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Abstract

Computational visual attention systems have been constructed in order for robots and other devices to detect and locate
regions of interest in their visual world. Such systems often attempt to take account of what is known of the human visual
system and employ concepts, such as ‘active vision’, to gain various perceived advantages. However, despite the potential
for gaining insights from such experiments, the computational requirements for visual attention processing are often not
clearly presented from a biological perspective. This was the primary objective of this study, attained through two specific
phases of investigation: 1) conceptual modeling of a top-down-bottom-up framework through critical analysis of the
psychophysical and neurophysiological literature, 2) implementation and validation of the model into robotic hardware (as
a representative of an active vision system). Seven computational requirements were identified: 1) transformation of
retinotopic to egocentric mappings, 2) spatial memory for the purposes of medium-term inhibition of return, 3)
synchronization of ‘where’ and ‘what’ information from the two visual streams, 4) convergence of top-down and bottom-up
information to a centralized point of information processing, 5) a threshold function to elicit saccade action, 6) a function to
represent task relevance as a ratio of excitation and inhibition, and 7) derivation of excitation and inhibition values from
object-associated feature classes. The model provides further insight into the nature of data representation and transfer
between brain regions associated with the vertebrate ‘active’ visual attention system. In particular, the model lends strong
support to the functional role of the lateral intraparietal region of the brain as a primary area of information consolidation
that directs putative action through the use of a ‘priority map’.
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Introduction

One of the main problems in trying to define the underlying

mechanisms of visual attention is that its neurophysiological drive

stems from several sources, the weights of which are determined by

different contextual paradigms. Visual attention, for example, can

be in the context of ‘‘searching’’ or ‘‘not searching’’, different levels

of task-driven information, different levels of task-relevant and

object feature complexities or, prior experience or naivety to the

visual scene. What is common to all situations, however, is that

overt visual attention, through the action of saccade, is essentially a

request for further visual information originating from either the

same or a different sensory modality system. For example,

additional visual data may be required to complete partial

peripheral retinotopic information or, to identify objects in

relation to associated sound stimuli or, to facilitate appropriate

grasping in relation to reach.

One of the main aforementioned context divisions of the

operational state of the visual attention system is ‘‘searching’’ or

‘‘not searching’’. When ‘‘not searching’’, visual attention is driven

predominantly by in-built saliency filters present in the early stages

of visual processing within the visual cortex. This ‘‘bottom-up’’

mechanism inherently directs saccades towards objects with

certain feature characteristics such as high feature contrast [1] as

a result of, for example, either luminance contrast [2,3], or edge

density [4] and temporal features [5]. In the context of

‘‘searching’’, a further sub-division can be made as to whether

this is search within a naive environment (i.e. objects are being

viewed for the first time) or the onlooker has experience of the

visual scene (i.e. has previously saccaded to objects and features

within that scene). Short term visual memory or ‘inhibition of

return’ (IOR) is critical within this situation where inhibitory

processes mask excitation from previously saccaded to objects [6].

Introducing task and object relevance superimposes another layer

of ‘‘top-down’’ bias that can operate at a number of different levels

within the system. The first is through a feed-forward pre-attentive

priming effect at the stage of early visual processing that biases the

strength of specific low resolution peri-foveal visual data [7].

Depending on the complexity of object information required, a

request for information is not always generated and the low

resolution peri-foveal visual data is sufficient in the context of the

task. For example, in a study by Li et al. [8], correct colour and

shape of objects within peripheral view could be identified whilst
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maintaining fixation at the central point. As the complexity of the

object feature data increases or rather, the complexity of object

feature data required for goal-orientated action increases, the

more likely a saccade is required to attain this high resolution,

complex feature data. Indeed the complexity of the object feature

data can be such that return saccades are required to allow further

linking or processing of object features. Here, the system can

override IOR mechanisms to facilitate this process [9,10]. The

evidence above strongly demonstrates a high degree of plasticity in

the mechanism underlying visual attention that is both cross-

modal and adaptable dependent on information held, information

required and whether the agent is in a task- directed or task-

neutral state. Such a system, therefore, must have the ability to

process concurrent and non-concurrent signals from different

brain systems that are competing for visual attention and saccade

and, thereby provide a neurophysiological forum where both

bottom-up and top-down information can be assimilated into a

common currency to produce the most appropriate motor

response.

