plemented accordingly to the Hill’s muscle model, as detailed in [12]. The agent
controller consists of a continuous time recurrent non-linear network (CTRNN)
with 22 sensory neurons, 8 internal neurons, and 18 motor neurons [see Fig. 1d
and also 13]. τiẏi = −yi + gIi for i = 1, .., 22 is the equation used to update the
state of sensory neurons. τiẏi = −yi +

∑m

j=n ωjiσ(yj + βj) for i = 23, .., 30; with
n = 1, and m = 30 is the equation used to update the state of internal neurons,
and for i = 31, .., 48; with n = 23, and m = 30 is used to update the state of
motor neurons. yi represents the state of a neuron, τi the decay constant, g is
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Fig. 1. (a) The simulated robotic arm. The kinematic chain (b) of the arm, and (c)
of the hand. In (b) and (c), cylinders represent rotational DOFs; the axes of cylinders
indicate the corresponding axis of rotation; the links among cylinders represents the
rigid connections that make up the arm structure. Ji with i = 1, .., 12 refer to the joints
whose state is both sensed and set by the arm’s controller. Ti with i = 1, .., 10 indicate
the tactile sensors. (d) The architecture of the arm controller. The circles refer to the
artificial neurons. Continuous line arrows indicate the efferent connections for the first
neuron of each layer. Dashed line arrows indicate the correspondences between joints
and tactile sensors and input neurons. The labels on the dashed line arrows refer to
the mathematical notation used to indicate the readings of the corresponding sensors.

a gain factor, Ii the intensity of the perturbation on sensory neuron i, ωji the
strength of the synaptic connection from neuron j to neuron i, βj the bias term,
σ(yj +βj) the firing rate. τi with i = 23, .., 30, βi with i = 1, .., 48, all the network
connection weights ωij , and g are genetically specified networks’ parameters. τi

with i = 1, .., 22 and i = 31, .., 48 is equal to ∆T . There is one single bias for all
the sensory neurons. The activation values yi of motor neurons determine the
state of the simulated muscles of the arm [see 12, for a detailed description of
the functional properties of the arm]. The activation values yi of output neu-
rons i = 47, 48 are used to categorize the shape of the objects. In particular, in
each trial k, the agent represents the experienced object (i.e., the sphere S or
the ellipsoid E) by associating to it a rectangle RS

k or RE
k whose vertices are:

(min0.95T<t<T σ(y47(t) + β47), min0.95T<t<T σ(y48(t) + β48)) for the bottom left
vertex, and (max0.95T<t<T σ(y47(t)+β47), max0.95T<t<T σ(y48(t)+β48)) for the
top right vertex, with T = 400 time steps (i.e., 4 simulated seconds) correspond-
ing to the length of a trial. The sphere category, referred to as CS , corresponds
to the minimum bounding box of all RS

k ; the ellipsoid category, referred to as
CE , corresponds to the minimum bounding box of all RE

k .
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A simple generational genetic algorithm is employed to set the parameters
of the networks [see 14]. The initial population contains 100 genotypes. Gener-
ations following the first one are produced by a combination of selection with
elitism, and mutation [see also 11, for details]. Cell potentials are set to 0 when
the network is initialised or reset (i.e., at the beginning of each trial), and cir-
cuits are integrated using the forward Euler method with an integration step-size
∆T = 0.01 [see 15]. During evolution, agents have been rewarded by an eval-
uation function which seeks to assess their ability to recognise and distinguish
the ellipsoid from the sphere. Note that, rather than imposing a representation
scheme in which different categories are associated with a priori determined
state/s of the categorization neurons (i.e., neurons 47 and 48), we left the robots
free to determine how to communicate the result of their decision. That is, the
agents can develop whatever representation scheme as long as each object cat-
egory is clearly identified by a unique state/s of the categorisation neurons.
More precisely, we scored agents on the basis of the extent to which the catego-
rization outputs produced for objects of different categories are located in non-
overlapping regions of a two dimensional categorization space C ∈ [0, 1]× [0, 1].

