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ABSTRACT

Transverse oscillations of coronal magnetic loops are routinely observed during the space missions. Since the first observation these
oscillations were interpreted in terms of kink oscillations of magnetic tubes. Sometimes collective oscillations of two or more coronal
loops are observed. This makes the development of theory of collective oscillations of a few parallel magnetic tubes desirable. Another
reason for the development of this theory is that there are evidences that at least some coronal loops are not monolithic but consist
of many thin magnetic threads. In this paper the linear theory of kink oscillations of two parallel magnetic tubes with the density
varying along the tubes is developed. The asymptotic method is used to derive the system of equations governing the collective kink
oscillations of two tubes. This system is used to study the effect of density variation on the eigenfrequencies of collective oscillations.
The implication of the obtained results on coronal seismology is discussed.
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1. Introduction

The solar corona is a highly non-uniform medium. Its structure
is closely related to the magnetic field. In particular, in active re-
gions of the corona there are myriads of coronal magnetic loops,
which are the structures elongated in the magnetic field direction
with the enhanced plasma temperature and density inside. These
structures support many different types of oscillations. One of
the particularly important types of coronal loop oscillations are
transverse oscillations that were first observed by TRACE on
14 July 1998. The results of this observation were reported by
Aschwanden et al. (1999) and Nakariakov et al. (1999), who in-
terpreted these oscillations as standing fast kink waves in a mag-
netic flux tube.

After this first observation the transverse oscillations of coro-
nal loops remain in the focus of theoretical studies. First theoret-
ical interpretation of the observed transverse coronal loop oscil-
lations were based on the simplest model of a coronal loop. In
this model a coronal loop was represented by a straight homoge-
neous magnetic tube with the magnetic field lines frozen in the
dense photospheric plasma at the foot points. Then the theory
of oscillations of homogeneous magnetic tubes was used (e.g.
Edwin & Roberts 1983). Later theorists started to develop more
sophisticated models that took such effects as the loop curva-
ture, non-circular cross-section and magnetic twist into account.
For the review of the recent progress in the theory of the trans-
verse coronal loop oscillations see, e.g., a review by Ruderman
& Erdélyi (2009).

One particular and very important property of magnetic
loops is that the plasma density inside the loop varies along
the loop due to gravitational stratification. The theory of
transverse oscillations of stratified coronal loops was devel-
oped by, e.g., Andries et al. (2005a); Diaz et al. (2006) and
Dymova & Ruderman (2006a). This theory was then success-
fully applied to coronal seismology (e.g., Andries et al. 2005b;

Dymova & Ruderman 2006b; Van Doorsselaere et al. 2007;
McEwan et al. 2008; Morton et al. 2009; see also a review by
Andries et al. 2009).

Sometimes it is observed that a few neighboring coronal
loops oscillate simultaneously. When the loops are close enough
to each other the observed oscillations should be considered as
collective oscillations of loop arrays. It is natural to start study-
ing collective oscillations of loop arrays from studying oscilla-
tions of just two loops. This problem was first addressed by Luna
et al. (2008) numerically and then by Van Doorsselaere et al.
(2008) analytically in the thin tube approximation. This work
was extended to studying collective oscillations of four loops by
Ofman (2005) and multi-loop systems by Luna et al. (2009).

In this paper we aim to extend the theory of collective oscil-
lations of two loops in another direction. We will take the density
variation along the loops into account. The paper is organized as
follows. In the next section we describe the equilibrium state
and main assumptions, and present the governing equations. In
Sect. 3 we introduce bicylindrical coordinates used in our anal-
ysis. In Sect. 4 we derive the system of equations governing the
kink oscillations of two parallel loops. In Sect. 5 we re-derive the
expressions for the frequencies of kink oscillations of two paral-
lel homogeneous tubes previously obtained by Van Doorsselaere
et al. (2008). In Sect. 6 we investigate the effect of density vari-
ation along the loops on the frequencies of kink oscillations. In
Sect. 7 we study the implication of the obtained results on the
coronal seismology. Section 8 contains the summary of our re-
sults and conclusions.

2. Problem formulation

We start our analysis from describing the equilibrium state. In
this state there are two curved parallel coronal loops. They are
situated in parallel vertical planes, and the lines connecting their
axes at foot points are perpendicular to these planes (see Fig. 1).
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Fig. 1. Equilibrium with two parallel coronal magnetic loops.
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Fig. 2. The sketch of the equilibrium state with straight magnetic tubes.
The magnetic filed lines are assumed to be frozen in a dense photo-
spheric plasma at z = ±L/2. The equilibrium densities inside the tubes,
ρL and ρR, and outside the tubes, ρe, are the functions of z.

