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Aspects of sustainable software design for complex robot platforms in
multi-disciplinary research projects on embodied cognition

Martin Hülse and Mark Lee

Abstract— Sophisticated robot systems have become an im-
portant part in cognition research. On the one hand, au-
tonomous robots are intended to provide a proof of concept
for cognitive models. On the other hand, cognition research
becomes a source of inspiration in targeting current limitations
in the engineering of robust, flexible and adaptive artifacts.
In this work, we discuss aspects of software development and
integration for heterogeneous robotic systems in cognition re-
search. As we will argue, one important issue is the combination
of different computational paradigms within one robot system,
which are rooted in the divergent approaches of engineers and
scientists. This discussion lead to the introduction of a software
framework aiming to overcome some well known problems of
sustainable software development in robotics, but particular
important for multi-disciplinary and multi-center cognit ion
research projects. The introduced framework is based on well
established standards in software engineering and therefore can
be considered for a wide range of cognition research platforms
and projects. Further on, we will briefly present a robotic setup
where this framework is applied. It consists of a manipulator
of 14 DOF (degrees of freedom) and an active vision system
of 4 DOF. It is part of research activities aiming to model
behavior integration and action-selection mechanisms based in
large-scale neural networks.

I. INTRODUCTION

The progress in robotic manipulation and mobile robots
makes nowadays an autonomous robot platform more than
an object of investigation for its own right. Miniaturization
has led to platforms equipped with high dimensional sensors
and actuators with many degrees of freedom able to enter
the daily environment of human beings. In consequence,
the focus of research and development is turning to robust,
multi-modal, multi-functional and adaptive interaction of
an autonomous robot system in a complex and dynamic
environment. The creation of artefacts of such flexibility is
still a challenge, especially if scalability is considered.

Cognition research has become one source of inspiration
as well as a guidance to overcome current limitations in
engineering of more complex and adaptive systems. On the
other hand, cognition research projects have been utilizing
robot systems as demonstrators and therefore they serve as
an important proof of concept in this field. Furthermore,
embodied cognition, in particular, is focused on the crucial
role the body has for the development of cognitive behavior
and therefore it becomes rather usual that experiments in this
research involve robot systems of arbitrary complexity.

As soon as sophisticated robotic systems become part of a
cognition research project one is facing a multi-disciplinary
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and usually also a multi-center project. Robotic engineers
and scientists from different fields have to combine their
approaches and know-how in order to create systems beyond
the current state-of-the-art. One important area of this com-
bination is software development. Usually multi-disciplinary
research projects cannot start from scratch building up a new
system. They are rather confronted with a task of integration,
in which specific and very different software components
are combined to one complex system. Very often these
software components have been developed over years and
are tightly bonded to specific constraints, such as operation
system, programming language, middleware. The crucial
point for robotic platforms in cognition research projectsis
the difference between the domain of cognition research and
engineering, which is also indicated by the difference of the
applied software frameworks [1]. Due to missing standards
in robotics it is already difficult to extend or integrate robot
systems without considering high-level cognitive models.
Hence the integration of software developed in the domain
of cognitive science and robotics becomes rather a challenge
of its own.

The objective of this paper is to outline crucial aspects
that become relevant in software engineering of robotic
systems in cognition research projects. Based on our ex-
perience and recent reviews on software development and
integration in robotics we have developed a framework for
medium and large projects aiming for complex experimental
robotic platforms for cognitive models. This framework is
purely conceptual, based on design patterns and standards
in software engineering, and can therefore be applied to
any hardware and software environment. Furthermore, we
will explain some elements of this framework in detail,
based on examples of an ongoing project basically involving
a manipulator equipped with a three-finger system and a
stereo-vision system. This experimental platform is used for
the development of large-scale neural models coordinating
reaching and grasping tasks.

This paper is organized as follows. The next section
introduces the key aspect influencing the software integration
in cognition research projects. After this, the following two
sections give an overview of the-state-of-the-art in software
development / integration in robotics and outline our proposal
of a framework considering aspect of robotics in cognition
research. This is followed by a section which gives a concrete
example of this framework leading to the concluding section
of this work.
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II. KEY ISSUES OF SOFTWARE DEVELOPMENT
IN ROBOTICS

The problem of sustainable software design has been
an important issues in software engineering in general and
therefore is widely and continuously discussed in many fields
and domains. Guiding issues like modular, interoperable
and reusable software have led to the promotion of object-
oriented design principles, design patterns as well as agile
and test-driven software design methods. These issues are
relevant in robotics indeed, but shall not be discussed here.
Nevertheless, the following collection outlines specific as-
pects of software design crucial for robotic related multi-
disciplinary research projects.

