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Abstract. The last two decades have seen many powerful classification systems
being built for large-scale real-world applications. However, for all their accuracy,
one of the persistent obstacles facing these systems is thatof data dimensionality.
To enable such systems to be effective, a redundancy-removing step is usually re-
quired to pre-process the given data. Rough set theory offers a useful, and formal,
methodology that can be employed to reduce the dimensionality of datasets. It
helps select the most information rich features in a dataset, without transform-
ing the data, all the while attempting to minimise information loss during the
selection process. Based on this observation, this paper discusses an approach for
semantics-preserving dimensionality reduction, or feature selection, that simpli-
fies domains to aid in developing fuzzy or neural classifiers.Computationally, the
approach is highly efficient, relying on simple set operations only. The success
of this work is illustrated by applying it to addressing two real-world problems:
industrial plant monitoring and medical image analysis.

1 Introduction

Knowledge-based classification systems have been successful in many application
areas. However, complex application problems, such as reliable monitoring and dia-
gnosis of industrial plants and trustworthy analysis and comparison of medical images,
have emphasised the issue of large numbers of features present in the problem domain,
not all of which will be essential for the task at hand. The applicability of most classific-
ation systems is often limited by the curse of dimensionality that imposes a ceiling on
the complexity of the application domain. A method to allow generation of intelligent
classifiers for such application domains is clearly desirable.

Dimensionality reduction is also required to improve the runtime performance of a
classifier. For example, in industrial plant monitoring, byrequiring less observations per
variable, the dimensionality reduced system becomes more compact and its response
time decreases. The cost of obtaining data drops accordingly, as fewer connections to
instrumentation need be maintained. In the meantime, the overall robustness of the sys-
tem can increase, since, with fewer instruments, the chances of instrumentation mal-
functions leading to spurious readings may be reduced dramatically.

Inspired by such observations, numerous different dimensionality reduction meth-
odologies have been proposed in the literature. Unfortunately, many of them remove
redundancy by irretrievably destroying the original meaning of the data given for learn-
ing. This significantly reduces, if not completely loses, the potential expressive power



of the classification systems for computing with clear semantics. This, in turn, leads to
a lack of trust in such systems, while such trust is usually critical for the systems to be
taken up by end users.

The work on rough set theory [7] offers an alternative, and formal, methodology
(amongst many other possible applications, e.g. [6, 8]) that can be employed to reduce
the dimensionality of datasets, as a preprocessing step to assist the development of
any type of classifiers via learning from data. It helps select the most information rich
features in a dataset, without transforming the data, all the while attempting to minim-
ise information loss during the selection process [14]. Computationally, the approach
is highly efficient, relying on simple set operations, whichmakes it suitable as a pre-
processor for techniques that are much more complex. Unlikestatistical correlation-
reducing approaches [1], it requires no human input or intervention and retains the
semantics of the original data.

Combined with an intelligent classification system built by, say, a fuzzy system or
a neural network, the feature selection approach based on rough set theory can not only
retain the descriptive power of the overall classifier, but also allow simplified system
structure. This helps enhance the interoperability and understandability of the resultant
systems and their reasoning. Drawing on the initial resultspreviously presented in [12–
14], this paper demonstrates the applicability of this approach in supporting transparent
fuzzy or neural classifiers, with respect to two distinct application domains.

The remainder of this paper is structured as follows. The rough set-assisted feature
selection mechanism is summarised in section 2 for self-containedness. This is followed
by an illustration of the two example applications, demonstrating how different classi-
fication tasks can benefit from rough set-assisted semantics-preserving dimensionality
reduction. The paper is concluded in section 5, with interesting further work pointed.

2 Feature Selection

This section shows the basic ideas of rough sets [7] that are relevant to the present
work and describes an efficient computational algorithm, named Rough Set Attribute
Reduction (RSAR), for feature selection.

2.1 Rough Sets

A rough set is an approximation of a vague concept by a pair of precise concepts,
called lower and upper approximations. The lower approximation is a description of
the domain objects which are known with absolute certainty to belong to the subset of
interest, whereas the upper approximation is a descriptionof the objects which possibly
belong to the subset.