The plasma density varies along the loops due to gravitational
stratification.

In what follows we neglect the loop curvature. As a result we
obtain a system of two straight parallel magnetic tubes with the
density varying along the tubes. This system is shown in Fig. 2.
The equilibrium magnetic field is in the z-direction, which co-
incides with the direction of the tube axes, and it has constant
magnitude. The radii of the tubes are RL and RR, and the distance
between their axes is d. The density is equal to ρL(z) inside the
left tube, ρR(z) inside the right tube, and ρe(z) outside the tubes.
It is assumed that ρL,R(z) > ρe(z).

The plasma motion is described by the linearized ideal MHD
equations for cold plasmas,

∂2ξ

∂t2
=

1
μ0ρ

(∇ × b) × B, (1)

b = ∇ × (ξ × B). (2)

Here B = Bez and ρ are the equilibrium magnetic field and den-
sity, ξ is the plasma displacement, b the magnetic field pertur-
bation, ez the unit vector in the z-direction, and μ0 the magnetic
permeability of free space. The condition that the magnetic field
lines are frozen in the dense photospheric plasma is written as

ξ = 0 at z = ±L/2. (3)

The normal component of the plasma displacement, ξn, and the
perturbation of the magnetic pressure, P = Bbz/μ0, have to be
continuous at the tube boundaries. Finally, all the perturbations
have to vanish far from the tubes.

3. Introducing bicylindrical coordinates

To study the oscillations of two-tube system we use bicylindrical
coordinates τ, σ, z, where τ varies from −∞ to ∞, and σ varies
from 0 to 2π (e.g. Korn & Korn 1961). The coordinate lines in
the τσ-plane are shown in Van Doorsselaere et al. (2008). The
Cartesian and bicylindrical coordinates are related by

x =
a sinh τ

cosh τ − cosσ
, y =

a sinσ
cosh τ − cosσ

, z = z, (4)

where a is a constant with the dimension of length. The axes
of the tubes are parallel to the z-axis. The axes of the left and
right tube cross the xy-plane at points x = −d/2 and x = d/2
respectively on the x-axis. The boundaries of the left and right
tube are defined by τ = −τL and τ = τR respectively. The radii
of tubes and the distance between their axes are related to τL
and τR by

RL =
a

sinh τL
, RR =

a
sinh τR

, d = a(coth τL + coth τR). (5)

It is shown by Van Doorsselaere et al. (2008) that a, τL and τR
are uniquely defined for given RL, RR and d when RL + RR < d.
In what follows we also use the expressions for the gradient and
Laplacian in bicylindrical coordinates,

∇ f =
cosh τ − cosσ

a

(
eτ
∂ f
∂τ
+ eσ
∂ f
∂σ

)
+ ez
∂ f
∂z
, (6)

∇2 f =
(cosh τ − cosσ)2

a2

(
∂2 f
∂τ2
+
∂2 f
∂σ2

)
+
∂2 f
∂z2
· (7)

Here f is an arbitrary function, and eτ, eσ and ez are the unit
vectors in the τ, σ and z directions respectively.

It follows from Eq. (1) that ξz = 0. Then we obtain from
Eq. (2) that

P = −ρV2
A∇ · ξ, (8)

where the square of the Alfvén speed is given by

V2
A =

B2

μ0ρ
· (9)

Equation (1) can be transformed to

∂2ξ

∂t2
=

V2
A

B
∂b⊥
∂z
− 1
ρ
∇⊥P, (10)

where

b⊥ = b − bzez, ∇⊥ = ∇ − ez
∂

∂z
· (11)

It follows from Eq. (2) that

b⊥ = B
∂ξ

∂z
· (12)

Substituting this result in Eq. (10) we obtain

∂2ξ

∂t2
− V2

A
∂2ξ

∂z2
= −1
ρ
∇⊥P. (13)

Taking the divergence of this equation and using (8) yields

∂2P
∂t2
− V2

A∇P = 0. (14)
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The conditions that the magnetic pressure perturbation and nor-
mal component of displacement are continuous at the tube
boundaries are written as

[P] = 0, [ξτ] = 0, at τ = −τL, τ = τR, (15)

where the square brackets indicate the jump of a quantity across
the boundary. It follows from Eqs. (3) and (8) that P satisfies the
boundary conditions

P = 0 at z = ±L/2. (16)

Since x → ±a and y → 0 as τ → ±∞, P and ξ have to tend to
finite limits as τ→ ±∞. It is straightforward to show that τ→ 0
and σ→ 0 as x2+y2 → ∞. Hence, we also impose the condition
that P→ 0 and ξ → 0 as τ2 + σ2 → 0.