Various computational visual attention systems have been

constructed in order for robots and other devices to detect and

locate regions of interest in their visual world. Such systems often

attempt to take account of what is known of the human visual

system and employ concepts, such as ‘active vision’, to gain various

perceived advantages. However, despite the potential for gaining

biological insights from such experiments, the computational

requirements for visual attention processing are often not clearly

presented from a biological perspective. This was the primary

objective of this study, to be attained through two specific phases

of investigation: 1) conceptual modeling of a top-down-bottom-up

framework through critical analysis of the psychophysical and

neurophysiological literature to predict first stage computational

requirements, 2) implementation of the model into robotic

hardware as a representative of an active vision system and

validation through behavioural testing to subsequently identify sec-

ond stage computational requirements. Furthermore, critical

analysis of the developed model may give the opportunity to

derive new hypotheses about the biological system.

For the following discussion, a glossary of terms is presented

Table 1.

Methods

Stage 1-Model development and first stage
computational requirements of the system

The visual cortex operates as a layered (V1–V5) early processing

centre of visual information with feedforward and feedback

mechanism between layers existing throughout the cortex.

Neurons within each layer are tuned specifically to various

properties of incoming visual stimuli providing filtering capability

for different properties of the incoming visual stimuli for example,

contrast ratio, movement, luminance colour, and patterns. The

map of the retina appears to be strictly conserved within early

visual processing regions (V1–2) and to a lesser degree in

subsequent layers (V3–V5) where the visual information becomes

more abstracted. Visual information is also anatomically parti-

tioned and functionally dissociated into the dorsal and ventral

streams, commonly referred to as the ‘where’/‘action’ and ‘what’/

‘perception’ pathways respectively [11,12].

The dorsal pathway passes through V1, V2 and V5 arriving at

the posterior parietal cortex and is considered to process and hold

spatial information about objects. The ventral pathway also passes

through V1 and V2 but thereafter differs in its route passing

through V4 before arriving at the inferior temporal cortex. The

ventral visual stream is concerned predominantly with object

identification. There has been considerable debate as to why two

pathways should have functionally evolved and how, on separating

visual data, it can be brought back together to facilitate object-

informed motor action. From an evolutionary perspective, it is

considered that the required computational transformation differs

between the streams. The dorsal stream, in the context of reaching

requires precise and egocentric metric transformations in real time

whereas the ventral stream is considered to processes object data

relative to the scene and in a way that allows comparison with

previously stored information about those objects [13]. Although

functionally dissociated under the terms ‘action’ and ‘perception’,

it is generally considered that both pathways influence motor

output, but that the ventral ‘perception’ pathway does so in an

indirect manner [14]. It is the dorsal visual stream, however, that

appears to predominate during attentional premotor activity and is

the considered starting point for both saccade (lateral intraparietal

region of intraparietal sulcus [LIP]) and elicited motor action

(medial intraparietal sulcus [MIP]) [15].

One of the primary questions that arises from this dichotomy of

the visual stream is how the brain manages to maintain a

synchronized link between these different forms of visual data?

And furthermore, how bottom-up and top-down mechanisms

contribute and modulate to this synchronisation process?

In the following, we specify these questions in the form of a

biologically-inspired computational model (Figure 1) for overt

visual attention integrating bottom-up and top-down mechanisms.

This is subsequently used to highlight four primary identified

computational requirements (ICR) required to resolve the robotic

implementation in a biological plausible way.

1. Egocentric reference frame, ICR 1. The first question

that arises in constructing a working architecture for a visual

attention system, is the issue of retinotopic versus egocentric

mappings. Although described as ‘visual’ attention, vision is not

the only driver of saccade with non-vision sensory modalities and

internal signals also having this ability. The other critical point

here is that saccade is often directed to points outside of the

current retinotopic map, thus, there is a requirement to extend this

map to incorporate the general egocentric space. This computa-

tional requirement is labeled as ICR 1 ‘‘retinotopic to egocentric

transformation’’ which in our model occurs along the dorsal

pathway (Figure 1). There is strong evidence to suggest that the

deep layer of the superior colliculus in the mid-brain, as the near

terminal structure in saccade generation, is functional in this

respect [16]. Other egocentric maps would, however, be

anticipated within higher levels of the brain hierarchy given that

a) the conscious perception of space is not limited to a retinotopic

framework and b) modulation of putative targets of saccade needs

to be carried out within an egocentric framework and it is more

probable that this critical function would be carried out within

cortical rather than mid-brain structures. Again, the posterior

parietal cortex (Figure 1) is a primary candidate brain region in

this respect [17].