Rough sets have been employed to remove redundant conditional attributes from
discrete-valued datasets, while retaining their information content. Central to this work
is the concept of indiscernibility. Without losing generality, let I = (U, A) be an inform-
ation system, whereU is a non-empty set of finite objects (the universe of discourse),
andA is a non-empty finite set of variables such thata : U → Va ∀a ∈ A, Va being the
value set of variablea. In building a classification system, for example,A = {C ∪ D}



whereC is the set of input features andD is the set of class indices. Here, a class index
d ∈ D is itself a variabled : U → {0, 1} such that fora ∈ U, d(a) = 1 if a has classd
andd(a) = 0 otherwise.

With anyP ⊆ A there is an associated equivalence relationIND(P ):

IND(P ) = {(x, y) ∈ U × U | ∀ a ∈ P, a(x) = a(y)} (1)

Note that this corresponds to the equivalence relation for which two objects are equi-
valent if and only if they have vectors of attribute values for the attributes inP . The
partition ofU , determined byIND(P) is denotedU /P, which is simply the set of equi-
valence classes generated byIND(P ).

If (x, y) ∈ IND(P ), thenx andy are indiscernible by features inP . The equi-
valence classes of theP -indiscernibility relation are denoted [x]P . Let X ⊆ U , the
P-lower and P-upper approximations of a classical crisp set are respectively defined as:

PX = {x | [x]P ⊆ X} (2)

PX = {x | [x]P ∩ X 6= Ø} (3)

Let P andQ be subsets ofA, then the important concept ofpositive region is defined
as:

POSP (Q) =
⋃

X∈U/Q

PX (4)

For tasks like classification with feature patterns, the positive region contains all
objects ofU that can be classified into classes ofU /Q using the knowledge conveyed
by the features ofP.

2.2 Feature Dependency and Significance

The important issue here is to discover dependencies of object classes upon given fea-
tures. Intuitively, a set of classesQ depends totally on a set of featuresP, denotedP
⇒ Q, if all class indices fromQ are uniquely determined by values of features fromP.
Dependency can be measured in the following way [14]:

ForP,Q ⊆ A, Q depends onP in a degreek (0≤ k ≤ 1), denotedP ⇒k Q, if

k = γP (Q) =
|POSP (Q)|

|U |
(5)

where|S| stands for the cardinality of setS.
If k = 1, Q depends totally onP; if 0 < k < 1, Q depends partially (in a degreek) on P;
and ifk = 0, Q does not depend onP.

By calculating the change in dependency when a feature is removed from the set
of considered possible features, an estimate of the significance of that feature can be
obtained. The higher the change in dependency, the more significant the feature is. If
the significance is 0, then the feature is dispensable. More formally, givenP,Q and a
featurex ∈ P, the significance of featurex uponQ is defined by

σP (Q, x) = γP (Q) − γP−{x}(Q) (6)



2.3 Feature Selection Algorithm

The selection of features is achieved by reducing the dimensionality of a given feature
set, without destroying the meaning conveyed by the individual features selected. This
is, in turn, achieved by comparing equivalence relations generated by sets of features
with regard to the underlying object classes, in the contextof classification.

Features are removed so that the reduced set will provide thesame quality of clas-
sification as the original. For easy reference, the concept of retainer is introduced as a
subsetR of the initial feature setC such thatγR(D) = γC(D). A minimal retainer is
termed areduct in the literature [9]. That is, a further removal of any feature from a
reduct will make it violate the constraintγR(D) = γC(D).

Thus, a given dataset may have many feature retainers, and the collection of all
retainers is denoted by

R = {X | X ⊆ C, γX(D) = γC(D)} (7)

The intersection of all the sets inR is called thecore, the elements of which are
those features that cannot be eliminated without introducing more contradictions to the
representation of the dataset. Clearly, for feature selection, an attempt is to be made to
locate a minimal retainer, or a single reduct,Rmin ⊆ R :

Rmin = {X | X ∈ R, ∀Y ∈ R, |X | ≤ |Y |} (8)

A basic way of achieving this is to calculate the dependencies of all possible subsets
of C. Any subsetX with γX(D) = 1 is a retainer; the smallest subset with this property
is a reduct. However, for large datasets with a large featureset this method is impractical
and an alternative strategy is required.