Equations (13) and (14) together with the boundary condi-
tions (15) and the limiting conditions as τ→ ±∞ and τ2 +σ2 →
0 are used in the next section to derive the governing equations
for the tube oscillations.

4. Derivation of governing equations

In this section we derive the system of two equations govern-
ing the kink oscillations of two parallel magnetic tubes in the
thin tube approximation. To do this we use the same asymptotic
method that was used by Dymova & Ruderman (2005) to de-
rive the governing equation for a single stratified tube, and by
Van Doorsselaere et al. (2008) to derive the dispersion relation
for kink oscillations of two parallel homogeneous tubes. To use
this method we assume that the characteristic spatial scale of the
two-tube system in the transverse direction is much smaller than
L. We can take this characteristic scale to be equal to d, so that
we assume that ε = d/L � 1. Since the characteristic scale in
the z-direction is much larger than d, we introduce the stretching
variable Z = εz. We consider oscillations with periods of the or-
der of L/V∗A, where V∗A is the characteristic value of the Alfvén
speed. The quantity L/V∗A can be considered as the characteristic
time of the problem. Since L/V∗A = ε

−1d/V∗A, where d/V∗A is the
Alfvénic time in the transverse direction, we also introduce the
“slow” time T = εt. In the new variables the Eqs. (13) and (14)
are transformed to

∂2ξτ

∂T 2
− V2

A
∂2ξτ

∂Z2
= −cosh τ − cosσ

ε2aρ
∂P
∂τ
, (17)

∂2ξσ

∂T 2
− V2

A
∂2ξσ

∂Z2
= −cosh τ − cosσ

ε2aρ
∂P
∂σ
, (18)

ε2
∂2P
∂T 2
− ε2V2

A
∂2P
∂Z2
− V2

A∇2
⊥P = 0. (19)

Neglecting terms of the order of ε2 in Eq. (19) and using Eqs. (7)
and (11) we obtain the approximate equation

∂2P
∂τ2
+
∂2P
∂σ2
= 0. (20)

The general solution to this equation can be looked for in the
form of Fourier expansion with respect to σ. However we are
only interested in the kink oscillations, so that we look for the
solution to Eq. (20) in the form

P = Φ(τ, T, Z) cos(σ − σ0) −Φ(0, T, Z) cosσ0. (21)

The second term on the right-hand side of this expression is in-
troduced to satisfy the condition that P → 0 as τ2 + σ2 → 0.
Now we easily find that P satisfies Eq. (20), the conditions that
P tends to finite limits when τ → ±∞, and is continuous at the
tube boundaries, if Φ is given by

Φ(τ, T, Z) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(C1 + C2e2τL)eτ, τ < −τL,

C1eτ +C2e−τ, −τL < τ < τR,

(C1e2τR +C2)e−τ, τ > τR,

(22)

where C1 and C2 are arbitrary functions of T and Z satisfying
C1(T,±εL/2) = C2(T,±εL/2) = 0.

Substituting the expression for P in Eqs. (17) and (18) we
transform them to

∂2ξτ

∂T 2
− V2

A
∂2ξτ

∂Z2
= −Q(τ, σ)

ρ

∂Φ

∂τ
cos(σ − σ0), (23)

∂2ξσ

∂T 2
− V2

A
∂2ξσ

∂Z2
=

Q(τ, σ)
ρ

Φ(τ) sin(σ − σ0), (24)

where Q(τ, σ) is given by

Q(τ, σ) =
cosh τ − cosσ

ε2a
· (25)

Using Eq. (22) we obtain that ξτ and ξσ are defined by

∂2ξτ

∂T 2
− V2

AL
∂2ξτ

∂Z2
= − Q
ρL

(C1 +C2e2τL)eτ cos(σ − σ0), (26)

∂2ξσ

∂T 2
− V2

AL
∂2ξσ

∂Z2
=

Q
ρL

(C1 +C2e2τL)eτ sin(σ − σ0), (27)

for τ < −τL, by

∂2ξτ

∂T 2
− V2

Ae
∂2ξτ

∂Z2
=

Q
ρe

(−C1eτ +C2e−τ) cos(σ − σ0), (28)

