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An evaluation of gaze modulated spatial visual search
for robotic active vision

Martin Hülse, Sebastian McBride and Mark Lee

Abstract— Active vision is an essential part of many au-
tonomous robot systems, in particular humanoid robots. In this
work we present a method for spatial visual search which is
modulated by the absolute motor positions of the active vision
system resulting from saccades to objects. A central element
of this approach is the so called visual memory where these
motor configurations are stored. Based on these motor data, the
system can evaluate which of the current visual stimuli have
already been saccaded to. In this sense, motor configurations
in the visual memory modulate the selection of visual targets
for the purpose of saccade. Two architectures are presented
which instantiate this gaze modulated visual search in a robotic
scenario. The paper also presents a series of systematic exper-
iments demonstrating the impact of two essential parameters
(ε [size of inhibitory neighborhood] and γ [decay rate]) on the
behavioural dynamics of the active vision system. ε was found
to determine the number of saccades needed to scan a scenario
whilst γ controlled the persistence of visual memory. Finally,
we discuss the advantage of gaze modulated visual search
compared to other common strategies without gaze-modulation.
It is apparent that gaze space modulation is advantageous with
respect to real-time performance and scalability, and therefore
offers an interesting alternative approach for active vision in
robotics as well as for general models of visual search.

I. INTRODUCTION

Visual perception in humans and most biological systems
is an active process [2], [3], [7], [9]. Summarized by the term
Animate Vision the computational advantages of having the
ability to “control the direction of gaze” [2] were already
illustrated almost 20 years ago. Even without highlighting the
behavioural aspects of Animate Vision and their fundamental
implications for Artificial Intelligence and Cognitive Science,
from a pure engineering perspective, active vision is a
valuable approach because it provides a robot system with a
nearly unlimited field of view. Moreover, for a meaningful
interaction of humans and robots it is important to have a
direct action understanding. A robotic active vision system
supports action understanding by indicating the system’s
focus of attention when fixating an object or getting attracted
by specific physical stimuli. In this sense through an active
vision system the robot state becomes intuitively readable by
humans [4].

One of the challenges when dealing with robotic active
vision systems is to go beyond the purely reactive nature
of gaze control. This is crucial for visual search tasks as
we understand them: a systematic fixation of objects in the
environment without getting caught by one object. This can
easily happen when similar objects are present and the local
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image data can’t be related to a global reference frame. In the
majority of models on human vision this problem is ignored
by assuming or creating a global reference. Experiments
of visual search tasks are very often conducted in a setup
where a global retinotopic reference frame is implicitly or
explicitly defined either by static images (e.g., [7]) or by the
exploitation of the specifics of computer simulations, e.g.
[10], [1].

An active vision system in an unconstrained environment
doesn’t have direct access to a global retinotopic reference
frame. Our solution to this problem is to make use of the
configuration of the gaze control system. Thus, we call
this approach gaze-modulated spatial visual search. This
approach is best motivated by a brief introduction of the
common computational models for visual search.

A. Computational models for visual search

Many computational models of human visual search as-
sume separated processes for object location and object
identification. This is in line with findings from Brain Re-
search on the organisation of the visual cortex in ventral
(“what”) and dorsal (“where”) pathways. According to the
model proposed by Ballard and colleagues [3] visual object
identification in humans is done only when the object is
in the fovea which is the central part of the eye providing
the highest resolution. An eye movement which brings an
object into the fovea (fixation) is also called a saccadic eye
movement or saccade. According to Ballard a comprehensive
visual search which includes complex object features and
object location can only be provided by a serial search [3].
Or, in other words, visual search involves the successive
fixation of the objects in the environment whilst an inhibition
of return mechanism (IOR) guarantees that saccades are not
repeatedly executed towards the same object.