2. Spatial memory facilitating inhibition of return, ICR

2. Inhibition of return (IOR) refers to the suppression of stimuli

(object and events) processing where those stimuli have previously

(and recently) been the focus of spatial attention. In this sense, it

forms the basis of attentional (and thus visual) bias towards novel

objects but more importantly prevents continual fixation on the

same highly salient object. It is thus a critical mechanism within

any visual attention system. Although the neural mechanism

underpinning IOR is not completely understood, it is well

established that the dorsal frontoparietal network, including

frontal eye field (FEF) and superior parietal cortex are the primary

Computational Requirements of Active Vision
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structures mediating its control. These are some of the many

modulatory and affecting structures of the deep superior colliculus

(optic tectum in non-mammals), the primary motor structure

controlling saccade. Although visual information from the retina

starts at the superficial superior colliculus, and there are direct

connections between the superior and deep layers [18] the former

cannot elicit saccade directly [19]. This information has to be

subsequently processed by a number of cortical and sub-cortical

structures that place it 1) in context of attentional bias within

egocentric saliency maps (posterior parietal cortex) [20], 2) the

aforementioned IOR [21], 3) overriding voluntary saccades

(frontal eye fields) [18] and 4) basal ganglia action selection [22].

Thus, biologically there exists a highly developed, context specific

method for facilitating the most appropriate saccade as a form of

attention selection. One of the main problems to overcome in

constructing an IOR system is the accurate mapping of the

retinotopic space to the global egocentric space i.e. foveated

objects within a retinotopic map must be logged within a global

egocentric map to allow subsequent comparison with peripheral

retinotopic information. The lateral intraparietal (LIP) region is

the primary candidate brain region for this process, given its

aforementioned position in modulating the transfer of visual

information from superficial to deep superior colliculus. LIP also

appears to be the most pertinent structure in the phenomenon of

IOR with strong modulatory connections to the intermediate layer

of the superior colliculus [17,23,24] and physiological character-

istics that strongly correlate with a linear ballistic accumulator

model (a linear accumulation to saccade criterion with different

rates of accumulation and starting points for each saccade) that is

considered to describe the IOR process [25].

3. Synchronisation of ‘‘where’’ and ‘‘what’’ information,

ICR 3. Within a situation where an object appearing in the

peripheral retina has low intrinsic salience value (luminance,

contrast) but is task relevant, a request for saccade will be made by

the terminal region of the ventral stream due to partial recognition

of the object. The question then is how does initialization of

saccade within LIP of the dorsal visual stream, as a result of this

information request in the ventral stream, occur? Biological work

has yet to elucidate completely how this issue is resolved, however,

data does indicate two possible mechanisms. Firstly, connections

identified between the two visual pathways [26] may suggest direct

binding of the two mapping systems. Alternatively, given the

feedforward and recurrent epoch hypothesis of pre-attentive and

attentive vision [27], perifoveal object information modulated in

the context of task could be passed back to early processing visual

centres, to then move forward again along the dorsal stream.

The recent paper by [28], as an extension of earlier work [29],

has demonstrated that visual information along the dorsal pathway

arrives earlier compared to the ventral equivalent, and thus tends

to suggest that the former solution to this binding problem may be

the most applicable. However, it may also be that, even through

spatial information about an object arrives first, the modulation of

Table 1. Glossary of terms and mathematical variables.

Abbreviation Explanation

General

FEF Frontal eye field.

Gaze space The egocentric space around the whole of the vision system.

ICR Identified computational requirements.

IOR Inhibition of return-the inhibition of a saccade to a previously fixated object within a defined time frame.

Linear Ballistic
Accumulator

A model to describe the linear accumulation of information to a point of threshold upon which action e.g. saccade is taken.
Starting points and rates of accumulation can vary.

LIP Lateral intraparietal region of the brain predominantly associated with initiation of saccade.

MIP Medial intraparietal sulcus of the brain predominantly associated with initiation of motor action.

Retinotopic space The space as currently observed within the camera’s visual scene.

what’ pathway Dorsal visual stream that passes through the V1, V2 and V5 layers of the visual arriving at the posterior parietal cortex (and
particualrly LIP) and is considered to process and hold spatial information about objects.

where’ pathway Ventral visual strem that passes through V1, V2 and V4 layers of the visual cortex before arriving at the inferior temporal cortex.
The ventral visual stream in concerned predominantly with object identification

Mathematical

E Excitatory aspect of task relevance modulation.

f Activation value derived from modulation of the saliency value s.