∂2ξσ

∂T 2
− V2

Ae
∂2ξσ

∂Z2
=

Q
ρe

(C1eτ +C2e−τ) sin(σ − σ0), (29)

for −τL < τ < τR, and by

∂2ξτ

∂T 2
− V2

AR
∂2ξτ

∂Z2
=

Q
ρR

(C1e2τR +C2)e−τ cos(σ − σ0), (30)

∂2ξσ

∂T 2
− V2

AR
∂2ξσ

∂Z2
=

Q
ρR

(C1e2τR +C2)e−τ sin(σ − σ0), (31)

for τ > τR.
Let us introduce functions ηL(T, Z), η1(T, Z), η2(T, Z) and

ηR(T, Z) satisfying

∂2ηL

∂T 2
− V2

AL
∂2ηL

∂Z2
=

eτR (C1 +C2e2τL)
ρL

, (32)

∂2ηR

∂T 2
− V2

AR
∂2ηR

∂Z2
=

eτL(C1e2τR +C2)
ρR

, (33)

∂2η1,2

∂T 2
− V2

Ae
∂2η1,2

∂Z2
=

C1,2

ρe
· (34)
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Then it follows from Eqs. (26) and (27) that

ξτ = Q cos(σ − σ0)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−ηLeτ−τR , τ < −τL,

−η1eτ + η2e−τ, −τL < τ < τR,

ηRe−τ−τL , τ > τR,

(35)

ξσ = −Q sin(σ − σ0)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ηLeτ−τR , τ < −τL,

η1eτ + η2e−τ, −τL < τ < τR,

ηRe−τ−τL , τ > τR.

(36)

It follows from the second boundary condition in Eqs. (15)
and (35) that

EηL = η1e−τL − η2eτL , EηR = −η1eτR + η2e−τR , (37)

where E = exp[−(τL + τR)]. These equations imply that

η1 = −ηReτL + ηLe−τR

E−2 − 1
, η2 = −ηLeτR + ηRe−τL

E−2 − 1
· (38)

Substituting these expressions in Eq. (34) we obtain

eτL

(
∂2ηR

∂T 2
− V2

Ae
∂2ηR

∂Z2

)
+ e−τR

(
∂2ηL

∂T 2
− V2

Ae
∂2ηL

∂Z2

)

= −C1

ρe
(E−2 − 1), (39)

eτR

(
∂2ηL

∂T 2
− V2

Ae
∂2ηL

∂Z2

)
+ e−τL

(
∂2ηR

∂T 2
− V2

Ae
∂2ηR

∂Z2

)

= −C2

ρe
(E−2 − 1). (40)

Eliminating C1 and C2 from Eqs. (32), (33), (39) and (40),
and returning to the original independent variables, we arrive at
equations for ηL and ηR,

∂2ηL

∂t2
− C2

kL
∂2ηL

∂z2
= E
ρR − ρe

ρL + ρe

∂2ηR

∂t2
, (41)

∂2ηR

∂t2
−C2

kR
∂2ηR

∂z2
= E
ρL − ρe

ρR + ρe

∂2ηL

∂t2
, (42)

where the squares of the kink speeds for the left and right tubes
are given by

C2
kL =

2ρV2
A

ρL + ρe
, C2

kR =
2ρV2

A

ρR + ρe
· (43)

Let us introduce the dimensionless parameters

r =
RL + RR

d
, s =

RR

RL
· (44)

Obviously r ≤ 1. Using Eq. (5) it is straightforward to obtain

cosh τL =
1 + s + r2(1 − s)

2r
, cosh τR =

1 + s − r2(1 − s)
2rs

· (45)

These relations can be considered as quadratic equations for e−τL

and e−τR . Calculating this quantity we can then find the expres-
sion for E = exp[−(τL + τR)], and obtain the relation between E,
r and s. After long but straightforward calculation we arrive at

r2 =
E(1 + s)2

(s + E)(1 + sE)
· (46)

When E is fixed, r is a function of s. It is easy to show that r < 1
for any value of s > 0, r → 1 when either s → 0 or s → ∞, and
r takes it minimum value rmin when s = 1, where

rmin =
2
√

E
1 + E

· (47)

In the two-tube system the lines that are not perturbed by the
fluting modes are not the tube axes, but the lines parallel to the
tube axes and crossing the xy-plane at points with coordinates
(−a, 0) and (a, 0). In bicylindrical coordinates these straight lines
correspond to τ → −∞ and τ → ∞ respectively. Let us denote
the displacements of these lines as ξL and ξR. Using Eqs. (35)
and (36) we obtain that

ξL =
ηLe−τR

2ε2a
[−eτ cos(σ − σ0) + eσ sin(σ − σ0)],

ξR =
ηRe−τL

2ε2a
[eτ cos(σ − σ0) + eσ sin(σ − σ0)].