Recent studies [9] have shown that saccades in humans
are modulated by the task and the context. This might be
seen as contradicting other popular models of visual search
highlighting bottom up saliency maps [7]. Saliency maps are
exclusively generated in a bottom up manner where specific
combinations of low-level image features determine the rank
of image regions according to their attractiveness or saliency
in the given image. Alternative models are proposed which
are able to combine top-down and bottom up approaches by
modulating the saliency map generation processes in a top-
down manner [5]. In such a way, saliency maps reflect a
biased view of the visual data towards pre-defined feature
combinations.



No matter how top-down and bottom-up approaches are
integrated in a comprehensive and biological plausible way,
for a robotic active vision system it is important to emphasize
that the active nature of serial visual search alters inevitably
the visual input. This is because a saccade of an active vision
system moves the camera and this changes significantly the
visual input. Unfortunately, alterations of visual input data
due to camera or eye movements aren’t considered in most of
the literature on bottom-up approaches towards visual search.
The proposed IOR mechanisms usually assume static image
data where image regions in the sense of X-Y-coordinates
can easily be labeled as regions which already have been a
target of an eye-saccade [7].

Such mechanisms, however, must fail for active vision sys-
tems because image regions represented as X-Y-coordinates
before the camera movement doesn’t refer to same objects
in the environment after the camera movement. In addition,
most bottom-up approaches assume not only static image
data but also a global retinotopic reference frame as the
action selection domain for eye-saccades. Here, local image
data is matched against the global retinotopic reference
frame.

Trying to follow such an approach for a robotic active vi-
sion system, where only data in a local retinotopic reference
frame can be accessed at any one time, there is the need to
match local retinotopic data into a global retinotopic refer-
ence frame in order to solve the problem of comparing this
data against previously saccaded to objects for the purposes
of IOR. Such processes involve high computational costs
(memory and time) and sophisticated calibration processes
while having weak robustness and real-time performance.

This issue has previously been addressed by Alexandre
and colleagues [1], [11]; here, before a saccade is executed,
the expected change of the local image data is anticipated
in order to evaluate which of the salient image regions
the vision system has already saccaded to. This approach,
however, has two disadvantages. Firstly, it doesn’t meet the
real-time constraints needed for highly interactive robotic
systems acting in changing environments [11]. Secondly, it
operates on a local retinotopic reference frame only.

The real-time constraints aren’t met because the computa-
tional costs of the anticipation process operating on the whole
image data, i.e., the higher the resolution the higher the
computational costs, and consequently the slower the robot
system. The second problem is caused by the local domain of
the anticipation process as it is only operating on the current
image data. Thus, IOR works only for the local retinotopic
reference frame and objects outside the current field of view
can’t be processed. The consequence of this is that, as soon as
a previously saccaded to object disappears from the field of
view due to camera movement, it is “forgotten”. Returning
the camera to a similar position then results in re-saccade
with the object being treated as new.

B. Specific aims

The brief discussion of current computational models for
visual search under consideration of robotic active vision sys-

Fig. 1. Robotic scenario, where an active vision system observes the objects
on the table, which can be pick-up by a manipulator.

tems clearly illustrates two requirements for a successfully
IOR mechanism. Firstly, the IOR domain must operate in a
global reference frame in order to keep track of objects not
present in the current local image data. Secondly, an IOR
domain shouldn’t be the global retinotopic reference frame
since it isn’t directly available to the active vision system.
Furthermore, explicit generation of such a model should be
avoided due to the computational costs, level of robustness
and real-time constraints associated with this approach.

The objective of this paper is, therefore, the demonstration
of inhibition of return processes which are modulated by
the motor configuration of the active vision system, which
we refer to here as the gaze space. Hence, visual search
emerges from the interaction between local retinotopic im-
age data and the gaze space configurations of successful
saccades. We introduce two computational architectures that
demonstrate that the gaze space provides the required global
reference frame for visual search while meeting the real-time
constraints that guarantee high robot-environment interaction
dynamics.