Gglobal Set of coordinates associated with egocentric space as a summation of Glocal and Gsm.

Glocal Set of coordinates associated with the current retinotopic space.

Gsm Set of coordinates associated with the spatial memory.

H Inhibitory aspect of task relevance modulation.

p Egocentric co-ordinates derived from retinotopic coordinates modulated by relative and absolute pan and tilt camera positions.

Q The maximum number of attributes that determine the saliency value s.

t Time since entry of an activation value f into the gaze space mapping.

t_max The maximum time that a stimulus can be stored in the spatial memory.

s Saliency value derived after visual RGB filters and movement algorithm.

w Bottom-up weightings conferred at the point of initial filtering of visual information.

doi:10.1371/journal.pone.0054585.t001

Computational Requirements of Active Vision
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this information in the context of low resolution object feature data

in relation to task, may still occur through the aforementioned

retrograde passage of information.

4. Task modulation of visual attention through a top-

down-bottom-up framework, ICR 4. In the context of

constructing a top-down-bottom-up framework, several approach-

es are possible with one of the key questions being, how centralized

is the point of information convergence? This question points to

our last identified computational requirement, ICR 4. Given the

high inter-modulatory nature of the mammalian brain it is unlikely

that there is one major epicenter of information processing,

however it may be that there are a limited numbers of terminal

regions of information processing, centres for final consolidation of

information that sit immediately prior to motor output. Several

sources of anatomical and neurophysiological data point towards

the posterior parietal cortex as being such a centre of convergence

and in particular the LIP region.

In addition to what has been discussed about the LIP region in

the context of IOR (ICR 2), LIP neurons are also suppressed when

in the receptive field of task-irrelevant distractors [30,31] but

activation enhanced when the salience of visual cues is augmented

[32], or when the relative subjective ‘desirability’ of the saccade is

increased [33]. Moreover LIP neurons experience relative gain

when signaling stimuli relevant as compared to irrelevant to the

task [34]. Furthermore, LIP neurons are also activated on

presentation of task relevant tactile [35] as well as auditory [36]

stimuli demonstrating strong cross-modal functionality. Finally,

within paradigms considered to demonstrate different weightings

of bottom-up versus top-down strategies, LIP has been shown to

be activated within both scenarios [7]. Indeed, the term ‘priority

map’, as a combination of salience and relevance, has recently

emerged to describe the LIP as a meeting point between bottom-

up and top-down information potentially within an egocentric

reference frame [1] or, as a locus for non-spatial computations

affecting the spatial allocation of attention [37]. In conclusion,

substantive evidence supports the notion of LIP existing within a

centralized position between the dorso-ventral visual stream

dichotomy (Figure 1). As such, this may be the centralized region

that allows top-down modulation to occur via the ventral visual

stream where complex feature data can be detected and biased

(IRC 4, Figure 1) before synchronisation of ventral and dorsal

information.

5. Summary. In summary, four primary computational

requirements appear to be necessary in the first instance to

facilitate a basic architecture for visual attention. The following

section refines this first-stage model by developing its design for

implementation. By making the model concrete in this way we are

forced to confront design decisions that will eliminate infeasible or

unworkable mechanisms. We describe how these requirements

were met in the order of 1) transforming retinotopic to egocentric

mappings, 2) spatial memory for the purposes of medium term

inhibition of return, 3) synchronizing ‘‘where’’ and ‘‘what’’

information from the two visual streams and 4) converging top-

down and bottom-up information to a centralized point of

information processing.

Figure 1. Primary brain regions associated with visual attention with identified first stage computational requirements (ICR) 1–4
(AIP-Anterior Intraparietal region; VIP, Ventral Intra-parietal region; MIP- Medial Intraparietal region; LIP-Lateral Intraparietal
region).
doi:10.1371/journal.pone.0054585.g001
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Stage 2- Model implementation
1. Robotic Setup. The vision system consisted of two

cameras (Guppy model; Allied Vision Technologies, U.S.A.)

mounted in a motorised active vision head (Model TO40 human

stereo system; RoboSoft, France). This provides 4 degrees of

freedom; pan, tilt and independent camera vergence movement.