(48)

Using the relations

eτ =
ex(1 − cosh τ cosσ) − ey sinh τ sinσ

(cosh τ − cosσ)
,

eσ = −ex sinh τ sinσ + ey(1 − cosh τ cosσ)

(cosh τ − cosσ)
,

(49)

where ex and ey are the unit vectors in the x and y-direction, we
obtain that

eτ → −ex cosσ + ey sinσ
eσ → ex sinσ + ey cosσ,

(50)

as τ→ −∞, and

eτ → −ex cosσ − ey sinσ,
eσ → −ex sinσ + ey cosσ,

(51)

as τ→ ∞. With the aid of these results we rewrite Eq. (48) as

ξL =
ηLe−τR

2ε2a
(−ex cosσ0 + ey sinσ0),

ξR =
ηRe−τL

2ε2a
(ex cosσ0 + ey sinσ0).

(52)

These relations will be used in the discussion of polarization of
eigenmodes.

5. Eigenmodes of system with constant density

Let us use Eqs. (41) and (42) to study the eigenmodes of the sys-
tem of two parallel homogeneous tubes. We will only consider
the fundamental mode with respect to z, and take ηL and ηR pro-
portional to exp(−iω) cos(kz), where k = π/L. Then the system
of Eqs. (41) and (42) reduces to

(ω2 − k2C2
kA)ηL = E

ρR − ρL

ρL + ρe
ω2ηR, (53)

(ω2 − k2C2
kL)ηR = E

ρL − ρe

ρR + ρe
ω2ηL. (54)

We obtained the system of two linear homogeneous algebraic
equations for ηL and ηR. This system has non-trivial solutions
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Fig. 3. Dependence of the normalized frequen-
cies on λ for ζL = ζR = 10, and E = 0.188
and E = 1. The dashed and dotted curves corre-
spond to the high-frequency and low-frequency
eigenmodes. The frequencies of the fundamen-
tal mode, and the first and second overtones are
shown.

only when its determinant is zero. This condition gives the dis-
persion equation relating ω and k. The solutions of this disper-
sion equation are ω = ±ω+ and ω = ±ω−, where

ω2
± =

V2
Aek

2(ζL + ζR + 2 ± Q)

(ζL + 1)(ζR + 1) − (ζL − 1)(ζR − 1)E2
, (55)

ζL =
ρL

ρe
, ζR =

ρR

ρe
, (56)

Q =
√

(ζL − ζR)2 + 4(ζL − 1)(ζR − 1)E2. (57)

This result is in agreement with the result obtained by
Van Doorsselaere et al. (2008). In what follows we will call
the oscillation mode with the frequency ω+ the high-frequency
mode, and the mode with the frequency ω− the low-frequency
mode.

6. Effect of density stratification

In this section we study the effect of density stratification on the
eigenmodes of the two-tube system oscillations. We look for the
solution to the system of Eqs. (41) and (42) with ηL and ηR pro-
portional to exp(−iω). The solution has to satisfy the boundary
conditions

ηL = ηR = 0 at z = ±L/2. (58)

Equations (41) and (42) are now reduced to

d2ηL

dz2
+
ω2

C2
kL

(
ηL − ζR − 1

ζL + 1
EηR

)
= 0, (59)

d2ηR

dz2
+
ω2

C2
kR

(
ηR − ζL − 1

ζR + 1
EηL

)
= 0. (60)

Equations (59) and (60) together with the boundary condition
(58) constitute the eigenvalue problem determining ω. This
eigenvalue problem was solved numerically. We assumed that
both tubes have the shape of half-circle of radius R, so that the
distance along the tube, z, is related to the atmospheric height,
h, by h = R cos(z/R). We also assumed that the atmosphere is
isothermal, and the temperature is the same inside the tubes and
in the surrounding plasma, so that ρe,L,R = ρ̄e,L,R exp(−h/H),
which can be rewritten as

ρe,L,R = ρ̄e,L,R exp
(
− R

H
cos

z
R

)
, (61)

where H is the atmospheric scale height, and ρ̄e,L,R denotes the
densities at the foot points. Hence, ζL and ζR are constant, and
the expressions for C2

kL and C2
kR reduce to

C2
kL,R =

2V
2
Ae

ζL,R + 1
exp

( R
H

cos
z
R

)
, (62)

where V
2
Ae = B2

0/(μ0ρ̄e) is the square of the Alfvén speed in the
surrounding plasma at the foot point level.