3 Results

Results of post-evaluation tests illustrated in [11] shows that the best evolved
agent (hereafter, A1) possesses a close to optimal ability to discriminate the
shape of the objects as well as an excellent ability to generalize their skill in
new circumstances. Moreover, in [11] it is shown that A1, for one of the two
positions experienced during evolution (i.e., position A, angle of joints J1, ..., J7

are {−50◦,−20◦,−20◦,−100◦,−30◦, 0◦,−10◦}), exploits only tactile sensation
to categorise the objects. In this Section, we take advantage of this latest re-
sult by running tests that further explore the dynamics of the decision of A1

in position A, beyond the qualitative description illustrated in [11]. In particu-
lar, our interest is in finding out whether there are distinctive and functionally
different temporal phases during the categorisation process. How long does the
agent need to interact with the object before been able to tell whether is touch-
ing a sphere or an ellipsoid? Does the discrimination process occur at a specific
moment, as a response to a sensory pattern that encode the regularities which
are necessary for discriminating, or does it occur over time by integrating the
information contained in several successive sensory states? Note that movies of
the best evolved strategies can be found at http://laral.istc.cnr.it/esm/

active perception.
To answer these questions we begin by using a slightly modified version of the

Geometric Separability Index (hereafter, referred to as GSI) originally proposed
in [16]. GSI represents an estimate of the degree to which tactile sensor readings
experienced during the interactions with the sphere or with the ellipsoid are
separated in sensory space. We built four hundred data sets, one for each time
step with the ellipsoid (i.e., {ĨE

k }180

k=1
), and four hundred data sets, one for each

time step with the sphere (i.e., {ĨS
k }

180

k=1
). Where, ĨE

k is the tactile sensor readings
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Fig. 2. (a) The Geometric Separability Index (GSI); (b) the formal definition of GSI;
(c) the number of tactile ambiguities; (d) the percentage of success in pre-substitution

tests (see triangles) and post-substitution tests (see empty circles).

experienced by A1 while interacting with the ellipsoid at time step t of trial k;
and ĨS

k is the tactile sensor readings experienced by A1 while interacting with
the sphere at time step t of trial k. Trial after trial, the initial rotation of the
ellipsoid around the z-axis changes of 1◦, from 0◦ in the first trial to 179◦ in the
last trial. Each trial is differently seeded to guaranteed random variations in the
noise added to sensors readings. At each time step t, the GSI is computed as
shown in Fig. 2b, where H(x, y) is the Hamming distance between tactile sensor
readings. |x| means the cardinality of the set x. GSI=1 means that at time step
t the closest neighbourhood of each ĨE

k is one or more ĨE
k . GSI=0 means that at

time step t the closest neighbourhood of each ĨE
k is one or more ĨS

k .

As shown in Fig. 2a, the GSI(t) tends to increase from about 0.5 at time
step 1 to about 0.9 at time step 200, and to remain around 0.9 until time step
400. This trend suggests that during the first 200 time steps, the agent acts
in a way to bring forth those tactile sensor readings which facilitate the object
identification and classification task. In other words, the behaviour exhibited
by the agent allows it to experience two classes of sensory states, rather well
separated in the sensory space, which correspond to objects belonging to two
different categories. However, the fact that the GSI does not reach the value
of 1.0 indicates that the two groups of sensory patterns belonging to the two
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objects are not fully separated in the sensory space. In other words, some of the
sensory patterns experienced during the interactions with an ellipsoid are very
similar or identical to sensory patterns experienced during interactions with
the sphere and vice versa. This is confirmed by the graph shown in Fig. 2c,
which refers to the number of tactile ambiguities at each time step. A tactile
ambiguity is defined as the condition in which mES = 0. This means that some
of the patterns are experienced during interactions with both an ellipsoid and
a sphere. This implies that A1 can not determine the category of the current
object solely on the basis of the current sensory stimuli. Thus, it follows that the
most plausible hypothesis about the categorization process is that it involves an
ability to integrate sequences of experienced sensory states over time. To test
this hypothesis we employ substitution tests.