II. METHODS

The active vision system consists of two cameras (both
provide RGB 1032x778 image data) mounted on a motorised
pan-tilt-verge unit (Figure 1). Here, only one camera and two
degrees of freedom (DOF) are used: the left camera verge
movement and tilt. Each motor is controlled by determining
its absolute target position or the change of the current
position given in radians (rad). Thus, the active vision
system configuration is fully determined by the absolute
motor positions of the tilt and left verge axis, (ptilt, pvL).
The absolute positions of these two parameters define the
gaze space.

A. Two computational architectures for gaze modulation

In the following, we introduce two computational archi-
tectures for gaze-modulated visual search. Both architectures
use a mapping process to facilitate saccade action where X-
Y-coordinates of the local retinotopic image data are trans-
formed into motor position changes (∆ptilt,∆pvL), given in
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Fig. 2. Computational architecture AR

rad. The execution of these motor position changes drive the
camera in such a way that the corresponding stimulus at the
X-Y-coordinates end up in the fovea, i.e. the image centre.
The actual saccade mappings can either be learned [6], [8] or
manually designed. The latter was employed for this study.

The central element of both architectures is the visual
memory which stores the absolute motor configuration of
the active vision system (ptilt, pvL) after the execution of
a successful saccade. A saccade is successful if the object
is driven into the central region of the image; the assumed
location of the fovea. The domain of the visual memory is
the gaze space, referred to as VMGS (visual memory in gaze
space).

Obviously, the visual search is modulated by the content
of the visual memory (VMGS). We now introduce two very
distinct strategies how this modulation can generate an IOR
mechanism. In the first architecture AR Figure 2, the sup-
pression of stimuli which the system has already saccaded to
is performed in the domain of the local retinotopic reference
frame. Thus, the inhibition of return is operating in the local
retina space. In the second architecture AG Figure 4, stimuli
that the system has already saccaded to are suppressed in
the gaze space. As a consequence, the final action selection
process for eye-saccades is performed in the global gaze-
space for AG . The following sections provide a more detailed
descriptions of the two architectures.

new object

RBSM

RGB

LVMM

OSM

Fig. 3. Particular system states of architecture AR for different camera
positions after a new object is placed on the table. The new object is not yet
present in the visual memory therefore it is the only stimuli in the OSM.
The stimuli representing the old objects are present in LVMM which inhibits
their emergence OSM. See text for details.

B. Action selection in retina space

The overall computational architecture of AR consists of
three main functional stages that implement: 1) filtering of
image data, 2) action selection and execution, and 3) the
processing of the visual memory VMGS.

A colour filtering process of the current camera image
data generates a saliency map referred to as the retina-
based saliency map (RBSM). The dimension of RBSM is
determined by the width and height of the camera images
(wRet x hRet). Each stimuli in RBSM is represented by a
non-zero entry of the corresponding X-Y-coordinates. Due
to the previously learnt eye-saccade mapping, each X-Y-
coordinate of a non-zero entry in the RBSM derives a
corresponding motor changes (∆ptilt,∆pvL) for a successful
saccade. Together with current absolute motor positions
(delivered by the active vision system), this produces, for
each non-zero X-Y-coordinates, the expected absolute motor
positions of the vision system if a saccade towards this
stimulus was executed. This is expressed in Fig. 2 in the
form of (X,Y, ptilt, pvL)∗ which refers to a list of all non-
zero X-Y-coordinates and their expected final absolute motor
configuration after the corresponding saccade. These poten-
tial motor configurations are tested against the current entries
of the visual memory VMGS. If the potential absolute motor
configuration is present in VMGS then the corresponding X-
Y-coordinate is labeled with 1, otherwise 0. In this way we
get a new list ([0/1], X, Y )∗ of all non-zero X-Y-coordinates
in the RBSM which are labeled according to their presence in
the VMGS. This list can be transformed into a map LVMM
(local visual memory map) having the same dimensions as
RBSM. In contrast to RBSM, the non-zero entries in LVMM
represent the stimuli the system has already saccaded to.
Hence, the subtraction of RBSM by LVMM will generate a
new map OSM (overlaid saliency map) which contains only
the stimuli which haven’t yet been saccaded to by the active
vision system.
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Fig. 4. Computational architecture AG

The OSM is fed into the action selection process which
is implemented as a winner-take-all (WTA) process. If the
subsequent saccade execution is successful, the final con-
figuration (ptilt, pvL) is stored as a new entry in the visual
memory (VMGS).