Only verge and tilt of the one camera (left) were used (2 DOF).

The motors controlling verge and tilt were operated via their

absolute target position p(ptilt,pverge) or the change of the

current position Dp(Dptilt,Dpverge), both given in radians (rad).

The images generated were RGB at a resolution of 10326778

pixels. The motors in the Robosoft TO40 pan and tilt system were

controlled by an internal controller connected to the main system

PC via an ethernet link. The AVT cameras were connected via

firewire (IEEE 1394) to the main PC. The software consisted of a

linux environment with hardware drivers and bespoke C++ code

for the higher level research architecture.

2. Processing RGB data and simulating the dorsal and

ventral visual pathways. The image processing of the original

RGB camera image data was set up to produce a basic

representation of visual input data as seen within vertebrate

systems. This was simulated by dividing the original camera RGB

data into two data streams; the first fed high resolution image data

from a small localised region within the centre of the image

(foveal), the second low resolution stream represented visual

information outside of this region (peri-foveal). Within this system,

peri-foveal information was treated as ‘near-peri-foveal’ or para-

foveal in that, as well as being sensitive to object movement, it also

contained colour information [8]. The low resolution pixel data

were filtered for their content of red (R), green (G) and blue (B)

visual information and also for movement (v) (simple algorithm

comparing consecutive image frames) using basic visual software

which then produced an intensity value S for each of the respective

colours. Movement was monitored through a simple algorithm

monitoring differences in image frames. This RGB data was then

used to generate a final saliency value s for each pixel as follows:

s~
s:!w!
Q

~
1

Q
:

SR

SG

SB

SV

0
BBBBB@

1
CCCCCA
:

WR

WG

WB

WV

0
BBBBB@

1
CCCCCA

,

ð1Þ

where s is a real number between 0 and 1, 0.0#S# 1.0;

0.0#W# 1.0. Si is the filtered colour intensity value and Wi a

weighting factor that allows bottom-up bias to be set for individual

colours as well as movement. The data was normalised to values

between zero and one using the multiplication factor Q where Q

represents the maximum number he scalar product can achieve.

For the high resolution image data (‘what’ pathway), feature

filters were applied to extract the exact intensity of each individual

colour component and information about shape or texture. This

data was summarised as a feature vector, the construction of which

will detailed in section 8.

In summary, the original RGB image data was transformed into

two data streams: one delivering a low resolution retinotopic map

using RGB filtering and the other a high-resolution-based feature

vector v: The low resolution retinotopic map represented the

dorsal (‘‘where’’) stream, while the feature vector derived from the

high resolution data at the image centre represented the ventral

(‘‘what’’) stream.

3. Robotic architecture for visual attention. Figure 2

summarizes the data flow between three computational domains

of the robotic architecture, alongside the four identified compu-

tational requirements, to be discussed in the following sections.

4. Object fixations. In parallel to the biological equivalent,

the high resolution feature vector v could only be generated once

the object was located in the centre of image, mediated via

saccadic movements of the active vision system. The method to

achieve this has previously been described [38] but in brief, a

peripheral stimulus located at a (X ,Y )coordinate within the

camera’s two dimensional visual scene (equivalent to the

retinotopic map) was linked, through a previously learned

mapping process, to specific relative tilt and verge camera motor

movements Dp where, these motor movements brought the

stimulus to the image centre.

5. Transformation from retinotopic to egocentric

coordinates, ICR 1. Central to whole architecture is the

transformation of visual information from retinotopic to egocentric

co-ordinates. This is critical because it creates a common currency

of spatial information to locate objects irrespective of eye, head or

arm position. This was carried out by adding the previously

described relative verge and tilt motor movements Dp, required to

saccade to a stimulus at position X ,Yð Þ (within the two

dimensional visual scene of the camera [retinotopic map]), to

the absolute motor positions of the active vision system p [39]. The

stimulus p was then stored within the egocentric map (referred to

as the gaze space) as the considered representation of the

previously described LIP brain structure. The gaze space thus

held stimulus p values that were putative targets for saccade.

6. Inhibition of return, ICR 2. Inhibition of return (IOR)

was implemented by having stored stimuli in LIP (as a result of

saccade) inhibit stimuli of the same corresponding coordinates

p within the retinotopic mapping. The entries into the LIP

structure were also set to have a decay value, as a generally

accepted characteristic of visual memory [40], and were removed

when the decay value reached zero. This allowed the visual system

Figure 2. Computational domains of the robotic architecture.
doi:10.1371/journal.pone.0054585.g002

Computational Requirements of Active Vision
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to repeatedly saccade towards a range of salient objects and not get

‘stuck’ on consistently high saliency stimuli.