A. Prototypes and multi-components

Sophisticated robot systems are build up of different
components. Sensors, actuators and mechanics supposed to
establish a coherent robot system are very often products of
different manufactures. Sometimes these components have
even the character of a prototype, i.e. software and hardware
are not sufficiently tested and might lack in specific func-
tionalities and robustness. Furthermore, it is not unusualthat
the delivered driver software of hardware devices is very
rudimentary, though one might expect software providing
already solved and well known standard applications.

In consequence, for robotic components the first step is the
development of a software which provides robust and general
functionality and a proper error handling mechanism. This
includes also sufficient test cases, which support a robust and
smooth exchange of system components, if firmware and /
or hardware devices must be upgraded or exchanged.

B. Different representations and levels of abstraction

In research laboratories it is common that one device, i.e.
a whole robot system or a specific component, is used for
experiments in different domains. This might be necessary
because experiments in a project must be conducted on a
lower level of functionality in oder to decide future design
issues. On the other hand, a research laboratory might be
involved in other projects, currently or in future, and so itis
essential that specific components can efficiently be used in
very different experiments.

Therefore it becomes important for the software design to
provided different levels of abstraction and data representa-
tions and of course this should take as little effort as possible.
This refers to the need that the core functionality of robotic
devices can be used independently, and that the exchange
and extension of system services with respect to hardware
and software must be provided.

C. Distribution of computational resources

Robotic system components might only work in a specific
software environment. Some devices might also run on
specific hardware, such as FPGAs. It is also usual that
computational expensive processes have to be distributed
over different computers in order to guarantee real-time
constraints. Recent experiments in neuroscience also show

that clusters might be necessary to simulate large-scale neural
models driving a robot platform [2]. Hence, nowadays robust,
transparent and reliable interprocess communication is a need
for almost any nontrivial autonomous robot system.

D. Distributed teams

Where cognitive science and robotics meet it is very
likely that developers of specific system components are
geographically distributed. The exchange of source codes and
software libraries (sometimes even only pre-compiled) via
suitable software repositories becomes only one major issue
to consider in this process. Due to the division of knowledge
and competence within a project it also very likely that
software integration between the different partners is rather
vertical instead of horizontal.

Horizontal integration means that two or more project
partners deliver software which is horizontally organized
within the overall software architecture. For instance, one
team delivers the hardware and software of sensor typeA,
while another team is doing so for sensor typeB and another
team is responsible for an actuatorC. All three software
components can be developed independently.

A vertical integration starts if a fourth party develops
applicationsX on top A, B and C, taking data fromA
and B and generating data feed intoC. The success of
this type of integration depends on very carefully defined
and implemented interfaces. Since formal interface definition
languages are purely syntactic and cannot cover any semantic
information, this process must involve an understanding of
the constraints and needs of each part in a reasonable depth.
This usually requires time, rather days than hours.

E. Simulator

Almost every complex robotic project sooner or later
requires the use of a simulator, especially if an autonomous
robot system is intended as a test platform for learning
or other forms of self-organized mechanism of adaptation.
Simulations are an important tool to provide a proof of
concept for new methods and in order to tune important
system parameters in advance. However, it only makes sense
to use simulators if the control software under investigation
generates the same qualitative behavior in simulation as on
the real robot. It is also important that the same control
software can directly be used for both, simulator and real
platform, without any parameter changes or even refactoring.

F. Integration of different paradigms

Robotic related cognition research projects have to pay
particular attention to the coupling between high-level cogni-
tive models and hardware specific software. Cognitive mod-
els are grounded in specific paradigms of computation and
knowledge representation. Consequently, this leads to model-
implementations based on declarative or functional computer
languages or even simulations of neural networks. In contrast
hardware-close software is usually developed in procedural
computer languages strictly following this paradigm.

The problem with different paradigms is that sometimes
specific constraints present either in the higher-level model or
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in the lower-level software cannot directly be representedin
the other domain. Hence, these constraints cannot be handled
at all and therefore cut the overall system performance.
Examples relevant in almost any systems combining robot
hardware and cognitive models are real-time constraints and
the different time-scales that specific system components are
operating on.

In consequence a lot of effort must be put into developing
efficient pre- and post-processing, scheduling and error-
handling for bridging robot hardware and cognitive models.

