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Rough Feature Selection for Intelligent Classifiers

Qiang Shen

Department of Computer Science
The University of Wales
Aberystwyth SY23 3DB, UK
ggqs@ber . ac. uk

Abstract. The last two decades have seen many powerful classificatgiaras
being built for large-scale real-world applications. Heee for all their accuracy,
one of the persistent obstacles facing these systems isfttiata dimensionality.
To enable such systems to be effective, a redundancy-reqewp is usually re-
quired to pre-process the given data. Rough set theorysdadfaseful, and formal,
methodology that can be employed to reduce the dimensigratlidatasets. It
helps select the most information rich features in a datagétout transform-
ing the data, all the while attempting to minimise informatiloss during the
selection process. Based on this observation, this papemsies an approach for
semantics-preserving dimensionality reduction, or felasielection, that simpli-
fies domains to aid in developing fuzzy or neural classifiémsnputationally, the
approach is highly efficient, relying on simple set operaionly. The success
of this work is illustrated by applying it to addressing tweat-world problems:
industrial plant monitoring and medical image analysis.

1 Introduction

Knowledge-based classification systems have been sugté@ssiany application
areas. However, complex application problems, such aabielimonitoring and dia-
gnosis of industrial plants and trustworthy analysis andgarison of medical images,
have emphasised the issue of large numbers of featurespiesiee problem domain,
not all of which will be essential for the task at hand. Theleypility of most classific-
ation systems is often limited by the curse of dimensiop#fiat imposes a ceiling on
the complexity of the application domain. A method to allogngration of intelligent
classifiers for such application domains is clearly degrab

Dimensionality reduction is also required to improve thetime performance of a
classifier. For example, in industrial plant monitoring rbguiring less observations per
variable, the dimensionality reduced system becomes nmmrgpact and its response
time decreases. The cost of obtaining data drops accoyligfewer connections to
instrumentation need be maintained. In the meantime, thetivobustness of the sys-
tem can increase, since, with fewer instruments, the clsaotamstrumentation mal-
functions leading to spurious readings may be reduced dicatig

Inspired by such observations, numerous different dinoeradity reduction meth-
odologies have been proposed in the literature. Unforipanany of them remove
redundancy by irretrievably destroying the original mearof the data given for learn-
ing. This significantly reduces, if not completely lose® fotential expressive power



of the classification systems for computing with clear seimanThis, in turn, leads to
a lack of trust in such systems, while such trust is usualtjceat for the systems to be
taken up by end users.

The work on rough set theory [7] offers an alternative, armnfd, methodology
(amongst many other possible applications, e.g. [6, 8))¢ha be employed to reduce
the dimensionality of datasets, as a preprocessing stepsist dhe development of
any type of classifiers via learning from data. It helps delee most information rich
features in a dataset, without transforming the data, allathile attempting to minim-
ise information loss during the selection process [14]. @otationally, the approach
is highly efficient, relying on simple set operations, whiolkes it suitable as a pre-
processor for techniques that are much more complex. Ustidéstical correlation-
reducing approaches [1], it requires no human input or vetetion and retains the
semantics of the original data.

Combined with an intelligent classification system built by, a fuzzy system or
a neural network, the feature selection approach basedugi et theory can not only
retain the descriptive power of the overall classifier, Haballow simplified system
structure. This helps enhance the interoperability anestdndability of the resultant
systems and their reasoning. Drawing on the initial reqarisiously presented in [12—
14], this paper demonstrates the applicability of this apph in supporting transparent
fuzzy or neural classifiers, with respect to two distinctlaggtion domains.

The remainder of this paper is structured as follows. Thghaet-assisted feature
selection mechanism is summarised in section 2 for selfatoadness. This is followed
by an illustration of the two example applications, demmatsgig how different classi-
fication tasks can benefit from rough set-assisted semaicerving dimensionality
reduction. The paper is concluded in section 5, with interggurther work pointed.

2 Feature Selection

This section shows the basic ideas of rough sets [7] thatedewant to the present
work and describes an efficient computational algorithnrmea Rough Set Attribute
Reduction (RSAR), for feature selection.