1. R← {}
2. do
3. T ← R

4. ∀x ∈ (C −R)
5. if γR∪{x}(D) > γT (D)
6. T ← R ∪ {x}
7. R← T

8. until γR(D) = γC(D)
9. return R

Fig. 1. The RSAR feature selection algorithm.

The RSAR feature selection algorithm given in Figure 1 attempts to calculate a re-
duct without exhaustively generating all possible subsets. It starts off with an empty
set and adds in turn, one at a time, those features that resultin the greatest increase in
γP (Q), until the maximum possible value ofγP (Q), usually 1, results for the given
dataset. Note that this method does not always generate aminimal retainer (or reduct),



asγP (Q) is not a perfect heuristic. However, it does result in a close-to-minimal re-
tainer, which is still useful in greatly reducing feature set dimensionality. It is also
worth noting that one way to guarantee the generation of a reduct is to apply RSAR
in conjunction with a selection strategy that works in reverse order (i.e., starting with a
full set of features and then deleting one at a time). Nevertheless, such an approach has
a significant practical limit when the original feature set is of a high dimensionality.

RSAR works in a greedy manner, not compromising with a set of features that con-
tains a large part of the information of the initial set. It attempts to reduce the feature
set without loss of information significant to solving the problem at hand. The way it
works is clearly dependent upon features being representedin nominal values. How-
ever, this does not necessarily give rise to problems in the use of the overall classific-
ation system which includes such a feature selection preprocessor. This is because the
real feature values are only required to be temporarily discretised for feature selection
itself. The classifier will use the original real-valued features directly. In this regard, it
is independent of the classification methods adopted. When used in conjunction with
an explicit descriptive classifier, the resulting system will be defined in terms of only
the significant features of the data, retaining the desirable transparency. The training
process is accelerated, while the runtime operation of the system is sped up since fewer
attributes are required.

3 Application I: Industrial Plant Monitoring

This application concerns the task of monitoring a water treatment plant [14]. To il-
lustrate the generality of the presented approach and its, involving the use of a fuzzy
system based classifier. This domain was chosen because of its realism. A large plant is
likely to involve a number of similar features, not all of which will be essential in de-
termining the operational status. Interrelations betweenfeatures are unavoidable as the
plant is a single system with interconnections, leading to afair degree of redundancy.

3.1 Problem Case

The Water Treatment dataset comprises a set of historical data obtained over a period
of 521 days, with one series of measurements per day. Thirty eight different feature
values are measured per day, with one set of such measurements forming one datum. All
measurements are real-valued. The goal is to implement a fuzzy classification system
that, given this dataset of past measurements and without the benefit of an expert in
the field at hand, will classify the plant’s status and produce human comprehensible
explanations of the monitoring results.

The thirty eight features account for the following five aspects of the water treatment
plant’s operation (see Figure 2 for an illustration of this): input to plant; input to primary
settler; input to secondary settler; output from plant; andoverall plant performance. The
operational state of the plant is represented by a boolean categorisation representing the
detection of a fault. The point is to draw the operator’s attention to an impending fault.



Primary Settler Secondary Settler

Secondary Settler Gauges (7)

Overall Performance Gauges (9)

Output Gauges (7)Primary Settler Gauges (6)Input Gauges (9)

Fig. 2. Schematic diagram of the water treatment plant, indicatingthe number of measurements
sampled at various points.

3.2 Fuzzy Classifier

In this experimental study, to obtain a system that will entail classification of the plant’s
operating status, the fuzzy induction algorithm first reported in [3] is used. This is ad-
opted simply due to the availability of its software implementation; any other fuzzy rule
induction method may be utilised as an alternative for classifier building. The resulting
classification system is represented in a set of fuzzy production rules. For the sake of
completeness, an outline of the induction algorithm employed is given below.

