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Abstract-Increasingly engineering involves systems with many 
autonomous subsystems and agents.  Understanding and 
controlling such systems is beyond the abilities of traditional 

control methods.  The issues are well captured by the design and 
control of robot soccer systems.  Hypernetworks generalize 
networks to relations between more than two items.  They can be 

used to model multilevel relational structure, and it is shown how 
they can be applied to robot soccer systems.  Some structural 
configurations are more disposed to good or bad outcomes than 

others, and these can be used in the control process.  The theory is 
developed from first principles and illustrated by experiments 
performed in our laboratory. 

I. INTRODUCTION 

Increasingly engineering involves systems with many 

autonomous subsystems and agents.  Conventional approaches 

to control do not apply at higher levels of abstraction, since 

these involve structural constructs at many levels of 

representation.  The issues are well captured by the design and 

control of robot soccer systems, where two teams of robots 

compete to score goals against each other.  This is a very 

attractive research platform because the objectives for the robot 

teams are easy to state and understand, because they span a 

very wide range of engineering sub-disciplines that have to be 

integrated, because the bring us face to face with the problem 

of engineering multilevel complex systems with autonomous 

components, and because it is easy to judge success and failure. 

Representing the system and its dynamics in a coherent 

multilevel way is an essential requirement, involving both 

qualitative and quantitative dynamical relationships [1][2].  We 

propose the use of a new mathematic approach involving 

hypernetworks – a multilevel multidimensional generalisation 

of relational network theory [3]. 

The research has great potential for industrial applications 

since it addresses the generic problem of designing and 

controlling multilevel systems in which it is necessary to deal 

with combinatorially wide ranges of interactions that cannot all 

be foreseen by the system designer.  The new mathematical 

approach demonstrated for robot soccer is equally applicable to 

the control of other complex multiagent systems. 

II. MULTIDIMENSIONAL REPRESENTATION 

The game of football has a multidimensional structure.  At 

the microlevel there are individual robots constructed from 

sub-microlevel components.  The behaviour of the whole robot 

emerges from the dynamic properties of its parts and the way 

they are assembled.  Usually conventional feedback control 

approaches work well at this level.  At meso-level small groups 

of robots interact dynamically, creating spatial configurations 

that support capturing the ball, passing, and scoring goals.  At 

the macro level, these dynamic groupings combine and 

disband, structuring the pitch through time according to 

strategies intended to be predisposed to good outcomes.  To 

play the game requires a good understanding of some, if not 

all, of the relationships within this multilevel structure.  Some 

relationships are global, existing in every game, such as those 

governed by the rules, whilst others may only appear in a 

single game or at a single moment, being a trait of a particular 

team, or tactic.  Some typical factors in these multidimensional 

structures may be the position of players, velocity of the ball, 

kick-off events, pitch edges, fouls and game time. 

Hypernetworks have been created to describe such complex 

structures.  A hypernetwork represents structure between sets 

of nodes, a natural progression from a standard network 

representing structure between a pair of nodes.  Whereas a 

network consists of agents related by lines, a 2-ary relation, a 

hypernetwork can consists of agents related by lines, triangles, 

or any other polyhedron, representing n-ary relations. 

A polyhedron with n vertices represents an n-ary relation and 

a polyhedron with (p+1) vertices is called a p-simplex.  A set of 

simplices form a hypernetwork, with each simplex being 

associated with an edge of the hypergraph.  Fig. 1 shows some 

simplices representing possible structures in football, whilst 

Fig. 2 shows hypernetworks of connected simplices. 

Higher dimensional simplices can be decomposed sets of 

lower dimensional simplices, called their faces.  If two 

simplices share a set of (q+1) nodes, then they will share a q-

dimensional face, and are said to be q-near.  Simplices sharing 

a single node are 0-near, while simplices sharing an edge are 1-

near, and a triangle, 2-near (Fig. 2). 

Mark Pass Two-on-one Formation  
 

Fig. 1.  Simplices of events in football.  ‘Mark’ is a 1-simplex, having 2 

vertices, whereas ‘Formation’ is a 4-simplex. 