G. Flexibility

The aspect of different paradigms leads to another prob-
lem, also described in [1]. An engineer creates systems,
whose component functions are most efficient when they
meet a detailed set of specifications exactly. The consequence
is high performance for a very specific task. But as soon as
the application domain is extended or becomes more general
a decline of performance must be expected.

On the other hand, higher-level robotic applications, and
cognitive scientists are no exception, they develop their mod-
els, applications and experiments in a language grounded in
an ontology based on general principles. Hence, they expect
reasonable and scalable performance for general domains and
problem spaces.

The aspect of interface definition and description was al-
ready described in section II-D for geographically distributed
teams. In this context, interface definition and implementa-
tion become crucial because of the multi-disciplinary charac-
ter of cognitive science and engineering, thus, the different
approaches and the divergent expectations of specific and
general system performance.

In fact, one has to accept the inevitability of different
understandings between cognitive scientists and engineers
about the needs and the relevance of specific elements of
the targeted models and tasks. This discrepancy is often
overseen at the project-start but will emerge as soon as
lower and higher level implementations meet. As a matter
of fact, the re-definition of interfaces, frameworks or even
experiments will be the consequence. In our experience such
re-definitions will happen several times in larger projectsand
always go hand in hand with refactoring of certain extents.
It is therefore, important to be aware of this problem, and on
the other hand to provide a software engineering framework
which allows, with reasonable effort, the alteration of the
interfaces and the corresponding implementations on both
sides: robotic hardware functionality and high-level cognitive
models.

III. STATE OF THE ART

Robotics community is aware of the first five problems
issued in II-A – II-E, but very little attention is focused on
the problem of different paradigms. Nevertheless, standards
providing robust and flexible solutions for interoperable,
reusable robotic software does not exist yet. Although this
lack of standards is recognized by many researchers, the most
common solution to overcome this problem is to develop a

Fig. 1. The three software architecture layers of system design in robotics.
DA, driver and algorithms,CM interprocess communication layer andRF
robotic control framework, see also [3], [4] and [10].

new software. Mostly such implementations are claimed to
be more general, but indeed, are addressing only specific
needs and even more crucial the software is even immature.
Consequently, it is not used by other labs and therefore is
far away from providing a base for any standard.

Noticeable is the effort in many robotic projects devel-
oping middleware for a framework of handling distributed
robotic systems. However, interprocess communication is
an important aspect but not the only one for autonomous
robots. Recent reviews [3], [4] show that in robot systems
basically a 3-layered software architecture must be consid-
ered (see Fig. 1). In the lower levelDA software driver
and algorithm implementations are located. The middle level
CM provides interprocess communication. The top levelRF
is the place where the actual robotic control frameworks
are developed. It is this top layer where robotic projects
implement their strategies and models, generating intelligent
behavior. Some research projects claim that this level should
provide a declarative programming framework [3], because
they think it is the best way to implement intelligent behavior.
However, other projects would probably disagree introducing
a different framework for this level, which matches best with
their paradigm of computational intelligence.

Being aware of the subjectivity and biased view on the
top level, current activities in developing general robotic
programming frameworks are primarily focused on the two
lower levels:DA and CM. Player [5], for instance, delivers
a framework, whereDA and CM are interwoven [4]. The
YARPsoftware [6] actually provides only a framework for
the CM layer. The developers ofMIRO [7] had similar
intentions. However, they have builtMIRO as an extension of
CORBAin order to make this powerful middleware standard
easier to handle and faster to learn.ROCI [8] is based on
the philosophy that complex robot behavior is achieved by
“wiring” irreducible modules. In consequence, this software
provides the design of modules acting in a decentralized
manner. Therefore, inROCI all three layers collapse into
one network of interacting primitive modules.

Another strategy calledMARIE [9] tries to support the
reuse of existing programming environments and their con-
nections through a common middleware framework. Being
aware about the missing standards in interprocess commu-
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nication MARIE provides basically a set of design patterns
able to integrate communication protocols present in systems
composed of heterogeneous hardware components. However,
the whole design is based on middleware.

Once again, these examples represent the focus on theCM
level, which shows that system design is almost completely
seen as a problem of reliable communication between the
components. However, reliable and transparent communi-
cation has always an offset. This offset is crucial if many
relative primitive interacting components have to cope with
real-time constraints. What we want to emphasize is, if a
framework based on interprocess communication is applied
for system integration, it follows that, the lower the levelof
system functions the more the reduction of system perfor-
mance due to the offset of communication.