The algorithm generates a hyperplane of candidate fuzzy rules by fuzzifying the
entire training dataset using all permutations of the inputfeatures. Thus, a system with
M inputs, each of which has a domain fuzzified byfj fuzzy sets (1 ≤ j ≤ M ), the
hyperplane is fuzzified into

∏M
j=1

fj M -dimensional clusters, each representing one
vector of rule preconditions. Each clusterp = 〈D1, D2, . . . , DM 〉 may lead to a fuzzy
rule, provided that the given dataset supports it.

To obtain a measure of what classification applies to a cluster, fuzzy min-max com-
position is used. The input feature pattern of each example object is fuzzified accord-
ing to the fuzzy sets{µD1 , µD2 , . . . , µDM } that make up clusterp. For each object
x = 〈x1, x2, . . . , xM 〉, the followingt-norm of it, with respect to clusterp and classi-
ficationc, is calculated:

T
p
c x = min

(

µD1(x1), µD2(x2), . . . , µDM (xM )
)

(9)

Furthermore, the maximum of allt-norms with respect top andc is then calculated and
this is dubbed ans-norm:

S
p
c = max

{

T
p
c x | x ∈ Cc

}

(10)

whereCc is the set of all examples that can be classified asc. This is iterated over all
possible classifications to provide a full indication of howwell each cluster applies to
each classification.



A cluster generates at most one classification rule. The rule’s preconditions are the
cluster’sM co-ordinate fuzzy sets connected conjunctively. The conclusion is the clas-
sification attached to the cluster. Since there may bes-norms for more than one clas-
sification, it is necessary to decide on one classification for each of the clusters. Such
contradictions are resolved by using theuncertainty margin, ε (0 ≤ ε < 1). An s-norm
assigns its classification on its cluster if and only if it is greater by at leastε than all other
s-norms for that cluster. If this is not the case, the cluster is considered undecidable and
no rule is generated. The uncertainty margin introduces a trade-off in the rule generation
process between the size and the accuracy of the resulting classification. In general, the
higherε is, the less rules are generated, but classification error may increase. A fuller
treatment of this algorithm in use for descriptive learningcan be found in [3].

3.3 Results

Running the RSAR algorithm on the Water Treatment dataset provided a significant
reduction, with merely two features selected from the totalof 38. Testing on previously
unseen data resulted in a classification accuracy of 97.1%, using the fuzzy model gen-
erated by the above-mentioned rule induction method.

A comparison against a widely recognised benchmark method should help in estab-
lishing the success of the system. C4.5 [10] is a widely accepted and powerful algorithm
that provides a good benchmark [5] for learning from data. The decision trees it gener-
ates allow for rapid and efficient interpretation. Yet, C4.5’s decision tree for the present
problem involves a total of three attributes from the dataset, as opposed to two chosen
by the RSAR algorithm. In terms of classification performance, C4.5 obtains a compat-
ible accuracy of around 96.8%.

Note that training a fuzzy system on all 38 features would be computationally pro-
hibitive with the adopted learning algorithm. As stated previously, the benefits do not
limit themselves to the learning phase; they extend to the runtime use of the learned
classifier. By reducing the dimensionality of the data, the dimensionality of the rule-
set is also reduced. This results in fewer measured features, which is very important for
dynamic systems where observables are often restricted. This in turn leads to fewer con-
nections to instrumentation and faster system responses inemergencies. Both of which
are important to the problem domain.

The most important benefit of using RSAR is, however, derivedfrom its conjunct-
ive use with the linguistically expressive fuzzy system. With the learned rules, it can
provide explanations of its reasoning to the operator. Thisleads to increased trust in the
system, as its alarms can be understood meaningfully. A classification system consisting
of rules involving 38 features, even though they are all directly measurable and hence
individually interpretable, is very difficult to understand, whilst one involving only two
features is very easy to interpret.

4 Application II: Medical Image Analysis

Comparing normal and abnormal blood vessel structures, viathe analysis of cell im-
ages, plays an important role in pathology and medicine [12]. This forms the focus of



this application, analysing medical images by the use of a neural network based image
classifier that is supported by RSAR.