The connectivity described above is based on shared faces of 

pairs of simplices.  This can be extended to considering shared 

faces between many simplices. Fig. 3 shows four simplices       

‹ a, b, c, d ›, ‹ a, b, c, e ›, ‹ a, b, c, f ›, and ‹ a, b, c, g ›, which 

all share the face ‹ a, b, c ›.  This set of simplices is called a 

star, and the largest shared face is referred to as the hub.  In 

this way, a hub signifies a strong correlation between the 

simplices.  The more vertices contained in the hub, the stronger 

the link between simplices.  Similarly, the more simplices 

forming a star, the more relevant the hub becomes in 

classifying those simplices.  Therefore, hubs and stars can be 

used to identify strong links between sets of data. 

The connectivity of a hypernetwork can be partially 

tabulated using an incidence matrix (Table I).  By rearranging 

the rows and columns of this matrix, connected vertices can be 

grouped into blocks, or maximal rectangles, which correspond 

to the hubs of the hypernetwork.  The rectangle number is the 

area of the maximal rectangle; the larger the rectangle, the 

closer the correlation between simplices [4]. 

III. MULTILEVEL STRUCTURE 

As well as having multidimensional structure, robot football 

is multilevel; it contains an inherent hierarchy. 

In Fig. 1 names are attributed to the simplices to signifying 

what they represent.  The simplex maps the set of nodes at one 

level to the named structure, which is a higher level of 

representation (Fig. 4).  These named structures are themselves 

elements in even higher level structures. 

The relationship described by the simplex is crucial.  A set of 

elements configured in two distinct ways can have completely 

different meanings.  Consider the sets shown in Fig. 5.  Both 

show three players and a ball, {w1, w2, b1, B}, though each has 

a different relationship, denoted R1 and R2.  The relationship R1 

gives rise to the significant structure named defenders 

dilemma, whereas R2 gives a separate configuration, which has 

no significant meaning, and has not been named.  The notation 

‹ w1, w2, b1, B; Ri › is used to represent the structure created by 

imposing the relation Ri on the set of elements {w1, w2, b1, B}. 

The conical structure shown in Fig. 4 represents the 

Fundamental Diagram of Multilevel Systems.  The base of the 

cone represents a particular set of variables, whilst the sides of 

the cone represent a relation, which maps the set to a particular 

structure at the apex.  If the set of variables lies at level N 

within the hierarchy, the structure described by the relation lies 

at level N+1.  In this way, the multilevel structure is closely 

linked to the idea of emergence; by applying a relation to a set 

of unstructured variables at level N, a structure emerges at level 

N+1. 

Fig. 6 shows a possible multilevel representation of a role- 

based robot football architecture.  It depicts 3 distinct levels of 

1 Shared Vertex
(0-near)

2 Shared Vertices
(1-near)

3 Shared Vertices
(2-near)  

 

Fig. 2.  Hypernetworks of q-near simplices.  Simplices sharing a single node 

are 0-near, while simplices sharing an edge are 1-near, and a triangle, 2-near. 
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Fig. 3.  A star-hub configuration.  The more vertices contained in the hub, the 

stronger the link between simplices. 

TABLE I 
INCIDENCE MATRIX FOR FIG. 3 

Simplex 
Vertices 

a b c d e f g 

1 1 1 1 1 0 0 0 

2 1 1 1 0 1 0 0 

3 1 1 1 0 0 1 0 

4 1 1 1 0 0 0 1 

        
  = Maximal rectangle 
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Fig. 4.  A hierarchical mapping of elements into named structures. 
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Fig. 5.  A set of elements mapped into two distinct structures. 



hierarchy, with linking relationships.  It can be seen that bases 

of cones can fully or partially overlap, but that when mapped 

by different relationships give rise to separate structures. 

IV. CONCEPT GENERATION 

This paper uses the method of concept generation [5] to 

abstract simplices from sets of arbitrarily chosen variables. 

A concept is a generalisation of a set of primitives bound 

together by a hypothesis.  If the primitives are similar features 

in a football match, the hypothesis describes the common 

structures in each.  For example, if the primitives are three 

different pass situations, a relational hypothesis will exist 

which can be used to group them into the concept PASS. 