2.1 Rough Sets

A rough set is an approximation of a vague concept by a pairrefipe concepts,
called lower and upper approximations. The lower approkionas a description of
the domain objects which are known with absolute certaimtyelong to the subset of
interest, whereas the upper approximation is a descripfitire objects which possibly
belong to the subset.

Rough sets have been employed to remove redundant coraditittributes from
discrete-valued datasets, while retaining their inforaratontent. Central to this work
is the concept of indiscernibility. Without losing genétglet I = (U, A) be an inform-
ation system, wher& is a non-empty set of finite objects (the universe of disaayrs
andA is a non-empty finite set of variables such thatU' — V,, Va € A, V, being the
value set of variable. In building a classification system, for example= {C U D}



whereC is the set of input features ardlis the set of class indices. Here, a class index
d € Disitself avariablel : U — {0, 1} such that for € U, d(a) = 1if a has clasg
andd(a) = 0 otherwise.

With any P C A there is an associated equivalence relafiohD (P):

IND(P)={(z,y) eU xU|Va€P alx) = a(y)} 1)
Note that this corresponds to the equivalence relation fuckvtwo objects are equi-
valent if and only if they have vectors of attribute valuestfte attributes inP. The
partition of U, determined byND(P) is denoted//P, which is simply the set of equi-
valence classes generated/iy D(P).
If (z,y) € IND(P), thenz andy are indiscernible by features iR. The equi-
valence classes of the-indiscernibility relation are denoted]p. Let X C U, the
Pdower and Pupper approximations of a classical crisp set are respectivdipee as:

PX = {z|[z]lp C X} ()

PX = {z|[z]p N X # 0} )
LetP andQ be subsets afl, then the important concept pbsitive region is defined
as:

POSp(Q)= |J PX (4)
XeU/Q
For tasks like classification with feature patterns, theitppesregion contains all
objects ofU that can be classified into classeslofQ using the knowledge conveyed
by the features of.

2.2 Feature Dependency and Significance

The important issue here is to discover dependencies otitigsses upon given fea-
tures. Intuitively, a set of class&3 depends totally on a set of featureésdenotedP
= Q, if all class indices fronf are uniquely determined by values of features fidm
Dependency can be measured in the following way [14]:

ForPQ C A, Qdepends o in a degred (0 < k < 1), denoted® =, Q, if

k= (o) = L2 ©)
U

where|S| stands for the cardinality of sét
If k=1, Q depends totally oR; if 0 < k < 1, Q depends partially (in a degrégonP;
and ifk = 0, Q does not depend dn

By calculating the change in dependency when a feature isvethfrom the set
of considered possible features, an estimate of the signifie of that feature can be
obtained. The higher the change in dependency, the mordicégm the feature is. If
the significance is 0, then the feature is dispensable. Mmradlly, givenP,Q and a
featurex € P, the significance of featureupon( is defined by

UP(Q? I) = VP(Q> - FYP—{I}(Q) (6)



2.3 Feature Selection Algorithm

The selection of features is achieved by reducing the diroeabty of a given feature
set, without destroying the meaning conveyed by the ind&ideatures selected. This
is, in turn, achieved by comparing equivalence relationmsegated by sets of features
with regard to the underlying object classes, in the coriégtassification.

Features are removed so that the reduced set will providssatime quality of clas-
sification as the original. For easy reference, the condepgtainer is introduced as a
subsetR of the initial feature se€ such thatyr(D) = vy (D). A minimal retainer is
termed areduct in the literature [9]. That is, a further removal of any featfrom a
reduct will make it violate the constraink (D) = ¢ (D).

Thus, a given dataset may have many feature retainers, ancbtlection of all
retainers is denoted by

R={X|X C C,yx(D) =~c(D)} (7

The intersection of all the sets Ris called thecore, the elements of which are
those features that cannot be eliminated without intratyniore contradictions to the
representation of the dataset. Clearly, for feature selecan attempt is to be made to
locate a minimal retainer, or a single redugt,;, C R:

A basic way of achieving this is to calculate the dependerwiall possible subsets
of C. Any subsetX with vx (D) = 1is a retainer; the smallest subset with this property
is a reduct. However, for large datasets with a large featrthis method is impractical
and an alternative strategy is required.