Figure 3 shows the dependence of frequencies of the high-
frequency and low-frequency eigenmodes on the parameter λ =
R/H for ζL = ζR = 10. The left panel corresponds to E = 0.188.
When s = 2 this corresponds to r = 3/4, i.e. for tubes with the
radius ratio of two the distance between the tube axes is twice
the larger radius. The right panel corresponds to E = 1. It fol-
lows from Eq. (46) that r = 1 for any value of s, i.e. we have
the limiting case when the tubes touch each other. In both panels
the frequencies of the high-frequency eigenmodes are shown by
dashed lines, and those of the low-frequency eigenmodes by dot-
ted lines. The frequencies of the fundamental mode, and the first
and second overtones are shown. The frequencies are normal-
ized to the fundamental Alfvén frequency in the external plasma
at the foot point level, ωAe = kVAe.

Figure 4 shows the dependence of frequencies of the high-
frequency and low-frequency eigenmodes on E for ζL = ζR =
10. The left panel is for λ = 0, which corresponds to non-
stratified tubes. The right panel is for λ = 1, which corresponds
to H = R. If we want to find the values of frequencies for partic-
ular values of r and s, then we need to calculate the correspond-
ing value of E using Eq. (46). For example, if we take s = 1, i.e.
RL = RR, and r = 4/5, i.e. d = 5

2 RL, then we obtain E = 1/4.
Figure 5 shows the dependence of frequencies of the high-

frequency and low-frequency eigenmodes on the ratio of plasma
densities outside and inside the tubes when the densities inside
the tubes are the same, ζL = ζR = ζ, and E = 7 − 3

√
5 ≈ 0.292.

When the tube radii are equal (s = 1), this value of E corre-
sponds to r = 2/3. The left panel is for λ = 0, which corresponds
to non-stratified tubes. The right panel is for λ = 1, which corre-
sponds to H = R.

Let us discuss the mode polarization. It is well known that
the kink oscillations of straight magnetic tubes are infinitely de-
generated in the long wavelength approximation in the sense
that the oscillation frequency is independent of the polarization.
Van Doorsselaere et al. (2008) showed that the same is true for
the two-tube system when there is no density stratification. This
property remains valid even when the tubes are stratified. Really,
the eigenvalue problem determining the dependence of ω on k
does not contain the parameter σ0, which determines the mode
polarization. It follows from Eq. (52) that the vectors ξL and ξR
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Fig. 4. Dependence of the normalized frequen-
cies on E for ζL = ζR = 10. The left and
right panels correspond to λ = 0 and λ = 1.
The dashed and dotted curves correspond to
the high-frequency and low-frequency eigen-
modes. The frequencies of the fundamental
mode, and the first and second overtones are
shown. Note that, for fixed RL/RR, the decrease
of E corresponds to the increase of d.

Fig. 5. Dependence of the normalized frequen-
cies on 1/ζ = ρe/ρL = ρe/ρR for E = 7–
3
√

5 ≈ 0.292. The left and right panels cor-
respond to λ = 0 and λ = 1. The dashed and
dotted curves correspond to the high-frequency
and low-frequency eigenmodes. The frequen-
cies of the fundamental mode, and the first and
second overtones are shown.

have to be mirror symmetric with respect to the y-direction, oth-
erwise their directions are arbitrary.

Van Doorsselaere et al. (2008) pointed out that the degener-
acy of kink oscillations is related to the use of the long wave-
length approximation. The account of dispersion related to the
finite thickness of the tubes would remove it. This statement
clearly follows from the numerical results obtained by Luna et al.
(2008). These authors studied kink oscillations of the two-tube
system with the tubes having the same radii and the density in-
side the tubes being equal. They obtained that there are four dif-
ferent modes of kink oscillations of this system. The polarization
in these modes corresponds either to σ0 = 0, so that the tube dis-
placements are in the x-direction, or to σ0 = π/2, so that the tube
displacements are in the y-direction. Luna et al. (2008) denoted
these modes as S x and Ax, and as S y and Ay respectively, where
S and A stay for symmetric and antisymmetric.

In the symmetric modes the two tubes oscillate in phase,
while in the antisymmetric modes they oscillate in anti-phase.
The frequencies of all four modes are different, however the fre-
quencies of S x and Ay modes are smaller than the frequencies of
Ax and S y modes. In fact, the frequencies of S x and Ay modes are
close to ω−, and the frequencies of S y and Ax modes are close to
ω+.