It is this observation, that led us to the formulation of a
framework which tries to keep the middle layerCM as “thin
and high level” as possible. However, interprocess communi-
cation provided inCM is an essential part in order to connect
high-level cognitive models and robotic hardware. But in
using it very sparely one can apply computational expensive
but standardized and mature middleware solutions. In doing
so, one has a wide coverage of different software environ-
ments and on the same time one can handle many effective
real-time constraints on lower level functions without the
involvement of computationally expensive middleware. This
reduces also the effort needed for refactoring the interfaces
between high-level cognitive models and robot hardware.
However, the problem of modular, interoperable and reusable
software design in the basic layerDA must still be addressed
explicitly. We have done this by the usage of specific design
patterns, which will be explained in the next section.

IV. GENERAL FRAMEWORK

The general framework of our software architecture is
based on the the three-layered architecture as show in Fig. 1.
However, in the need for the support of a sustainable software
design inDA we have divided this lower level into two levels:
API andMVC (see Fig. 2).

The lowerAPI provides simple and almost purely hard-
ware related application interfaces. These interfaces provide
common and general functionality for specific hardware
devices, such as cameras, laser scanners, actuators. Although
these implementations will be usually very simple and
straight forward, they shall already make use of an object-
oriented design. Also important is the testability of each
component and the support for other software developers
through documentations and basic example applications. It
is also necessary that the components in theAPI layer
can independently be used and developed. This ensures the
smooth integration or update of new hardware and firmware.

On top of these APIs we only develop new system
functions based on the model-view-control design pattern
[11]. This design pattern supports a complete separation of
hardware from applications and the first level of abstraction.
While the model element provides all the hardware func-
tionality the view and control processes can independently

Fig. 2. The proposed software architecture framework in relation to the
3-layered variation in Fig. 1.

and parallel interacting with model. Different views can
provide different representations of the current data even
taking into account temporal aspects. Control elements can
either monitor and maintain defined constraints or instantiate
more sophisticated control schemas. It is also possible to
combine severalAPI components within one model.

As we have argued above, the middle levelCM primarily
connects the cognitive model implementations inRF with
the robot hardware and related services. Since the software
environment for cognitive models and robotic hardware is
probably very different, it is recommended to use standard
middleware solutions in order to cover as much diversity
as possible. And to our knowledge, these standards in the
domain of distributed systems will all support client-server
frameworks. Hence, robotic functionalities and services can
be provided by one or more server applications, while clients
are responsible to request and deliver data needed and
generated by the cognitive model running in theRF layer.
Notice, the usage of standard middleware solutions also
provides the distribution of lower robot functions, because
different servers can run on different machines.

V. ROBOTIC SETUP FOR THE REVERSE
ENGINEERING OF THE VERTEBRATE BRAIN

The above introduced framework is applied in a project,
called REVERB [14], in which behavior integration and
action-selection mechanisms are modelled based on biolog-
ically inspired large-scale neural networks. These models
are tested and developed on a robot platform basically
consisting of a 14 DOF (degrees of freedom) manipulator
and a vision system. The manipulator integrates a 7 DOF
Lightweight arm LWA3and a 7 DOFDextrous Hand SDH.
Both devices are manufactured by SCHUNK GmbH & Co.
KG [13]. The vision system is based on a 4 DOF pan-
tilt-verge platform equipped with two firewire cameras and
a SCAMP vision system [12]. The unique feature of the
SCAMPsystem is basically the pixel-per processor vision
chip based on analog technology. This allows the execution
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Fig. 3. Robot hardware and corresponding distribution overtwo PCs. The
overall experimental platform consists of a manipulator of14 DOF and
vision system involving a pan-tilt-verge system, two firewire cameras and
a SCAMP vision system [12].

of computational expensive image processing algorithms in
real-time.

Almost typical for the integration of different devices, each
is based on a different communication channel, such as CAN-
bus, serial, USB, firewire and ethernet. Currently, the two
main hardware components are even connected to different
computers, (see Fig. 3).

A. Software architecture

Our software architecture has five independent compo-
nents in the API layer; each for every hardware device:
camera, pan-tilt-verge system,LWA3, SDH and SCAMP.
On top theMVC layer integrate some but not all of these
components.LWA3, SDH and SCAMPhave still their own
model-view-control implementation, while pan-tilt-verge and
cameras are integrated in one pattern (Fig. 4). This does
not mean that in the future no other additional patterns
will summarize other components. This depends on the
development in the project.