There are two distinct varieties of concept.  Generalisation 

concepts represent a class of primitives.  For example, three 

different ball passes in football can all be generalised to the 

concept PASS.  A single pass is sufficient to be classed as an 

example of the concept.  The second concept is called a 

relational concept; relating a set of distinct primitives via some 

structure.  In this case, the concept PASS could be made up of a 

ball, a passing player, and a receiving player, in a certain 

configuration.  In this example all three primitives, and the 

structure, are required to generate the concept. 

Primitives are described by a set of properties or variables, 

which can be values or measurable definitions.  Fig. 7 shows 

the relation between variables, primitives, hypotheses, and 

concepts.  Here, shape, size, colour and weight are the 

variables.  The primitives are plum, marble, melon, doll, 

domino, and orange.  Fruit and toy are the two concepts into 

which the primitives are grouped by the hypothesis. 

The hypothesis can be represented in many ways.  This paper 

uses a hypothesis test introduced in [2]: 

Variables, primitives and concepts can be graphically 

represented using hypernetworks:  Each variable is drawn as a 

vertex, joined by a structure representing the relation between 

them.  This structure of variables forms the primitive at level 

N, which can then be mapped onto the named concept, which 

appears at level N+1, as shown in Fig. 4.  Since the simplex is 

a relational structure between variables, the attached concept is 

relational rather than general. 

Consider a group of primitives which relate to a single 

concept.  Each primitive will form its own simplex.  If the 

primitives can be related through their variables, the set of 

simplices will overlap to form a star.  The hub of this star gives 

a possible hypothesis for relating the primitives to the concept.  

For example, in Fig. 3, the simplices all represent some 

concept and share the face ‹ a, b, c ›.  The generated hypothesis 

will be that any primitive containing the structure ‹ a, b, c › will 

also be a member of the same concept.  A hub used to define a 

concept in this way is called a classifier hub. 

If a set of simplices do not share a hub, then the attached 

primitives are members of separate concepts.  Similarly, if stars 

form more than one hub, then the primitives involved are 

members of more than one concept. 

This method of analysis has previously been demonstrated in 

[5] for classifying plant types from sepal and petal dimensions.  

Hubs were generated using a training set of 75 samples, 

relating to 3 plant types.  150 samples were then categorised 

using a single classifier hub for each type of plant.  The 

technique correctly classified 86% of samples, with 30% 

unclassified, and none misclassified.  To verify the 

significance, two neural networks were constructed; one using 

all 40 plant variables, and the other using only the 14 variables 

used in the 3 classifier hubs.  Both networks displayed similar 

accuracies when used to reclassify the plant data. 

For concepts to be used as behaviours in a set of robots, they 

must be assigned representatives.  These are representations of 

the concept, which can be sent as commands to the robot.  

Depending on the level, these representatives may simply be 

one of the primitives used to define the concept, a combination 

of the primitives, or some kind of approximation or average of 

the primitives.  The hub of a set of simplices forming a concept 

is commonly used as the representative. 

V. STRUCTURE IN ROBOT FOOTBALL 

Robot football (or soccer) was devised in [6], and gained 

popularity through the RoboCup initiative [7].  It is the focus of 

a large and successful research community and, following the 

climax of Deep Blue beating Gary Kasparov at chess in 1997 

[8], has been proposed as the new benchmark challenge for 

Artificial Intelligence [9]. 

In essence similar to human football, robot football is a game 

played by two teams of simulated or physical robot agents on a 

rectangular pitch, whereby the aim is to transfer a ball into the 

opposing team’s goal area.  Many different leagues exist, each 

played in competition at international level, with research 

Fruit:

Shape Size Colour Weight Plum

Plum Spherical Small Purple Light Melon

Marble Spherical Small White Light Orange

Melon Spherical Large Yellow Heavy

Doll Irregular Large Pink Light Toy:

Domino Cuboid Small Black Light Marble

Orange Spherical Medium Orange Medium Doll

Domino

Variable
Primitive

H
y

p
ot

h
es

e
s

Concepts

 
Fig. 7.  A hypothesis classifies primitives into associated concepts by 

identifying patterns in sets of variables. 
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Fig. 6.  A possible robot football hierarchy. 



institutions battling it out to show their systems are the most 

advanced.  These leagues range from one-on-one humanoid 

games, through large, distributed, 5-a-side wheeled teams, to 

small, fast, centralised, 11-a-side robot games, and simulated 

games. 