As we have already mentioned Luna et al. (2008) considered
the system of two identical magnetic tubes. Van Doorsselaere
et al. (2008) found that the modes S x, Ax, S y and Ay exist only
for a definite range of parameters corresponding to the standard
systems in their terminology. There are also the so-called anoma-
lous systems. In an anomalous system there are two Ax modes,
one with the high and one with the low frequency, and two S y
modes, once again one with the high and one with the low fre-
quency. There are no Ay and S x modes. All systems with equal
densities inside the tubes are standard systems.

In our calculations we always took the value of parame-
ters that correspond to standard systems when the tubes are

non-stratified, so that we anticipated that the system would be
standard. The numerical results confirmed this conjecture. We
found that ηR/ηL < 0 for the smaller frequency, and ηR/ηL > 0
for the larger frequency. Then it follows from Eq. (52) that,
in the modes with the smaller frequency, ξL and ξR have the
same direction when σ0 = 0, and the opposite directions when
σ0 = π/2. This corresponds to the S x and Ay modes. On the
other hand, in the modes with the larger frequency, ξL and ξR
have the opposite directions when σ0 = 0, and the same direc-
tion when σ0 = π/2. This corresponds to the Ax and S y modes.
We see that, similar to the standard system with non-stratified
tubes, the system with stratified tubes have the S x and Ay modes
oscillating with the smaller frequency, and the Ax and S y modes
oscillating with the larger frequency.

7. Implication on coronal seismology

Verwichte et al. (2004) reported two cases of observations of
the transverse coronal loop oscillations where, in addition to the
fundamental harmonic, the first overtone was also observed. A
very important property of these observations was that the ratio
of the frequencies of the first overtone and the fundamental har-
monic was less than 2. It was equal to 1.81 and 1.64 respectively
(note that later Van Doorsselaere et al. (2007) used the improved
technique to correct this values to 1.82 and 1.58).

Andries et al. (2005b) suggested to use these observations
to estimate the scale height in the solar corona. They assumed
that an oscillating loop has the half-circle shape and it is in the
vertical plane. They also assumed that the atmosphere is isother-
mal. In that case the dependence of plasma densities inside and
outside the loop are given by the expressions similar to Eq. (61).
Then they calculated the ratio of frequencies of the first over-
tone of the loop kink oscillation to the fundamental harmonic. It
turns out that this ratio is a monotonically decreasing function
of λ = R/H. Hence, if we know the ratio of frequencies and
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R, which is the loop height at the apex point, then we can de-
termine H. Using the observational data reported by Verwichte
et al. (2004), Andries et al. (2005b) found H = 68 Mm in the
first event, and H = 36 Mm in the second event.

At present there are hot debates about the internal structure
of coronal loops. Two competitive models were suggested. In the
first model coronal loops are considered as monolithic, while
in the second as consisting of a large number of thin threads
with different densities and temperatures. Andries et al. (2005b)
considered loops as monolithic. Will the estimates of the coronal
scale height change if the multi-thread model of coronal loops is
used?

To have the first insight in this problem we can use the loop
model that consists of just two threads. Let us consider the two
magnetic tubes in the model studied in this paper not as sepa-
rate loops, but as two threads of the same loop. We assume that
the threads are in two parallel vertical planes and have the same
shape, so that the equilibrium is similar to one shown in Fig. 1.
We also assume that the threads oscillate in phase. Then, in ac-
cordance with the analysis in the previous section, they oscillate
in the horizontal direction with the frequencyω−, and in the ver-
tical direction with the frequency ω+.

Let us assume that the densities inside the threads are pro-
portional to the density in the external plasma, so that ζL and ζR
are constant. Then, introducing new variables,

η+ = 2E(ζR − 1)ηR + (Q − ζL + ζR)ηL,

η− = (Q − ζL + ζR)ηR − 2E(ζL − 1)ηL,
(63)

we reduce the system of Eqs. (59) and (60) to

4V2
Ae

d2η±
dz2
+ ω2(ζL + ζR + 2 ∓ Q)η± = 0. (64)