The usage of the gaze space as a domain for representing
the visual memory provides the globally acting IOR. Figure
3 represents the image data (RGB) as well as the RBSM-,
LVMM- and OSM-data for different camera positions. The
non-black entries represent stimuli or non-zero activations
and black pixel values indicate zero activation values. In
this particular scenario we started with two objects on the
table. After the active vision system stored them in its visual
memory (via executing saccades towards them) the saccade
process was turned off and a new object was placed on the
table. One can clearly see, for arbitrary camera positions, that
there is only one stimuli present in the OSM. The LVMM
however, contains stimuli (one or two) which correspond
to the objects the system has already stored in the visual
memory. Thus, in any camera position only the new object
is fed into the action selection process for the saccadic eye-
movement. Notice that even if the old objects fall out of the
visual field (left and right image in Figure 3), as soon as they
are back the system will inhibit them again. The IOR thus
acts locally on the current image input but is stored globally
in the gaze space.

RGB

new object

RBSM

VMGS

GSSM

Fig. 5. Particular system states of architecture AG for different camera
positions after a new object is placed on the table. The new object is not
yet present in the visual memory VMGS. Since VMGS directly inhibits the
gaze space based saliency map, only one stimulus is present in GSSM. See
text for details.

C. Action selection in gaze space

The second architecture AG has a structure similar to
AR, Figure 4 in that there are three main functional parts:
image data filtering, action selection, and visual memory.
The processing between the two architectures differs after
the generation of the RBSM in that now all stimuli in the
RBSM are mapped into the gaze space. Hence, instead of
a retina-based saliency map, we have now a gaze-based
saliency map (GSSM). The process of transformation is the
same as for architecture AR. For each stimuli in RBSM the
expected final absolute motor configuration of the potential
saccade is derived but, instead of testing each (ptilt, pvL)-
configuration for each potential saccade against the visual
memory (VMGS), they all are stored in the GSSM.

The current GSSM is fed into the same action selection
process (WTA) with the outputs as absolute target position
(ptilt, pvL). If the movement of the camera into this target
position represents a successful saccade, it will again be
stored in the visual memory VMGS.

With respect to the IOR mechanisms, the VMGS can di-
rectly inhibit the GSSM because both have the same domain.
Thus, inhibition of return mechanism operates exclusively in
the gaze space.

Here again we have plotted the image data and resulting
VMGS- and GSSM-configurations for different camera po-
sitions (Figure 5). Like in the scenario above, we started
with two objects on the table. After the two object were
stored by the system in the VMGS, the saccade execution
was deactivated and a new object was placed on the table.
Inhibition by the visual memory VMGS means that only
the stimulus of the new object emerges in the GSSM. Since
the GSSM represents the data fed into the action selection
process, the next saccade would lead to the fixation of the
new object.
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Fig. 6. Test of architecture AR for different ε-values while the decay
mechanism was deactivated. (Data shown for only 700 seconds.)

D. Experimental conditions

In implementing the two architectures AR and AG for our
robotic system, we have to consider two essential parameters.
The first parameter (ε), defines the maximal distance between
two points in the gaze space such that they can be considered
to be the same object. This is necessary due to the noise
associated with the variation in active vision configurations
for saccades towards the same object. ε, therefore, defines
a neighbourhood for a specific gaze space configuration to
compensate for this noise effect.

The second essential parameter γ determines the decay of
the entries in the visual memory VMGS. Once a configu-
ration is stored in the visual memory, the action selection
process for eye-saccade is “blind” to this spatial location.
Hence, in order to keep the robotic system up-to-date in a
changing environment we introduce a decay variable. Each
entry in the visual memory has an “age” value a and this
value is increased by 1 in each iteration step with the
average update rate set at 40 Hz. The parameter γ defines
the maximum age value. If this value is reached the entry is
removed from the visual memory. Furthermore, the older the
entry the less the corresponding activation in visual memory
VMGS, and therefore the less the inhibition of OSM (in AR)
and GSSM (in AG), respectively.