LR~ {}

2.do

3. T+—R

4. Vz e (C—R)

5. ifvrogey(D) > (D)
6 T +— RU{z}

7 R—T

8. until yr(D) = vc(D)
9.return R

Fig. 1. The RSAR feature selection algorithm.

The RSAR feature selection algorithm given in Figure 1 afiesnto calculate a re-
duct without exhaustively generating all possible subdetstarts off with an empty
set and adds in turn, one at a time, those features that reghk greatest increase in
~vp(Q), until the maximum possible value ef>(Q), usually 1, results for the given
dataset. Note that this method does not always generateimal retainer (or reduct),



asyp(Q) is not a perfect heuristic. However, it does result in a closminimal re-
tainer, which is still useful in greatly reducing featurd damensionality. It is also
worth noting that one way to guarantee the generation of actdd to apply RSAR
in conjunction with a selection strategy that works in reesorder (i.e., starting with a
full set of features and then deleting one at a time). Needets, such an approach has
a significant practical limit when the original feature sebf a high dimensionality.

RSAR works in a greedy manner, not compromising with a setafifres that con-
tains a large part of the information of the initial set. tieatpts to reduce the feature
set without loss of information significant to solving theoplem at hand. The way it
works is clearly dependent upon features being represeémtedminal values. How-
ever, this does not necessarily give rise to problems in fgeofi the overall classific-
ation system which includes such a feature selection peegswr. This is because the
real feature values are only required to be temporarilyrdisged for feature selection
itself. The classifier will use the original real-valuedtig@s directly. In this regard, it
is independent of the classification methods adopted. Wked in conjunction with
an explicit descriptive classifier, the resulting systert e defined in terms of only
the significant features of the data, retaining the desratalnsparency. The training
process is accelerated, while the runtime operation ofythem is sped up since fewer
attributes are required.

3 Application I: Industrial Plant Monitoring

This application concerns the task of monitoring a wateattreent plant [14]. To il-
lustrate the generality of the presented approach andhitshing the use of a fuzzy
system based classifier. This domain was chosen becauseedlism. A large plant is
likely to involve a number of similar features, not all of whiwill be essential in de-
termining the operational status. Interrelations betwieatures are unavoidable as the
plant is a single system with interconnections, leadingfairadegree of redundancy.

3.1 Problem Case

The Water Treatment dataset comprises a set of historitalatdained over a period
of 521 days, with one series of measurements per day. Thight different feature
values are measured per day, with one set of such measusioening one datum. All
measurements are real-valued. The goal is to implementzy ftlassification system
that, given this dataset of past measurements and witheubehefit of an expert in
the field at hand, will classify the plant’s status and prebhoman comprehensible
explanations of the monitoring results.

The thirty eight features account for the following five assef the water treatment
plant’'s operation (see Figure 2 for an illustration of thigput to plant; input to primary
settler; input to secondary settler; output from plant; enerall plant performance. The
operational state of the plant is represented by a booldag@asation representing the
detection of a fault. The point is to draw the operator’srdtte to an impending fault.



Primary Settler Secondary Settler

Input Gauges (9) Primary Settler Gauges (6) Secondary Settler Gauges (7) Output Gauges (7)

Overall Performance Gauges (9)

Fig. 2. Schematic diagram of the water treatment plant, indicatiegnumber of measurements
sampled at various points.

3.2 Fuzzy Classifier

In this experimental study, to obtain a system that will @istassification of the plant’s
operating status, the fuzzy induction algorithm first reedin [3] is used. This is ad-
opted simply due to the availability of its software implemtegion; any other fuzzy rule
induction method may be utilised as an alternative for di@sduilding. The resulting
classification system is represented in a set of fuzzy primlucules. For the sake of
completeness, an outline of the induction algorithm emgdoig given below.