Fig. 6 showed a typical strategy structure using a role based 

approach.  This is a common approach wherein team strategies 

are divided into plays, each containing a set of predefined robot 

roles.  These roles contain low level information about the 

actions of each robot, such as positioning, movement, area 

boundaries, passing and shooting.  They are usually based on 

functional concepts relating to human football, such as 

goalkeeper, defender, or striker.  This approach is limited by 

the creativity of the programmer, and is not suited to larger 

team sizes. 

An alternative, for such a complex system, is to use learning 

techniques.  These fall into two categories:  In systems such as 

[10] and [11], the focus is on learning individual skills or game 

aspects using reinforcement methods, which are compiled into 

a complete strategy.  These use a variety of learning algorithms 

to build behaviours from the ground up are development 

intensive, requiring many different skills to be identified and 

learnt using separate techniques.  Alternatively, entire 

strategies can be formed in one operation using evolutionary 

techniques, as in [12].  These emergent strategies do not 

contain enough information to be competitive, often evolving 

to ball-crowding strategies. 

The approach described here is a new method which aims to 

reconstruct the complexity of a football strategy by observing 

and mimicking structures in existing teams.  The advantage is 

that the same technique can be used to learn behaviours at 

every level in the strategy structure. 

It was shown, in [13], that the areas controlled by players, 

and hence the structures between them, are significant 

dimensions of the game.  Furthermore, [14] showed a number 

of specific player configurations which had significant 

meanings.  Based on these initial findings, hypernetworks can 

be used to map these structures to a representation of the game 

of football.  The approach, described below, is based on 

analyzing structures between the players, ball and features on 

the pitch, and identifying those which occur more frequently in 

successful teams. 

VI. STRATEGY ABSTRACTION 

Initially, a structural representation of the system must be 

formed.  In this work, the structure is generated by hand from 

knowledge of the system.  Fig. 8 shows an example of a 

possible structure for robot football based on observation.  If 

the structure is an accurate representation of the system, then 

by carefully constructing each element, it should be possible to 

create a working system. 

Each element in the structure is a named concept, and is 

composed of a set of variables.  In this paper we focus on the 

strategy and play level concepts in order to generate a 

formational controller.  The more levels and concepts inserted 

into the hierarchy (provided they are well chosen), the more 

accurate the football representation will become.  However, 

since our robots currently lack the abilities required for ball 

handling, we shall focus on recreating the formational 

structures of football identified in [14], which occur at the 

higher levels. 

The next stage is to generate a list of variables which will be 

used to describe the primitives and concept.  The results 

described here were obtained by measuring 66 arbitrarily 

chosen variables.  These are not described here to save space, 

but range from the frequency of occurrence of events, such as 

passes, to spatial relationships, such as distance between 

neighbouring players.  Some of the variables are themselves 

concepts identified at a lower level in the hierarchy. 

A set of primitives are measured from recordings of previous 

football matches.  These are the values of the variables taken 

over the duration of the concept.  In the case of the strategy 

concept variables are measured over the entire duration of a 

match. 

Primitives are classified as desirable, undesirable, or 

indifferent depending on how they relate to the concept.  A 

combination is used to construct the hypothesis.  For example, 

strategy primitives which result in a win are classed as 

desirable, a loss as undesirable, and a draw as indifferent.  By 

distinguishing between variables in the desirable and 

undesirable sets, we find the structures that influence whether a 

strategy wins or loses. 

Three averages are generated for each variable: average over 

all primitives, average over desirable primitives, and average 

over undesirable primitives.  These averages are compared to 

determine whether the variable is included in the hypothesis for 

the related concept.  An example, based on real data, is shown 

in Fig. 10. 