The relation between current age value a and activation
value in VMGS is linear. Each new entry in the visual mem-
ory has an age value of zero which corresponds to maximal
activation value, i.e. maximal suppression. The maximum
age γ results in zero activations, i.e. non suppression, since
these values are removed from the VMGS.

Obviously, γ and ε will highly influence the behavioral
dynamics of the active vision system. The next section
describes the experimental results for different parameter
configurations for both architectures.

III. EXPERIMENTAL RESULTS

Two series of experiments for each architecture were
conducted to test different values of one parameter while the
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Fig. 7. Test of architecture AG for different non-zero ε-values while the
decay was deactivated. (Data shown for only 400 seconds.)

other was fixed. In each experiment three object were placed
on the table, similar to the scenario shown in Fig. 3 and 5. For
each parameter setting, the visual memory VMGS contained
zero values and the starting orientation of the camera was
kept constant.

Measuring saccades was done via output recording of the
absolute positions of the verge motor. These verge values
are distinct for each object when saccaded to (≈ −0.5, ≈
0.2, and ≈ 0.5 rad). Unfortunately, the diagrams in Fig. 6, 7,
8, and 9 can only provide a qualitative picture of the system
behavior. Whether or not the camera is moving can not be
derived from these data set. However, in the first two Figures
(Fig. 6, 7) for γ > 0 one can see the substantial difference in
time it needs before the system comes to an halt indicating
complete spatial inhibition of all visual stimuli. While in Fig.
8 and 9 the recorded verge positions provide a fair impression
how frequently the system executes a saccade over a given
period of time.

Due to process overload of the running models and the
lower priority of the recording process, some gaps in the data
were (as illustrated in the plots) were occasionally observed.

A. Different ε-value and no decay

In this set of experiments different ε values were tested
while the decay process of the visual memory VMGS was de-
activated. Hence, once a (ptilt, pvL)-configuration was stored
in the VMGS, it remained there. Thus, the visual search will
saccade to all the stimuli until the stored configurations in
VMGS cover the whole scene, at which point the system
will stop. The metric of the ε-parameter was the Euclidean
distance and each test run was for over 800 seconds.

All data are presented in Figures 6 and 7. The first experi-
ment set ε = 0.0 and essentially illustrates system behaviour
without an IOR mechanism. Here, the system remains in
the same configuration apart from small fluctuations; after
the camera has saccaded to the most salient stimulus, it
remains in the same position since a neighborhood of zero
results in no inhibition of nearby pixels generated from
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Fig. 8. Test of architecture AR for different decay values γ for ε = 0.25.

the same object. Theoretically, a large number of different
saccades should finally lead to a coverage of the whole object
stimulus. However, due to the limited precision of the active
vision system, a target position might not be achieved by the
system’s actuators. In such a situation a zero-neighborhood
will never lead to total inhibition of all the stimuli generated
by one object of a reasonable size.

In general, however, the plots show that the larger the
ε-value the fewer saccades or (ptilt, pvL)-configurations in
VMGS were necessary to inhibit the stimuli generated by
the objects. This was indicated by the time and the number
of saccades required until the active vision system stopped.
Although a qualitatively similar trend of behaviour was
generated by architecture AG (Fig. 7), the time taken to
reach execution of the final saccade was significantly longer
(p < 0.05) compared to architecture AR. (See Table I for
numerical values.)

B. Different decay values γ for fixed ε-values

In this series of experiments different decay values γ were
tested for ε = 0.25 with each experiment run over 400
seconds. In contrast to the experiment above, because of the
presence of a decay, the system continuously saccaded to
the objects on the table even after all objects had previously
been saccaded to.

For both architectures, it was apparent that increasing the
γ value resulted in fewer saccades. For example, referring
to Fig. 8, γ = 4000 resulted in the camera remaining in
the same position for a much longer period of time (i.e.