4.1 Problem Case

Central to this analysis is the capture of the underlying features of the cell images.
Many feature extraction methods are available to yield various kinds of characteristic
descriptions of a given image. However, little knowledge isavailable as to what features
may be most helpful to provide the discrimination power between normal and abnormal
cells and between their types, while it is computationally impractical to generate many
features and then to perform classification based on these features for rapid diagnosis.
Generating a good number of features and selecting from themthe most informative
ones off-line, and then using those selected on-line is the usual way to avoid this diffi-
culty. Importantly, the features produced ought to have an embedded meaning and such
meaning should not be altered during the selection process.Therefore, this problem
presents a challenging case to test the potential of RSAR.

The samples of subcutaneous blood vessels used in this work were taken from pa-
tients suffering critical limb ischaemia immediately after leg amputation. The level of
amputation was always selected to be in a non-ischaemic area. The vessel segments ob-
tained from this area represented internal proximal (normal) arteries, whilst the distal
portion of the limb represented ischaemic (abnormal) ones.Images were collected us-
ing an inverted microscope, producing an image database of 318 cell images, each sized
512×512 pixels with grey levels ranging from0 to 255. Examples of the three types of
cell image taken from non-ischaemic, and those from ischaemic, resistance arteries are
shown in Figure 3. Note that many of these images seem rather similar to the eye. It is
therefore a difficult task for visual inspection and classification.

4.2 Neural Network Classifier

In this work, each image classifier is implemented using a traditional multi-layer feed-
forward artificial neural network (MFNN). To capture and represent many possible and
essential characteristics of a given image, fractal models[4] are used. Note that, al-
though these particular techniques are herein adopted to perform their respective task,
the work described does not rely on them, but is generally applicable when other clas-
sification and feature extraction methods are employed.

An MFNN-based classifier accomplishes classification by mapping input feature
patterns onto their underlying image classes. The design ofeach MFNN classifier used
for the present work is specified as follows. The number of nodes in its input layer is set
to that of the dimensionality of the given feature set (before or after feature reduction),
and the number of nodes within its output layer is set to the number of underlying
classes of interest. The internal structure of the network is designed to be flexible and
may contain one or two hidden layers.

The training of the classifier is essential to its runtime performance, and is here
carried out using the back-propagation algorithm [11]. Forthis, feature patterns that
represent different images, coupled with their respectiveunderlying image class indices,
are selected as the training data, with the input features being normalised into the range



(1) adventitial (2) SMC (3) endothelial

(a) from proximal, non-ischaemic blood vessels

(1) adventitial (2) SMC (3) endothelial

(b) from distal, ischaemic blood vessels

Fig. 3. Section cell images, where the first, second and third columns respectively show adventi-
tial, smooth muscle and endothelial cells in proximal non-ischaemic and distal ischaemic subcu-
taneous blood vessels, taken from a human lower limb.

of 0 to 1. Here, each feature pattern consists of 9 fractal features (including 5 isotropic
fractals measured on the top five finest resolutions and 4 directional fractals [12]) and
the mean and standard deviation (STD), with their referencenumbers listed in Table 1.
Note that when applying the trained classifier, only those features selected during the
learning phase are required to be extracted and that no discretisation is needed but real-
valued features are directly fed to the classifier.



Feature No. Feature Meaning Feature No. Feature Meaning

1 0◦ direction 7 3rd finest resolution
2 45◦ direction 8 4th finest resolution
3 90◦ direction 9 5th finest resolution
4 135◦ direction 10 Mean
5 Finest resolution 11 STD
6 2nd finest resolution

Table 1.Features and their reference number.

4.3 Results

Eighty-five images selected from the image database are usedfor training and the re-
maining 233 images are employed for testing. For simplicity, only MFNNs with one
hidden layer are considered.

Table 2 lists the results of using RSAR and the original full set of features. The error
rate of using the five selected features is lower than that of using the full feature set. This
improvement of performance is obtained by a structurally much simpler network of 10
hidden nodes, as opposed to the classifier that requires 24 hidden nodes to achieve
the optimal learning. This is indicative of the power of RSARin helping reduce not
only redundant feature measures but also the noise associated with such measurement.
Also, the classifier using those five RSAR-selected featuresconsiderably outperforms
those using five randomly selected features, with the average error of the latter reaching
19.1%.