The applications in theMVC layer are wrapped by
CORBA server implementations providing an interface for
interprocess communication and distribution. CORBA-client
implementations in arbitrary software environments are now
able to access these hardware components and the services
provided in theMVC-level. Due to usage of CORBA the
interfaces must be written in IDL (interface description
language). This provides, at least on the syntactical level,
coherent interface definitions between low and high level
functionality.

Actually CORBA-clients are part of the processes which
establish the overall target of this software organization, that
is the cognitive model implementation. As we have men-
tioned, the cognitive model in this process is implemented
by large-scale artificial neural networks. The software used
to simulate these networks is calledBRAHMS[15]. Among
many features, withBRAHMSone is able to link different

Fig. 4. Software architecture, see text for explanation.

processes in an arbitrary manner. In such a way, different
layers of artificial neural networks can be connected, even re-
current. The processes can be implemented within a general
C++ environment and the connectivity with other processes
is defined in a XML-based language. It is also possible to
simulate the system in a MATLAB environment.

Due to its general character, CORBA-clients can straight-
forward be instantiated inBRAHMS-process. In such a way, a
distributed robot systems becomes part of a large-scale neural
model, which is simulated inBRAHMSand might itself be
executed on a cluster.

B. The usage of design patterns

The benefit of model-view-control based implementations
might be best briefly demonstrated by the following two ex-
amples. We have outlined above that reusability of software
involves the alterations of data representations and the level
of abstractions. For visual information this means, that image
data might be applied to different filters or feature detection
processes. Hence, we have used the views in the MVC-design
pattern in order to deliver different filters. The instantiations
of the view processes operate independently and parallel. On
one side, this supports the exploitation of multi-processor
system, but more important, the implemented filters can be
applied to any future instantiations of the corresponding
design pattern. Therefore, a set of independently used func-
tions can be generated which is totally separated from the
underlying hardware.

As only one example for theLWA3 7 DOF arm system
we have implemented a simple arm coordination task based
on two independently working control processes. The arm
coordination task is simply: while arm is moving, the ori-
entation of the last segment, the hand segment, shall remain
the same.

The corresponding MVC-pattern is initiated with only
two control process. The first is responsible for the global
orientation of the arm, while task for the second process is
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to keep the orientation of the SDH hand in space constant.
The bottom-line of this example is that the first process is
actively changing the global configuration of the arm, while
the second is passively adjusting the remaining DOF, which,
in this case, maintains the orientation of the hand. Both
control processes are operating in parallel on the same data.
This avoids inconsistencies and makes the overall control
much easier.

C. Switch between simulator and real robot system

The usage of CORBA supports also the integration of sim-
ulators. As we have seen it for the robot hardware a CORBA
server can also be based on a robot simulator. If both server
implementations are based on the same interface definition
given in IDL, it makes actually no difference for a client
to which server it is talking. Hence, without any changes in
the client, it can communicate either with the simulator or
with the real robot. This type of integration is successfully
applied, for instance, for the mobile robot platform KURT3D
and the corresponding simulation MACSim [16], [17].

D. Summary

The brief introduction of our robotic platform already
outlines the importance of two key aspects in our software
architecture:MVC design patterns and CORBA as widely
supported middleware standard. TheMVC patterns guarantee
the strict separation of APIs and application layer right from
the beginning. This supports the independent, modular, test-
driven, and scalable software design of robotic components.
We have also elucidated, howMVC patterns can simplify the
control and provide different data representations. Complex,
multi-modal and computationally expensive algorithms can
already be implemented in theMVC-level without the usage
of middleware.

The usage ofMVC allows the integration of theCM
layer on a much higher level of abstraction, which can
lead to the reduction of interprocess communication. There-
fore, powerful and computationally expensive middleware
standards, like CORBA, can be applied without violating
real-time constraints in the overall system. As we see in
our example CORBA supports as wide range of software
environments, which enables us to couple our robot hardware
with a MATLAB framework. Further on, the IDL used
in CORBA provides robust interface definitions between
different developer teams and totally different data sources,
such as a simulator. It is this last issue, which enables us to
run a cognitive model either on a real robot or a simulator
without any changes.

VI. CONCLUSION

Focused on current standards in software engineering we
have introduced a software architecture particularly devel-
oped for robotic systems made of heterogeneous hardware
devices and components. We have outlined how model-
view-control design patterns and CORBA, as the leading
middleware standard, can provide a sustainable software
development for different levels of abstraction. As we have

argued, this supports the integration of different computa-
tional paradigms. The last aspect makes our framework par-
ticularly interesting for robotics in cognition research,where
engineers and scientists from different fields must integrate
their different ways of system design and modelling.
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