Up to this stage of the discussion, we have defined the

egocentric position of a stimulus p (in terms of relative and

absolute verge and tilt motor positions) and allocated to that

stimulus a saliency value s based on a normalised function of its

RGB and movement content. The next stage was to categorise

saliency values dependent on whether they were located

retinotopically or egocentrically. Post-categorisation, these values

were referred to as activation values f : Stimuli that were currently

located in the retinotopic map (i.e. present in the current visual

field) were stored as activation values f0(p) and kept in a set

referred to as Glocal such that

f0(p)~
s,p[Glocal

0,otherwise

�
ð2Þ

where s is a real number between 0 and 1, 0.0#S#1.0.

In other words, the stimulus p was assigned the activation value

f0 that equaled the saliency value s if the p value was part of the

Glocal set otherwise the value was held at zero.

The spatial memory (Figure 3) also stored p coordinates

representing previous saccades. Again these p values were kept

within a specific set Gsm and similarly had activation values fsm.

The quality of this value was different from f0 in that it was

modulated by a decay function t determined by the time passed

since p was added to Gsm:

fsm(p)~
(1{

t

t max
),p[Gsm

0,otherwise

8<
: ð3Þ

where t is a natural number between 0 and 1, t max §1,

0ƒtƒt max , and t max is the maximal time a coordinate is

stored in the spatial memory.

In other words, the stimulus p was assigned the activation value

fsm equal to 1 minus the ratio of decay time over the maximal time

if the p value was part of the Gsm set otherwise, the value was held

at zero.

When time t surpassed the maximal time t max , p was

removed from Gsm. This equated to a standard neurophysiological

decay function for stimulus memory [41].

The actual process of IOR was thus achieved through ‘spatial

modulation’ of the retinotopic map by the spatial memory

(activation values f sm on activation values f0). This was done by

creating a new set Gglobal with stimulus p again having a respective

activation value fs, calculated as:

fs(p)~f0(p){fsm(p),

~s{(1{
t

t max
)

ð4Þ

where {1:0ƒf0(p)ƒ1:
In other words, fs(p), as the subtraction of stored activation

values in the spatial memory fsm(p) from stimuli currently being

observed in the retinotopic map f0(p), is equivalent to the initial

saliency value s minus the decay function.

Figure 4 illustrates the linear change of activation values over

the time a (solid line), if not affected by a re-saccade up to that

point. One can see, when the maximal remaining time is reached

(t~t max ) the activation value is back to its original value s.

Figure 4 also illustrates the two extreme cases of original saliency

value; the dashed line shows the case when the original saliency

value is maximal s~1:0, while the dotted line represents minimal

saliency values, i.e. s is close to zero.

Figure 3. Computational architecture for visual attention integrating bottom-up and top-down modulation.
doi:10.1371/journal.pone.0054585.g003
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Having established a mechanism for inhibition of return

through the subtraction of one map from another, a criterion for

generating a saccade had to be defined. Given the varying and

fluctuating nature of the input data, it was decided that a threshold

function (T) would be the most appropriate and simplest strategy

to transform continually modulated input data into motor output

and thus action selection. This approach was supported by the

biological literature and in particular the IOR data generated from

the study by Ludwig et al. [25]. The white region in the Figure 4

indicates the domain of activation values which could trigger a

saccade action.

In summary, ICR2 in relation to the biological phenomenon of

IOR required 3 layers of map or array with two representing the

retinotopic and egocentric mappings and the third being derived

from the first two. Within the latter layer, a threshold function was

applied for the purposes of saccade and action selection.

7. Synchronization between dorsal and ventral visual

stream, IRC 3. The synchronization problem in keeping

‘dorsal’ spatial and ‘ventral’ feature information bound was

achieved through a linking function such that each p value stored

in the spatial memory (as the result of a saccade) pointed to its own

feature vector stored in the feature memory (Figure 3). This

approach, as previously discussed, represents the direct mapping,

biological solution between the two visual streams (Figure 1). The

relevance of the object to the task (as determined by its feature

vector) altered the activation value of p in the global gaze space

Gglobal and this constituted the top-down modulation element of

the visual attention system. Task relevance was represented by the

value r and was constructed through the following formula:

r~
Hz1

Ez1
ð5Þ

where H,E§0:
H and E values represented the metric for inhibitory and

excitatory modulation respectively based on task relevance. How

these values were generated is described in the following section.