A substitution test is a post-evaluation test in which one type of sensory in-
formation experienced by the agent during the interactions with an ellipsoid is
replaced with the corresponding type of sensory information previously recorded
in trials in which the agent was interacting with a sphere. In this case, we replace
tactile sensation at specific interval of time during each trial. In a first series of
tests, referred to as pre-substitution tests, substitutions have been applied from
the beginning of each trial up to time step t where t = 1,..,400. In a second
series of tests, referred to as post-substitution tests, substitutions have been ap-
plied from time step t, where t = 1,..,400, to the end of a trial t=400. Each test
has been repeated at intervals of 20 time steps. The test is repeated for 180 trials
in which the orientation of the ellipsoid object around the z-axis varies from 0◦,
in the first trial, to 179◦, in the last trial. In a substitution test, a 400 time steps
trial k can: (i) successfully terminate if the RE

k , built as illustrated in Sec. 2, com-
pletely falls within the bounding box CE , previously built by running specific
post-evaluation tests, and corresponding to the ellipsoid category for agent A1;
(ii) unsuccessfully terminate with a sphere response if the RE

k completely falls
within the two-dimensional space delimited by the bounding box CS previously
built by running specific post-evaluation tests, and corresponding to the sphere
category for agent A1; (iii) unsuccessfully terminate with a none response, if the
RE

k , completely falls outside the two-dimensional space delimited by the bound-
ing boxes CS

i ∩ CE
i . The results of pre-substitution tests and post-substitution

tests are illustrated in Fig. 2d, which shows that, regardless of the rotation of
the ellipsoid, pre-substitutions which do not affect the last 100 time steps do
not cause any drop in performance. For pre-substitution tests that involve more
than 300 time steps the amount of performance drop is higher for longer substi-
tution periods (see triangles in Fig. 2d). Similarly, the agent does not incur in
any performance drop if post-substitutions affect less than 100 time steps. For
post-substitution tests that affect more than the last 100 time steps the amount
of performance drop is higher for longer substitution periods (see empty circles
in Fig. 2d). Overall, the results shown in Fig. 2 as well as the trajectories of the
average decision outputs shown in [11] indicate that, for what concerns position
A, the interactions between the agent and the objects can be divided into three
temporal phases that are qualitatively different from the point of view of the
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categorization process: (i) an initial phase whose upper bound can be approx-
imately fixed at time step 250, in which the categorization process begins but
in which the categorization answer produced by the agent is still reversible; (ii)
an intermediate phase whose upper bound can be approximately fixed at time
step 350, in which very often a categorization decision is taken on the basis of all
previously experienced evidences; and (iii) a final phase in which the previous
decision (which is now irreversible) is maintained. As also noticed by looking at
the trajectories of the average decision outputs shown in [11], during the initial
phase the robot starts to differentiate the categorization output produced for
different type of objects by accumulating the evidences provided by the experi-
enced sensory states. The fact the sensory states provide sufficient information
for discriminating the two categories is demonstrated by the fact that the GSI
increases from the chance level (0.5) up to a value of about 0.9 at the end of
the initial phase (see Fig. 2a). The fact that the categorization decision formed
by the agent during the initial phase is not definitive yet is demonstrated by
the fact that substitutions of the critical sensory stimuli performed during this
phase do not cause any drop in performance (see Fig. 2d, triangles). The fact
that the intermediate phase corresponds to a critical period is demonstrated by
the fact that pre-substitutions and post-substitutions affecting this phase pro-
duce a significant drop in performance (see Fig. 2d). The fact that the robot
take an ultimate decision during the intermediate phase is demonstrated by the
fact that post-substitutions affecting the last 80 time steps, approximately, do
not produce any drop in performance (see Fig. 2d, empty circles).

4 Conclusion

This paper illustrates post-evaluation tests that complement the results shown
in [11] concerning the perceptual categorisation ability of a simulated autonomous
agent. The analysis indicates that one fundamental skill that allows the best
evolved agent to distinguish sphere from ellipsoid objects consists in the ability
to interact with the external environment and to modify the environment itself
so to experience sensory states which are as differentiated as possible for differ-
ent categorical contexts. On the one hand, this result represents a confirmation
of the importance of sensory-motor coordination, and more specifically of the
active nature of situated categorization, already highlighted in previous stud-
ies [e.g., 7, 8]. On the other hand, the results demonstrate that, in this specific
scenario, sensory-motor coordination needs to be complemented by other addi-
tional mechanisms. In fact, the best evolved robot does not succeed in acting
in a way to experience at any time step separated sensory states for different
object categories. The categorization process displayed by this agent is realized
dynamically by integrating the evidences provided by the experienced sensory
stimuli over time.
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