The algorithm generates a hyperplane of candidate fuzasroy fuzzifying the
entire training dataset using all permutations of the irfpatures. Thus, a system with
M inputs, each of which has a domain fuzzified fyfuzzy sets { < j < M), the
hyperplane is fuzzified inttﬂj‘i1 f; M-dimensional clusters, each representing one
vector of rule preconditions. Each clusiee= (D', D2, ..., DM) may lead to a fuzzy
rule, provided that the given dataset supports it.

To obtain a measure of what classification applies to a alustezy min-max com-
position is used. The input feature pattern of each exampjkecbis fuzzified accord-
ing to the fuzzy set{up1, up2,...,upm } that make up clustep. For each object
z = (x1,22,...,za), the followingz-norm of it, with respect to clustgr and classi-
ficationc, is calculated: B

TFz =min (pup: (1), pp2 (2), . -, ipa (221)) 9)
Furthermore, the maximum of alinorms with respect tp andc is then calculated and
this is dubbed ar-norm:
S% = max {TCBQ |z € CC} (10)

whereC. is the set of all examples that can be classified. &his is iterated over all
possible classifications to provide a full indication of hawsll each cluster applies to
each classification.



A cluster generates at most one classification rule. Thésrpteconditions are the
cluster’'sM co-ordinate fuzzy sets connected conjunctively. The agsich is the clas-
sification attached to the cluster. Since there may-berms for more than one clas-
sification, it is necessary to decide on one classificatioreézh of the clusters. Such
contradictions are resolved by using theertainty margin, € (0 < € < 1). An s-norm
assigns its classification on its cluster if and only if it iegter by at leastthan all other
s-norms for that cluster. If this is not the case, the clugeoinsidered undecidable and
no rule is generated. The uncertainty margin introducescetoff in the rule generation
process between the size and the accuracy of the resuléisgjfitation. In general, the
highere is, the less rules are generated, but classification errgrintaease. A fuller
treatment of this algorithm in use for descriptive learniag be found in [3].

3.3 Results

Running the RSAR algorithm on the Water Treatment datasetiged a significant
reduction, with merely two features selected from the tot&8. Testing on previously
unseen data resulted in a classification accuracy of 97.&#g the fuzzy model gen-
erated by the above-mentioned rule induction method.

A comparison against a widely recognised benchmark methoald help in estab-
lishing the success of the system. C4.5[10] is a widely aeceand powerful algorithm
that provides a good benchmark [5] for learning from data d&cision trees it gener-
ates allow for rapid and efficient interpretation. Yet, Cédecision tree for the present
problem involves a total of three attributes from the ddtes®opposed to two chosen
by the RSAR algorithm. In terms of classification performane4.5 obtains a compat-
ible accuracy of around 96.8%.

Note that training a fuzzy system on all 38 features woulddragutationally pro-
hibitive with the adopted learning algorithm. As statedvpsasly, the benefits do not
limit themselves to the learning phase; they extend to téime use of the learned
classifier. By reducing the dimensionality of the data, threeshsionality of the rule-
set is also reduced. This results in fewer measured featuhésh is very important for
dynamic systems where observables are often restrictéslinmturn leads to fewer con-
nections to instrumentation and faster system responsgaéngencies. Both of which
are important to the problem domain.

The most important benefit of using RSAR is, however, derfvenh its conjunct-
ive use with the linguistically expressive fuzzy systemttWhe learned rules, it can
provide explanations of its reasoning to the operator. THads to increased trust in the
system, as its alarms can be understood meaningfully. Aifiztion system consisting
of rules involving 38 features, even though they are alldiyemeasurable and hence
individually interpretable, is very difficult to understrwhilst one involving only two
features is very easy to interpret.

4 Application Il: Medical Image Analysis

Comparing normal and abnormal blood vessel structuregheianalysis of cell im-
ages, plays an important role in pathology and medicine. [I&fs forms the focus of



this application, analysing medical images by the use ofiaal@etwork based image
classifier that is supported by RSAR.

