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Abstract— We present a scalable and distributed control strat-
egy for swarms of satellites to autonomously form an hexagonal
lattice in space around a predefined meeting point. The control
strategy is modeled as an artificial potential field. Such potential
field is split in two main terms: a local potential is used to form
locally hexagonal lattices based on the well known Lennard-
Jones potential, and a global potential used to join the lattices
into a single one. The control strategy uses only simple local
information about few neighbouring satellites and assumes that
each satellite can estimate its position with respect to the meeting
point. Experiments show the results of the method with up to 500
satellites. The proposed method is general and can be adapted
to build different kinds of lattices and shapes.

I. INTRODUCTION

According to many, the capabilities of future space ex-
ploration is severely limited by the physical impossibility
to obtain the needed improvement in our space propulsion
technologies. According to this opinion, the amount of mass
we can afford to put into orbit will increase only marginally
over the next decades, shifting the research and technology
development efforts toward the miniaturization of spacecraft
systems. Thus, the satellites of the future could be much more
similar to a CubeSat [1] than to one large and massive system.
In this scenario, the cooperation between many small satellite
is essential and needs to be completely automated (operating
simultaneously a large number of satellites from ground is just
unthinkable). To this aim, new scientific disciplines such as
collective robotics and swarm intelligence provide a number of
interesting solutions that can help in the automation of satellite
swarm operations [2]. In particular, swarm intelligence [3],
[4] is a research field that aims at understanding the prin-
ciples of decentralized control of a swarm of agents, taking
inspiration from the behavior of social insects like ants and
bees. Coordinated observation, planet exploration, and on-orbit
self-assembly [5] are some possible future applications where
swarm intelligence could provide important contributions. As
examples, some recent concepts, such as ESA’s APIES [6] and
NASA’s ANTS [7], consider the use of swarms of satellites
to achieve better observations of the asteroid belt and to
enhance fault tolerance. The decentralized control of a swarm
of satellites is one of the main challenges in such a mission.

Previous work has already been carried out in this area
and distributed control strategies have been proposed to deal
with multi-satellite systems. In the existing works, a common
problem is that as soon as the number of satellites becomes
high, the controller either needs the introduction of hierarchical
levels among the agents [2], or is simply not able to construct
regular formations.

In this paper, we focus on the problem of building a
hexagonal lattice in a circular orbit. Such a configuration could
be particularly important for applications such as autonomous
self-assembly of solar powered satellites [8], large antennas
and large reflectors in space. To this aim we consider large
swarms of small and simple satellites (up to 500) that are
usually referred to as pico satellites.

II. PROBLEM STATEMENT

Consider N identical satellites randomly distributed in space
under the gravitational influence of a near planet, and a point �p
located on a certain orbit around the planet. Such point defines
the origin of a moving reference frame with angular velocity
ω. The aim of this work is to devise a control strategy �u
for each satellite so that the swarm forms a two dimensional
hexagonal lattice on the xy plane of this reference frame. The
satellites must respect a mutual target distance σ that is a
control parameter set at design time.

Scalability is the main issue of this work. In Section IV we
show simulated experimental runs with up to 500 satellites.
The control strategy does not depend (neither explicitly nor
implicitly) on the number N of satellites forming the swarm.
For this to happen, �u is allowed to make use only of infor-
mation on a limited number M of neighbour satellites. We
also assume that each satellite can estimate its position with
respect to point �p.

The control strategy must satisfy some safety constraints,
such as the absence of collisions among the agents and no
satellite lost in space. In addition, convergence to the final
lattice must be guaranteed for all possible initial distribution
of satellites in space. The control strategy must cope with the
limited thrusting capabilities of the satellites, both in terms of
thrusting power and propellant consumption.
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TABLE I

THE DIFFERENT TYPES OF ORBITAL ENVIRONMENTS CONSIDERED

Orbit ω (rad/s) R (km) T (s)

LEO 1 10−3 7,000 6,283
GEO 7.3 10−5 42,000 86,071
Amalthea 1.5 10−4 181,000 41,888
Metis 2.5 10−4 129,000 25,133
Io 4.1 10−5 421,600 153,248

From the mathematical point of view, each satellite is
modeled as a point mass whose motion is described by the
classical system of Hill’s equations [9]:


q̈x − 2ωq̇y − 3ω2qx = ux/m,

q̈y + 2ωq̇x = uy/m,

q̈z + ω2qz = uz/m

where �q = [qx, qy, qz]T is the position of the i-th satellite
with respect to �p, �u = [ux, uy, uz]T is its control strategy and
m its mass. By using the given equations, we assume that
the orbit of �p is circular. A simple Runge-Kutta integration
scheme has been used for all the experiments described in
this paper. As a test case we consider our satellites to have a
mass m = 100 kg, a thrusting capability of Tmax = 0.05 N.
We also consider a number of different orbital environments,
and in particular geostationary orbits (GEO), low Earth orbits
(LEO) and Jupiter orbits close to the ones of its satellites
Amalthea, Metis and Io. In Table I we report the values
used to characterise these orbital environments. The satellites
maximum thrust Tmax needs to be able, in the final swarm
configuration, to counteract the tidal gravity as to avoid to
be carried away from their position. This puts a limit to the
radius of the final assembled lattice, a limit we may relate
to the satellite number, to σ and to Tmax/m. The maximum
value of the tidal acceleration acts along the x axis and has
a value of ã = 3ω2qx. If we approximate the final lattice
configuration to a circle of radius r we have that A = πr2 is
the final area. In a perfect hexagonal lattice we have:

A =
6∑

i=1

iNi

3
S < 2NS = Nσ2

√
3

2
,

where S is the surface of the equilateral triangle with side σ
and Ni is the number of satellites connected as to create i
equilateral triangles. Thus we can write:

ã = 3ω2qx ≈ 3ω2r < 3ω2

√√
3

2π
Nσ

and obtain the condition:

Tmax > mã > 3mω2

√√
3

2π
Nσ.

The above equation is very useful to determine (given the
satellite design, i.e., Tmax and m) the possible dimensions of
the final lattice we can build in the xy plane.

III. THE CONTROL STRATEGY

The control strategy �u studied in this work follows the
artificial potential approach [10], [11]. In previous approaches,
the potential field was defined as the composition of an
attractive and a repulsive field, the first leading the agents
to the goal position and the second taking care of obstacle
avoidance. In this work we devise a novel approach: the
artificial potential is a superposition of a local and a global
contribution, plus a dissipative term. This way of defining
the artificial potential allows the designers to define the local
lattice structure and the external shape separately.

The task of forming a flat hexagonal lattice in space can be
decomposed in three distinct sub-problems:

1) flattening the distribution of satellites on the xy plane;
2) creating the lattice on that plane while avoiding colli-

sions;
3) preventing satellites from getting lost in space.

As explained, �u can be expressed as the superposition of three
contributions:

�u = �g +�l + �d (1)

where

• �g is a force that attracts each satellite towards the origin
of the common reference frame (i.e. the meeting point)
and flattens the distribution on the xy plane. Hence, �g
tackles problems 1 and 3;

• �l is a force that creates local clusters with the neighbour-
ing satellites (problem 2);

• �d is a damping factor, similar to viscosity, used to
stabilize the behaviour of the swarm and to ensure
convergence.

The satellites we consider for this study possess limited
thrusting capabilities. More specifically, the magnitude of �u
cannot exceed the threshold value uMAX. Similarly, the change
of thrusting direction between two successive control actions
is bound by ∆θMAX.

In the following, we present the details of each term indi-
vidually. We conclude this section explaining the stabilization
mechanism of the formation after the swarm has converged to
the final structure.

A. Global attraction to the origin

As explained in Section II, we assume that all the satellites
in the swarm know their own position in the global reference
frame whose origin is in point �p. The artificial force �g attracts
the satellites to the xy plane around the origin. Recalling that
�q = [qx, qy, qz]T is the position of a satellite, and defining the
normalized vector

q̂ = [q̂x, q̂y, q̂z]T =
�q

‖�q‖ ,

then

�g =



−ηxy‖�q‖2q̂x

−ηxy‖�q‖2q̂y

−ηzqz


 , (2)
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Fig. 1. The Lennard-Jones potential L that models the interaction between
two satellites at mutual distance r. At the target distance σ the potential
presents a minimum point whose value is ε. The deeper the minimum, the
more stable is the mutual arrangement of the satellites at distance σ.

Fig. 2. An hexagonal lattice obtained with 100 satellites.

where ηxy is a design parameter that accounts for the attraction
to the origin on the xy plane, and ηz plays the same role for
the attraction to the xy play parallel to the z axis.

It is important to notice that the outer shape of the lattice is
controlled by this force field. In the subspace xy, the potential
of the field �g in Equation 2 is a paraboloid. Its sections parallel
to the xy plane are circles, therefore the outer shape is circular.
If we substitute the paraboloid with another function, while
keeping gz the same, we obtain other shapes.

B. Local lattice formation

To find a rule that makes it possible to create the wanted
lattice, we took inspiration from a well known model of
molecular interaction, the Lennard-Jones pair potential [12]:

L(r) = ε

[(
σ

r

)12

− 2
(

σ

r

)6]

By definition, the derivative of this potential with respect to
distance gives the interaction force between two satellites.
As the graph in Figure 1 shows, two satellites experience
an attractive force when their distance r is larger than the
target distance σ. On the contrary, when r < σ, the force is
repulsive. The force is null when r = σ. Therefore, when two
particles are close enough, their stable arrangement is such

Fig. 3. The point of minimum energy of the Lennard-Jones potential is
conjectured as define an hexagonal lattice.

that their mutual distance is exactly σ. When more particles
are considered, the Lennard-Jones potential is defined as the
sum of the pair-potentials of all the possible pairs within the
molecule. It is conjectured (but has not been proved yet) that
the stable arrangement on a plane is an hexagon (see Figures 2
and 3). Interesting results show that there is a size independent
lower bound on the minimal inter-atomic distance [13], [14]
that could be used to speed up the simulations and ensure
better convergence properties.