If the average values for a variable recorded for the desirable 

and undesirable primitives are on opposite sides of the global 

average, then it is a possible classifier for differentiating 

between the two types of primitive.  If the two averages fall on 

the same side of the global mean, made possible by the 

inclusion of indifferent primitives, then the variable is not a 

classifier.  Variables for which the difference between averages 
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Fig. 8.  A multilevel strategy structure consisting of a hierarchy of 

skills tactics and plays. 



is less than a threshold (here 5% of the entire range) are 

common to both.  In terms of a football strategy primitive, the 

classifier variables can provide information on how to play 

well, or play badly, whilst the common variables provide 

information relating to the fundamental requirements of the 

game. 

An incidence matrix of desirable primitives and classifier 

variables is generated.  Each entry is valued ‘1’ if the variable 

occurs in the primitive on the on the same side of the global 

average as the desirable average. 

The final stage of the process is to perform the star-hub 

analysis on the data in the incidence matrix.  Each primitive 

forms a star, with the hubs of those stars being common 

structures between primitives.  These common structures can 

be used as hypotheses linking a set of variables to a concept, 

and therefore identify significant structures.  If a hub of 

dimension n is a hub containing n + 1 vertices, then a hub of m 

+ 1 intersecting simplices is an intersection of dimension m.  

Generally hubs with large m will have small n, and vice-versa. 

VII. RESULTS 

This analysis was performed on data from ten matches 

undertaken in the RoboCup Simulation League.  The 66 

variables were measured from the perspective of each team 

giving 20 strategy primitives, 20 attacking play primitives, and 

20 defending play primitives.  Strategy primitives were 

measured over the entire match from the perspective of one 

team, whereas attacking and defending primitives focused 

respectively on frames with the ball in the away or home half 

of the pitch.  These were split into 8 desirable, 4 indifferent and 

8 undesirable sets by goal difference; primitives relating to 

teams winning a match generating desirable primitives, and 

games resulting in a draw generating indifferent primitives.  It 

should be noted, however, that there may be other acceptable 

criteria by which to rate the primitives.  For example, it may be 

more appropriate to rate defending primitives in terms of a goal 

being conceded, or the ball being played into the opponents 

half, which would give a slightly different set of results. 

Performing the analysis on each set of primitives generates 

sets of hubs relating to each of our strategy and play concepts.  

For the strategy concept, for example, we find that 34 of the 

variables occur with a higher probability in winning teams, and 

that these form 91 unique maximal hubs (The algorithms used 

only record the largest dimension of hub joining a set of 

simplices.  Sub-sets occurring with the same frequency are 

ignored).  For each dimension of intersection Table II shows 

the largest hub which covers that many primitives.  There is no 

hub which occurs across all 8 winning primitives. 

Variable x17, which appears in 7 of the 8 strategies, relates to 

the percentage of shots on the opponent goal which are 

successful.  The analysis shows that in winning teams x17 > 

31.09.  This seems logical, since it relates directly to the score 

of each team.  In the only winning primitive, p7, where x17 < 

31.09, 10 shots were taken, with only 2 being successful.  In 

this case, the high number of attempts was sufficient to score a 

win.  Variable x6 also occurs in 7 of the 8 winning strategies 

with a value of < 49.58, and is the most common variable, 

occurring in 58 of the 91 hubs.  This is the percentage of time 

the ball spends in the home players half, and indicates that 

these winning strategies spend more time on the offensive, 

which is a sensible assumption.  Conversely, variable x59 > 0.01 

only appears in 2 of the winning strategies.  This represents the 

average number of instances per frame that 4 home players 

team up to mark an opponent player.  This is obviously a rare 

occurrence, but its predominance in winning teams suggests it 

could be a useful tactic in some situations.  Of course, it is not 

the occurrence of the variables on their own that is of interest, 

but their occurrence in the emergent combinations. 

The relationship R is the same for every hub.  In this case, it 

represents each variable occurring with an appropriate average 

value over the duration of the match.  8 variables were 

identified as being common to both winning and losing teams, 

and are added to these hubs as they represent structures 

fundamental to the game of football. 