We see that now we have two separate equations, one for η+,
and one for η−. Using Eq. (52) it is not difficult to show that,
in the case when the threads oscillate in phase, η− corresponds
to the horizontal, and η+ to the vertical oscillations. Using the
dimensionless quantities

z̄ =
z
L
, Ω2

± =
ω2L2

4V
2
Ae

(ζL + ζR + 2 ∓ Q), (65)

we reduce Eq. (64) to

d2η±
dz̄2
+ q(z̄)Ω2

±η± = 0, (66)

where q(z̄) = ρe/ρ̄e, ρ̄e = ρe(0). This equation together with
the line-tying condition η±(±1/2) = 0 constitutes the eigenvalue
problem that determines the eigenfrequencies of oscillations. We
see that, in dimensionless variables, the eigenvalue problems for
the high-frequency and low-frequency oscillations are the same.
Moreover, Dymova & Ruderman (2005) showed that the kink
oscillations of a thin straight magnetic tube in a cold plasma with
the density varying along the tube are governed by the equation

d2η

dz2
+
ω2

C2
k

η = 0, C2
k =

2B2

μ0(ρi + ρe)
, (67)

where ρi(z) and ρe(z) are the densities inside and outside the tube.
If ρi/ρe = ζ = const, then, in the dimensionless variables

z̄ =
z
L
, Ω2 =

ω2L2(ζ + 1)

2V
2
Ae

, (68)

Eq. (67) is transformed to

d2η

dz̄2
+ q(z̄)Ω2η = 0. (69)

We see that Eq. (69) coincides with Eq. (66). Let Ωf be the fun-
damental frequency and Ωon, n = 1, 2, . . . are the frequencies
of overtones of the eigenvalue problem that consists of Eq. (66)
(or, which is the same, Eq. (69)) and the boundary conditions
η(±1/2) = 0. Then the squares of the dimensional frequencies
of the high-frequency and low-frequency kink oscillations of the
two thread system, and the monolithic loop, are given by

ω2
f+ =

4Ω2
f V

2
AeL−2

ζL + ζR + 2 − Q
, ω2

on+ =
2Ω2

onV
2
AeL−2

ζL + ζR + 2 − Q
, (70)

ω2
f− =

2Ω2
f V

2
AeL−2

ζL + ζR + 2 + Q
, ω2

on− =
2Ω2

onV
2
AeL−2

ζL + ζR + 2 + Q
, (71)

ω2
f =

2Ω2
f V

2
AeL−2

ζ + 1
, ω2

on =
2Ω2

onV
2
AeL−2

ζ + 1
, (72)

where the indices “f” and “o” indicate the fundamental mode
and overtones, and n = 1, 2, . . . is the ordinal number of an over-
tone. We see that the frequencies of the horizontal and vertical
oscillations of the two thread system, and the frequencies of kink
oscillations of a monolithic loop are different. This difference is
caused by the fact that the non-stationary flow of the external
plasma around an oscillating monolithic loop is different from
that around an oscillating two thread system. However, the ratios
of frequencies of overtones to the fundamental frequency are the
same. This means that the estimate of the scale height obtained
by Andries et al. (2005b) would not change if we assume that
the observed kink oscillations were the oscillations of the loop
consisting of two threads.

Andries et al. (2005b) took ζ = 10 in their numerical investi-
gation. It follows from our analysis that the ratios of the frequen-
cies of the overtones and the fundamental mode is independent
of ζ. The only condition that has to be satisfied is that ζ = const.

8. Summary and conclusions

In this paper we studied the kink oscillations of two parallel
coronal loops with the density varying along the loop. We mod-
elled this two-loop system by the system of two parallel mag-
netic tubes. Using bicylindrical coordinates we derived the sys-
tem of equations governing the oscillations of the two-tube sys-
tem. We then have used this system to study the eigenmodes of
kink oscillations. First we re-derived the expressions for the fre-
quencies of kink oscillations of two homogeneous parallel tubes
previously derived by Van Doorsselaere et al. (2008). Then we
considered the effect of density variation along the tubes. We
assumed that the loops are in two parallel vertical planes and
have the shape of half-circles with the same radius R. We also
assumed that the atmosphere is isothermal and the plasma tem-
perature is the same in the loops and in the surrounding plasma.
This implies that the ratios of plasma densities inside the loops to
the density of the external plasma are constant. The eigenvalue
problem describing the eigenfrequencies of the loop oscillations
was solved numerically.

We investigated the implication of our results on coronal
seismology. When doing so we concentrated on the problem of
determination of the atmospheric scale hight using the ratio of
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frequencies of the fundamental harmonic and first overtone of
the kink oscillations. We compared the results obtained on the
basis of two models: one where a coronal loop is assumed to
be monolithic, and the other where a coronal loop consists of
two threads. We assumed that the ratios of plasma densities in-
side the loops and in the external plasma are constant. Then we
showed that, under this assumption, the two models give exactly
the same value of the atmospheric scale height. Moreover, we
showed that this value is independent of the density ratios.
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