4.1 Problem Case

Central to this analysis is the capture of the underlyinguiess of the cell images.
Many feature extraction methods are available to yieldowegikinds of characteristic
descriptions of a given image. However, little knowledgauailable as to what features
may be most helpful to provide the discrimination power lEwnormal and abnormal
cells and between their types, while it is computationatipiactical to generate many
features and then to perform classification based on theserés for rapid diagnosis.
Generating a good number of features and selecting from thermost informative
ones off-line, and then using those selected on-line is soaluvay to avoid this diffi-
culty. Importantly, the features produced ought to haverabexided meaning and such
meaning should not be altered during the selection prodéwsefore, this problem
presents a challenging case to test the potential of RSAR.

The samples of subcutaneous blood vessels used in this warektaken from pa-
tients suffering critical limb ischaemia immediately afteg amputation. The level of
amputation was always selected to be in a non-ischaemicEnearessel segments ob-
tained from this area represented internal proximal (ndraréeries, whilst the distal
portion of the limb represented ischaemic (abnormal) oimages were collected us-
ing an inverted microscope, producing an image databasH#ut&@l images, each sized
512 x 512 pixels with grey levels ranging froiito 255. Examples of the three types of
cell image taken from non-ischaemic, and those from isclgepsistance arteries are
shown in Figure 3. Note that many of these images seem rathiaisto the eye. Itis
therefore a difficult task for visual inspection and classifion.

4.2 Neural Network Classifier

In this work, each image classifier is implemented using diticmal multi-layer feed-
forward artificial neural network (MFNN). To capture and megent many possible and
essential characteristics of a given image, fractal moiglare used. Note that, al-
though these particular techniques are herein adoptedtorpetheir respective task,
the work described does not rely on them, but is generalljicaige when other clas-
sification and feature extraction methods are employed.

An MFNN-based classifier accomplishes classification by pirapinput feature
patterns onto their underlying image classes. The desigadf MFNN classifier used
for the present work is specified as follows. The number ofxsad its input layer is set
to that of the dimensionality of the given feature set (befarafter feature reduction),
and the number of nodes within its output layer is set to theler of underlying
classes of interest. The internal structure of the netwsdeisigned to be flexible and
may contain one or two hidden layers.

The training of the classifier is essential to its runtimef@enance, and is here
carried out using the back-propagation algorithm [11]. ffus, feature patterns that
represent differentimages, coupled with their respecingerlying image class indices,
are selected as the training data, with the input featurieg lm®rmalised into the range



(1) adventitial (2) SMC (3) endothelial

(a) from proximal, non-ischaemic blood vessels

(1) adventitial (2) SMC (3) endothelial

(b) from distal, ischaemic blood vessels

Fig. 3. Section cell images, where the first, second and third coturaspectively show adventi-
tial, smooth muscle and endothelial cells in proximal nechaemic and distal ischaemic subcu-
taneous blood vessels, taken from a human lower limb.

of 0 to 1. Here, each feature pattern consists of 9 fractaélifea (including 5 isotropic
fractals measured on the top five finest resolutions and 4teireal fractals [12]) and
the mean and standard deviation (STD), with their referenrabers listed in Table 1.
Note that when applying the trained classifier, only thosduiees selected during the
learning phase are required to be extracted and that neet&ation is needed but real-
valued features are directly fed to the classifier.



Feature No. Feature Meaning |Feature No. Feature Meaning

1 0° direction 7 3rd finest resolution
2 45° direction 8 4th finest resolution
3 90° direction 9 5th finest resolution
4 135° direction 10 Mean

5 Finest resolution 11 STD

6 2nd finest resolutign

Table 1.Features and their reference number.

4.3 Results

Eighty-five images selected from the image database arefaséining and the re-
maining 233 images are employed for testing. For simpligtty MFNNs with one
hidden layer are considered.

Table 2 lists the results of using RSAR and the original fetlaf features. The error
rate of using the five selected features is lower than thagiofrthe full feature set. This
improvement of performance is obtained by a structurallgimsimpler network of 10
hidden nodes, as opposed to the classifier that requiresd2ieminodes to achieve
the optimal learning. This is indicative of the power of RSARhelping reduce not
only redundant feature measures but also the noise assbeidth such measurement.
Also, the classifier using those five RSAR-selected featcoesiderably outperforms
those using five randomly selected features, with the aessagr of the latter reaching
19.1%.