Thus, the full modulation of the activation value of p by object

features and the decaying IOR function was:

ff (p)~fo(p){fsm(p):(
Hz1

Ez1
),

~s{(1{
t

t max
):(

Hz1

Ez1
)

ð6Þ

where H,E are real numbers and H,E§0.

In other words, the final activation value ff (p) is the original

filter-based saliency value s now modulated by the IOR decay

function and the task relevance of the stimulus to the task at hand.

The diagram shown in Figure 5 illustrates the evolution of

activation values over time for different parameter settings of E

and Hwhile s is fixed.

8. Converging bottom-up and top-down information, ICR

4. Once p values were assigned to a specific feature vector, given

their feature qualities (RGB and movement), this information

required processing in the context of task relevance r to generate

the appropriate modulation factor, as previously described, of:

r~
Hz1

Ez1
ð7Þ

In this explanation, we assume four disjunct feature classes; red

(R), green (G), blue (B) and undefined (U ). The latter (U ) was that

which could not be defined by the RGB filter system, for example

gray values. Task relevance was defined by the matrix M where:

M~
EREGEBEU

HRHGHBHU

� �
ð8Þ

The classification of the previously described feature vector v

assigned to p was also expressed in the form of a vector

vC~ R,G,B,Uf g. For example, an object classified as red would

have the following vector:

vR~(1000)

The final E and H value for a particular stimulus p was thus

derived by multiplying together the vector with the matrix, such

that:

Figure 4. Activation values over time undergoing spatial
modulation.
doi:10.1371/journal.pone.0054585.g004

Figure 5. Activation values over time undergoing spatial and
feature modulation for different excitation and inhibition
levels; E = excitatory modulation, H = inhibitory modulation,
t max = maximal time a co-ordinate is stored in the
spatial memory.
doi:10.1371/journal.pone.0054585.g005
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E

H

� �
~M:v R,G,B,Uf g ð9Þ

For example, assuming a setup where there are only red and

blue balls present and red balls are task relevant, this would derive

an M of:

M~
9R0G0B0U

0R9G9B9U

� �

The feature vectors generated as a result of having two balls of

different colours would be:

vR~ 1000ð Þ

for red objects,

vG~ 0000ð Þ

for green objects and

vB~(0001)

for blue objects.

Applying equation 9, the final excitation and inhibition values

for classified elements in the global gaze space are thus:

E

H

� �
~

9

0

� �

for red objects,

E

H

� �
~

0

0

� �

for blue objects and

E

H

� �
~

0

0

� �

for green objects.

With these parameter values, the points in the spatial memory

associated with blue are thus inhibited whilst red stimuli will show

higher activation values. Consequently, it is more likely that the

system will fixate on red as opposed to blue objects.

It should also be noted at this point that the ratio of H to E has

dramatic effects on the final activation value f . For example, if E

is much greater that H, EwwHð Þ we get high activation values at

the beginning and a gradient close to zero, whilst for EvvHð Þ,
the gradient is large and the initial activation values are below zero

(Figure 5). This obviously has a significant effect when activation

values reach threshold and thus how the system responds to

different objects of differing saliency characteristics.

Validation
1. Introduction. In this set of experiments we compared

fixation patterns towards different coloured objects on a table with

different set parameters for bottom-up and top-down modulation.

Various weightings ~ww (Eq. 1) of the visual input filters represented

different bottom-up input as intrinsic biases towards specific visual

properties. For top- down modulation, we fixed the aforemen-

tioned weighting ~ww values and tested different excitation E and

inhibition H parameters as representations of task relevance.

In all the experiments, the maximum retention time for spatial

memory was set at 20 seconds t max ~20ð Þ, the threshold for

triggering eye saccades was fixed at T = 0.1 and the recording time

was 500 seconds.

The system behaviour was quantified in terms of fixation

patterns [42] where the number of saccades and the fixation time

(time [sec] between two saccades) were recorded. In addition, for

each saccade the p value was also logged along with its

corresponding features class. Out of these data were derived the

absolute number of saccades, total fixation time and the average

fixation time for each object present. Four balls were placed on the

table (two red and two blue) and the excitation and inhibition

values were pre-defined for each colour class.