ε time (sec.) until
final saccade
AR AG

0.10 103 213
0.20 33 50
0.30 26 23
0.40 10 54

TABLE I
DURATION OF SACCADING PROCESS WITHOUT DECAY
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Fig. 9. Test of architecture AG for different decay values γ for ε = 0.25.

there were less saccades) compared to γ = 500. This was
also observed for architecture AG , see Figure 9. Further
generation of data will facilitate a more detailed quantitative
comparison between the two architectures.

IV. DISCUSSION

A. Visual search

The experiments have demonstrated that visual search of
a robotic active vision system can be modulated by the gaze
space. The gaze space provides a global reference frame
which is essential for an active vision system which only
has access to a local (retinotopic) reference frame. Our
experiments have shown the impact of the two parameters
γ and ε on the behaviour of the active vision system in
a static scenario. Preliminary statistical analysis confirmed
this prediction for the ε parameter but further work needs to
be done with regard to the γ parameter from a quantitative
perspective.

B. Computational costs

In both architectures, visual data are mapped between
retina and gaze space. These mappings are solely for the
stimuli (non-zero entries) in RBSM and not for the whole
image data (all pixels). This creates an essential computa-
tional advantage since the the number of non-zero entries
are generally much less compared to the total number for the
entire image. Hence, our method scales better with respect
to high resolution image data compared to other work [1],
[11].

The processing of the visual memory VMGS also needs
very low computational resources because only the success-
ful saccades are stored. Even without a decay mechanism,
this number is substantially smaller than the data needed to
build up a global retinotopic reference frame of reasonable
quality. Hence, for very little computational costs the gaze
space modulation provides a global reference frame for the
visual search.



C. Robustness

All the entries in the visual memory represent valid spatial
object locations. This is guaranteed by testing the success
of a saccade explicitly, i.e. after a saccade the RBMS must
have non-zero activity in a pre-defined central region of the
image. Such a test is necessary for both architectures since
the more stimuli that are inhibited by the visual memory,
the more sensitive the system becomes to noise. Within
both architectures, noise-initiated configurations can easily
be eliminated to keep the visual memory clear of these
artefacts through this aforementioned test.

D. Context sensitive ε-values

The experiments have shown that the larger the ε value the
fewer saccades are required towards the same object in order
to cover the corresponding area of stimuli. However, if the ε
value is too high and the IOR inhibits too large an area, the
system become “blind” to specific objects. Therefore, it is
important that a reasonable ε-value is chosen with respect to
the specifics of the given scenario. This includes the object
sizes, the working area where objects are located and the
required level of precision.

However, a problem also exists with having a constant
ε-values in that the size of the non-zero activation area in
the RBSM is not only determined by the physical size of
the object but also by the distance between the object and
camera. Thus, although objects on the table have the same
size, a different number of saccades might be necessary for
each depending on the distance. For more complex scenarios,
a more variable ε-value might therefore be recommended
with the actual object size as well as the distance between
camera and object determining the ε-value. The former
could be derived from higher level object feature detection
processes and the latter hard-wired with respect to the actual
region in the gaze space.

E. Dealing with moving objects

For non-static cameras it is particularly important to
provide mechanisms which allow a robust detection of mov-
ing objects. The challenge is to distinguish between image
changes caused by “ego-motion” of the camera and changes
that occur due to moving objects. Architecture AG already
provides a solution to this problem since the stimuli in
RBSM are mapped immediately to a global reference frame
(GSSM). Thus, if the camera moves, the static object doesn’t
change its position in this reference frame. However, if the
stimulus changes position within the GSSM, then this must
be due to external motion of that object and not by the
moving camera. In other words, the transformation of the
visual input into the gaze space eliminates the ego-motion
of the camera which makes the detection of moving object
a straight forward procedure.