Method Dimensionality Features Structure Error
Rough 5 1,4,9,10,11 610 + 10x6 7.55%
Original 11 1,2,3,4,5,6,7,8,9,10,11 424 + 24x6 9.44%

Table 2. Results of using rough-selected and the original full sdéeafures.

Again, a comparison against a widely recognised benchmatkad should help
reflect the success of the system. For this, the results gfhrdeature selection are
systematically compared to those obtained via the use otipal Component Ana-
lysis (PCA) [1], as summarised in Table 3. Note that PCA ipps the most adopted
dimensionality reduction technique. Although efficienirieversibly destroys the un-
derlying semantics of the feature set. Therefore, in tHitetefor the results of using
PCA, feature number, i € {1,2,...,11}, stands for theth principal component, i.e.
the transformed feature that is corresponding taithdéargest variance.

The advantages of using RSAR are clear. Of the same dimeaiitjofi.e., 5), the
classifier using the features selected by the rough set apptas a substantially higher
classification accuracy, and this is achieved via a consiidgsimpler neural network.



Method Dimensionality Features Structure Error

Rough 5 1,4,9,10,11 %10+ 10x6 7.7%
PCA 1 1 X124+ 12x6 57.1%
2 1,2 212+ 12x6 32.2%
3 1,23 X124 12x6 31.3%
4 1,2,3,4 424 +24x6 28.8%
5 1,2,3,4,5 %20+ 20x6 18.9%
6 1,2,3,4,5,6 &18 + 18x6 15.4%
7 1,2,3,4,5,6,7 %24 +24x6 11.6%
8 1,2,3,45,6,7,8 824 +24x6 13.7%
9 1,2,3,4,5,6,7,8,9 P12 +12x6  9.9%
10 1,2,3,45,6,7,89,10 20+ 20x6 7.3%
11 1,2,3,45,6,7,89,10,11 &B+8x6 7.3%

Table 3.Results of using rough and PCA-selected features.

When increasing the dimensionality of principal featuths, error rate generally gets
reduced, but the classifier generally underperforms uimtibat the full set of principal
features is used. The overall structural complexity oftadlse classifiers are more com-
plex than that of the classifier using the five RSAR-selectzduires. In addition, the
use of those classifiers that use PCA-selected featuresinegliire many more feature
measurements to achieve comparable classification results

5 Conclusion

It is well-known that the applicability of most intelligewtassification approaches is
limited by the curse of dimensionality, which imposes aingibn the complexity of the
application domain. This paper has demonstrated an eféeafiproach to semantics-
preserving dimensionality reduction by exploiting theibadeas of rough set theory.
Such a feature selection tool makes learned classifiers moochtransparent and com-
prehensible to humans, who have inherent trouble undetisigihigh-dimensionality
domains, in addition to being able to lessen the obstacldseadimensionality ceiling.

In summary, Rough Set Attribute Reduction (RSAR) seleatsniost information
rich attributes in a dataset, without transforming the daliathe while attempting to
minimise information loss as regards the classificatiok tashand. When employed
by an intelligent classification system (be it a fuzzy systemeural network), by sim-
plifying the problem domain, RSAR helps enhance the tramspy and maintain the
accuracy of the classifier. With relatively simple systemcures, the examination of
the quality of the results inferred by the use of such clagsifis made easy. This has
been demonstrated in applications to two rather differeobblem domains, with very
promising results.

Although RSAR has been used as a dataset pre-processor wdth snccess, it is
reliant upon a crisp dataset. Important information (fona@$ing the optimal features)
may be lost as a result of required boolean discretisatigchefinderlying numerical



features. Further advances have recently been made in gingpa feature selection
technique that employs a hybrid variant of rough sets, theyfuough sets [2], to avoid
this information loss [15]. Whilst this is out of the scopetbis paper, it is interesting
to point out that initial experimental results, of applyitigs improved version to the
problem of industrial plant monitoring, have shown thatzyrzough feature selection
is more powerful than many conventional approaches, imetuentropy-based, PCA-
based and random-based methods.
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