Besides its behaviour, the Lennard-Jones pair potential is
interesting also because its parameters are very intuitive from
the point of view of controller design: σ is the target distance
and ε is the depth of the potential well, which accounts for
the attractiveness and stability of the minimum located at σ.

The magnitude of the artificial force of interaction �li be-
tween a satellite and its i-th neighbour is given by

li = −dL

dr
=

12ε

r

[(
σ

r

)12

−
(

σ

r

)6]
.

Since �g already attracts the satellites to the xy plane, it is
enough that the direction of �li be parallel to this plane, so

�li =




liq̂x

liq̂y

0


 .

Eventually, �l is defined as the average of the artificial forces
due to the M closest neighbours:

�l =
1
M

M∑
i=1

�li.

Without averaging, the magnitude of �l would be strongly
dependent on M . Since �l and �g are summed, this in turn would
make the choice of ηxy and ηz dependent on M . Averaging
removes this unnecessary dependence.

C. Ensuring convergence

The two forces �g and �l alone are not enough to ensure
convergence. In fact, both are defined by conservative fields.
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Without a further dissipative term, convergence would be
impossible.

The role of term �d in Equation 1 is to dissipate the
artificial energy, thus letting the swarm converge to the desired
hexagonal lattice. The expression of �d derives from these
simple physics considerations and it is analogous to a virtual
viscosity:

�d = −ξ�̇q,

where ξ is a design parameter usually < 0.2.

D. Formation stabilization after convergence

When the swarm has converged to the final structure,
residual oscillations around the equilibrium point are present.
Such oscillations lead to a waste of propellant for the satellites.

To solve this problem and damp the oscillations, the �d term
is useful also in this case. In fact, increasing the ξ parameter
means increasing the virtual viscosity in the potential field. If
viscosity reaches a sufficiently high value, then the residual
speed of the satellites is not enough to let them move apart
or oscillate and therefore the satellites remain trapped in the
virtual equilibrium points. Stabilization around the equilibrium
point is then obtained by increasing the virtual viscosity ξ
according to the following rule:

ξ̇ =

{
De−ξ/2 if ξ < D,

0 otherwise.

Another separate problem is when to trigger the stabiliza-
tion. In the current status of the work, we have devised a
simple time-based criterion. Each satellite individually mea-
sures the time elapsed since the beginning of the shape
formation process. After a certain time threshold T , which is
a design parameter, stabilization is triggered. A more elegant
method would be to trigger the stabilization with a distributed
consensus algorithm, such as those discussed in [15].

IV. RESULTS

To assess the results of the proposed controller we use two
main parameters. The first is the fuel consumption of each
satellite and its statistical distribution within the swarm, the
second is the quality of the hexagonal lattice obtained. To
compute fuel consumption we use Tsiolkovsky formula [16]
and thus assume that the fuel consumption is related to the
∆Vi of each satellite i evaluated by the simple expression:

∆Vi =
∫ tf

0

‖�ui‖dt

where tf is the final lattice acquisition time.
The evaluation of the quality of the final acquired lattice is

defined as:

χ =
N∑
i

∑
j∈Ni

|σ − rij |
σ

where Ni is the set containing the M closest neighbours of
the satellite i, rij is the relative distance between the satellites
i and j at the final lattice acquisition time.

Our experiments show that χ depends on the amount of tidal
gravity present and on the shape of the global potential (that
can anyway be removed once the lattice has been assembled).
Values of the order of χ = 0.006 can be achieved assuming
LEO orbits and a maximum thrust level of 0.01N on a satellite
of mass 100 kg.

V. CONCLUSIONS

We have presented a scalable and decentralized control
strategy for large swarms of satellites to form bidimensional
lattices in circular orbits.

The method consists in defining the controller as an artificial
potential field composed of the superposition of a global field
and a local field. The global field attracts the satellites to a
predefined meeting point and flattens their spatial distribution.
Sections of �g parallel to the xy plane define the outer shape
of the formation. Even though in this work we focused on the
construction of hexagonal lattices, different �g functions can be
used to obtain other different shapes.

The local potential takes care of the interactions of a satellite
with its neighbours. In this work we used the Lennard-Jones
potential, whose parameters are particularly intuitive to set. In
fact, the mutual distance between the satellites can be chosen
by the designer, along with the number of neighbours each
satellite must consider to form the lattice. Other lattices could
be constructed by using a potential different from the Lennard-
Jones one. This work, therefore, sets a possible conjunction
between lattice formation with satellites and crystallography.
We plan to further study such conjunction by trying other
potentials known in the literature.

Results show that lattice formation is very accurate and that
arrangements errors due to local minima are seldom present,
although the parameters of the control strategy have been
chosen manually. Optimization of the parameters to minimize
∆V consumption is a foreseen development of this work.
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