F. Capacity of the visual memory

The introduced decay mechanisms obviously limits the
system’s capacity with respect to the number of stimuli that
can be stored in the visual memory. This will obviously

limit the number of objects the system can store in the
visual memory because only additional saccades towards the
already stored objects can compensate the decay of formerly
stored configurations. In general we can say that large γ- or
ε-values will increase the capacity of the visual memory for
stored objects.

G. Interplay of local and global domains

Finally, it is interesting to compare our two architectures
AR and AG for gaze modulated visual search with the two
non-gaze modulated approaches which we described briefly
in the Introduction section, the bottom-up approach first
introduced by Itty and Koch [7] and the work on visual
search in robotics by Alexandre and colleagues [1], [11].
Most enlightening is such a comparison with respect to the
domains of the different processing tasks involved in the
visual search, namely (1) action selection, (2) of the visual
memory, and (3) the domain the IOR is operating on, i.e.
where the suppression of stimuli takes places.

For pure bottom-up approaches we saw that action selec-
tion, i.e. selection of the image region to be saccaded to,
takes place in a global retinotopic reference frame. Conse-
quently this reference frame is also used to label regions
already saccaded to and to suppress them in order to allow
a saccading to the next salient image region. Hence, the
complete information process of visual search is represented
in a global retinotopic reference frame. Almost the same
can be said about the approach of Alexandre and colleagues,
but here it is the local retinotopic reference frame where all
the processes of the visual search are represented. The two
architectures presented within this study also make use of a
global reference frame, the gaze space, in order to represent
the visual memory. However, for architecture AR, action
selection is done at the level of the local retinotopic domain
(OSM in Fig. 2) which is also the domain for the suppression
of stimuli (subtraction of LVMM from RBSM). Whereas in
architecture AG , action selection is done in the local gaze
space because the stimuli in GSSM are determined by the
stimuli in RBSM. The suppression of GSSM by VMGS,
however, acts in the global domain of the gaze space. Table
II provides a summary of these approaches.

The advantage of the architectures introduced in this paper
is the interplay between local and global reference frames.
This is possible because of the mapping between the local
retinotopic and the global gaze space. As we have seen in
architecture AR, this mapping can even be bidirectional,

approach to domain of
visual search action selection visual memory IOR
bottom up global RT global RT global RT
Alexandre et al. local RT local RT local RT
AR local RT global GS local RT
AG local GS global GS global GS

TABLE II
OVERVIEW OF THE DISCUSSED APPROACHES OF VISUAL SEARCH

(RT... retinotopic reference frame, GS... gaze space reference frame)



from RBSM (retina space) to VMGS (gaze space) to LVMM
and OSM (both retina space).

V. CONCLUSION

We have demonstrated that spatial visual search for active
robotic vision can be modulated by the gaze space. The
central element of this process is the visual memory whereby
it stores the motor configuration of the active vision system
resulting from saccadic eye-movements. Based on these data,
the system can evaluate which of the current visual stimuli
it has already saccaded to. In this sense the visual memory
provides a global reference frame for the active vision system
although only a local retinotopic reference frame is directly
accessible.

Two architectures for gaze space modulated visual search
were introduced and their performance presented in a series
of experiments. Both architectures make use of the visual
memory but differ with respect to the action selection domain
of the saccadic eye-movement: local retinotopic reference
frame (architecture AR) and local gaze space reference frame
(architecture AG).

We have outlined that the visual memory in gaze space
requires less computational resources (memory and time)
than similar processing tasks in a global retinotopic reference
frame. Therefore we argue, gaze space modulation performs
much better with respect to real-time constraints and scala-
bility.

It was shown that the behavioural dynamics of the visual
search is essentially determined by two parameters ε and
γ. The number of saccades needed to scan a scenario is
determined by ε whilst γ controls the persistence of visual
memory.

In summary, this work highlights gaze modulation for
active vision systems as a promising alternative for spa-
tial visual search in robotics. It might also offer plausible
mechanisms for more general models of visual search with
future developments integrating object identification through
the processing and representation of more complex object
features. Such a model would allow visual search to be
biased not only by spatial location but also by specific object
features.
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