From each of the three lists of hubs, we select the largest and 

most frequently occurring which contain data on spatial 

structures to be representatives for the concepts.  These are 
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Fig. 10.  Classification of variables by average.  In this example, the 

variable is used to differentiate between successful and unsuccessful passes.  

Out of 2036 passes, it correctly classifies 629 successful passes, and 

misclassifies 161 unsuccessful passes. 

TABLE II 

MAXIMAL STRATEGY HUBS 
 

Dimension 
of 

intersection 

Maximum 
hub 

dimension 

Largest hub 

6 0 ‹ x17 ; R › 
5 5 ‹ x25, x26, x27, x28, x29, x30 ; R › 

4 11 ‹ x10, x13, x15, x21, x25, x26, x27, x28, x29, x30, x31, x32 ; 

R › 
3 15 ‹ x6, x7, x10, x13, x15, x21, x23, x24, x25, x26, x27, x 28, 

x29, x30, x31, x32 ; R › 

2 20 ‹ x5, x6, x7, x8, x9, x10, x13, x15, x17, x21, x22, x23, x24, 
x25, x26, x27, x28, x29, x30, x31, x32 ; R › 

1 23 ‹ x3, x5, x6, x7, x8, x9, x10, x11, x13, x15, x17, x18, x21, 
x22, x23, x24, x25, x26, x27, x28, x29, x30, x31, x32 ; R › 

0 27 ‹ x3, x5, x6, x7, x8, x9, x10, x11, x13, x15, x16, x17, x18, 

x20, x21, x22, x23, x24, x25, x26, x27, x28, x29, x30, x31, 
x32, x41, x44 ; R › 

 



combined to define five multilevel football strategies 

consisting of formational plays. 

These strategies are fed into a controller which attempts to 

reproduce the variables in the representatives.  At each frame, 

the controller selects the appropriate representative, and creates 

a model of the football pitch in terms of the desired variables.  

For our spatial variables, this entails creating a map of the pitch 

divided into segments representing those spaces.  The 

controller then searches the spaces for the set of robot positions 

which will most closely recreate the values of the variables in 

the representative. 

In initial tests, the controller is used to create target positions 

in response ball and opponent positions in 1000 randomly 

selected frames of recorded robot football data.  It identifies 

targets which successfully recreate the representative with a 

rate of 71-100% over the five strategies.  In terms of the 

individual variables, the success rate is 94-100%. 

The controller was implemented on a set of Mirosot football 

robots against a traditionally programmed strategy.  A section 

of the resulting match is shown in Fig. 11 which shows how 

the area controlled by the team appears connected to the 

position of the ball.  This conforms with our results in [14] 

which show that the area controlled by a football team is 

related to the position of the ball.  Importantly, this behaviour 

is not programmed, but emerges from the interactions of the 

variables composing the abstracted representatives. 

VIII. CONCLUSIONS 

The problem of controlling multilevel multiagent robot 

systems has been addressed using concepts from the 

mathematical theory of hypernetworks.  This has been 

illustrated by a number of examples taken from real soccer 

games played with real robots described in [15].  The main idea 

developed in this paper is that agents such as robots and the 

ball can be combined under n-ary relations to form structure at 

higher levels.  In turn these can be combined to form high level 

structures, to give greater degrees of abstraction.  It is these 

discrete aspects of the system that are used when reasoning at 

tactical and strategic levels.  In neural systems they can 

correspond to the discrete event of a neuron firing, when some 

particular structure has been recognised. 

The hypernetwork approach discussed has great generality, 

having been devised over many years for the analysis, 

management and control of complex social, socio-technical and 

engineered systems [16].  It can be argued that multirobot robot 

systems form an intermediate class of complex systems, 

between physical systems in which the agents (e.g. atoms, 

molecules, rocks, air streams) do not play a sentient role in the 

system dynamics and their governing laws, and social systems 

in which human can change the meta-rules that create 

environments for the emergence of social structures and their 

dynamics.  Thus multirobot systems such as robot soccer not 

only provide an excellent platform for research into robotics 

and multiagent systems, they also have the potential to play a 

strategic role in developing the more general science of 

complex systems. 
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Fig. 11.  Comparison of ball position and controlled team area 

highlighting similar features. 