Method Dimensionality Features Structure Error

Rough 5 1,4,9,10,11 5×10 + 10×6 7.55%
Original 11 1,2,3,4,5,6,7,8,9,10,11 11×24 + 24×6 9.44%

Table 2.Results of using rough-selected and the original full set offeatures.

Again, a comparison against a widely recognised benchmark method should help
reflect the success of the system. For this, the results of rough feature selection are
systematically compared to those obtained via the use of Principal Component Ana-
lysis (PCA) [1], as summarised in Table 3. Note that PCA is perhaps the most adopted
dimensionality reduction technique. Although efficient, it irreversibly destroys the un-
derlying semantics of the feature set. Therefore, in this table, for the results of using
PCA, feature numberi, i ∈ {1, 2, ..., 11}, stands for theith principal component, i.e.
the transformed feature that is corresponding to theith largest variance.

The advantages of using RSAR are clear. Of the same dimensionality (i.e., 5), the
classifier using the features selected by the rough set approach has a substantially higher
classification accuracy, and this is achieved via a considerably simpler neural network.



Method Dimensionality Features Structure Error

Rough 5 1,4,9,10,11 5×10+ 10×6 7.7%
PCA 1 1 1×12 + 12×6 57.1%

2 1,2 2×12 + 12×6 32.2%
3 1,2,3 3×12 + 12×6 31.3%
4 1,2,3,4 4×24 + 24×6 28.8%
5 1,2,3,4,5 5×20+ 20×6 18.9%
6 1,2,3,4,5,6 6×18 + 18×6 15.4%
7 1,2,3,4,5,6,7 7×24 + 24×6 11.6%
8 1,2,3,4,5,6,7,8 8×24 + 24×6 13.7%
9 1,2,3,4,5,6,7,8,9 9×12 + 12×6 9.9%
10 1,2,3,4,5,6,7,8,9,10 10×20 + 20×6 7.3%
11 1,2,3,4,5,6,7,8,9,10,11 11×8 + 8×6 7.3%

Table 3.Results of using rough and PCA-selected features.

When increasing the dimensionality of principal features,the error rate generally gets
reduced, but the classifier generally underperforms until almost the full set of principal
features is used. The overall structural complexity of all these classifiers are more com-
plex than that of the classifier using the five RSAR-selected features. In addition, the
use of those classifiers that use PCA-selected features would require many more feature
measurements to achieve comparable classification results.

5 Conclusion

It is well-known that the applicability of most intelligentclassification approaches is
limited by the curse of dimensionality, which imposes a ceiling on the complexity of the
application domain. This paper has demonstrated an effective approach to semantics-
preserving dimensionality reduction by exploiting the basic ideas of rough set theory.
Such a feature selection tool makes learned classifiers muchmore transparent and com-
prehensible to humans, who have inherent trouble understanding high-dimensionality
domains, in addition to being able to lessen the obstacles ofthe dimensionality ceiling.

In summary, Rough Set Attribute Reduction (RSAR) selects the most information
rich attributes in a dataset, without transforming the data, all the while attempting to
minimise information loss as regards the classification task at hand. When employed
by an intelligent classification system (be it a fuzzy systemor neural network), by sim-
plifying the problem domain, RSAR helps enhance the transparency and maintain the
accuracy of the classifier. With relatively simple system structures, the examination of
the quality of the results inferred by the use of such classifiers is made easy. This has
been demonstrated in applications to two rather different problem domains, with very
promising results.

Although RSAR has been used as a dataset pre-processor with much success, it is
reliant upon a crisp dataset. Important information (for choosing the optimal features)
may be lost as a result of required boolean discretisation ofthe underlying numerical



features. Further advances have recently been made in proposing a feature selection
technique that employs a hybrid variant of rough sets, the fuzzy-rough sets [2], to avoid
this information loss [15]. Whilst this is out of the scope ofthis paper, it is interesting
to point out that initial experimental results, of applyingthis improved version to the
problem of industrial plant monitoring, have shown that fuzzy-rough feature selection
is more powerful than many conventional approaches, including entropy-based, PCA-
based and random-based methods.
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