As previously described (Eq. 9), the direct feature modulation

was as follows:

E

H

� �
~M:vC,

M~
EREGEBEU

HRHGHBHU

� �

where different excitatory (E) and inhibitory (H) values for red

and blue were tested.

Results are shown in Figure 6 with the data for each parameter

setting for 500 seconds summarised in each column.

2. Bottom-up modulation only. Bottom-up modulation

only data are presented in columns A to G (Figure 6) with

different saliency weightings (w) and combination of weightings

for colours blue and red for each column. All E and H values (top-

down modulation) in this instance were set to zero for all colours.

The system performed as was generally expected with increases

in weightings (w) for each colour causing increases in respective

total number of saccades, the average fixation time per object and

the total fixation time for the colour class. Some exceptions were

observed, however, to this general rule that appeared to be

explained by a bias to towards the blue colour class. This was most

evident when both w value for blue and red were set to 1 (column

D) and all three measures showed a preponderance towards the

blue colour class. Similarly for the absolute number of saccades

towards red, this only surpassed blue once the latter dropped to a

relative weighting of 25%. This effect was difficult to explain and

was suspected to be a hardwire bias at the early filtering stage of

the system process.

Interestingly on a number of occasions the object did not fall

into either colour classification and was recorded as unknown

(white labeled regions in Figure 6). This refers to the cases where

an object was not completely centered leading to non-RGB colour

values and the classification of the feature vector vu as unknown

(colour feature class u).

3. Top-down modulation. Top-down modulation was tested

in three different variations that again biased the system towards a

particular colour class, either red or blue. As a base line for all the
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feature modulation experiments, we selected the saliency weight-

ing in column E, wB~0:75 and wR~1:0. This saliency weighting

produced the most balanced response to red and blue objects

(number of saccades towards the two colour classes were nearly the

same and the average fixation time relatively similar). Implemen-

tation of top-down bias was possible in three different ways and

each of these were tested for the two different colour classes (red,

blue) (Figure 6):

1. excitation only: ER=B~9 while other E and H values are zero

(columns H and K);

2. inhibition only: HR=B~9 while other E and H values are zero

(columns I and L);

3. excitation and inhibition:ER=B~HR=B~9 while other E and

H values are zero (columns J and M).

Top-down modulation compared with the base line (bottom-up

modulation only) fixation patterns were significantly different

(Figure 6). Excitation of a specific feature class (columns H, J, K

and M), resulted in a rise in the absolute number of saccades

towards objects of that colour class. The total fixation time towards

objects associated with the excited colour feature class also

increased whilst there was a general trend of decreased mean

fixation time for all feature classes observed.

Applying inhibition only (columns I and L) resulted in a

decrease in the numbers of saccades towards the inhibited feature

class. There was also a reduction in the total fixation time per

object class and a lower average fixation time per object,

compared to the non-inhibited feature classes. With respect to

the baseline, there was no actual change in the total number of

saccades, whereas the average fixation time and total fixation time

for all colour classes increased. There also appeared to be no

noticeable difference in results between implementing excitation

only (columns H and K) versus the combined excitation-inhibition

strategy (columns J and M).

In comparison to the bottom-up data (changes in w), a number

of similar data patterns were observed. Top-down modulation via

inhibition only (columns I and L) appeared to produce patterns

with strong similarities with the two ends of the spectrum of the

bottom-up modulation data (columns A and G). In particular, the

profile of measures were extremely similar between data sets G

and I and A and L where, in the latter, the system is biased

towards blue by saliency weighting (A) and via the inhibition of red

(L).

Figure 6. Bottom-up (columns A-G) versus top-down (columns H-M) modulation of visual attention; filled circles refers to bottom-
up saliency weightings.
doi:10.1371/journal.pone.0054585.g006
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To conclude, the system demonstrated several characteristics

akin to its biological equivalent. In particular, increasing the

saliency of incoming visual stimuli into the system increased the

average number of saccades and fixation duration towards the

object as has consistently been reported in the biological literature

(see [43] for review). Increasing the task relevance of the object

had a similar effect [44]. Perhaps more importantly, the system

also had the ability to combine both types of bias in additive,

inhibitory or competition-based ways that also support the current

thinking of how top-down and bottom-up guidance systems of

visual attention potentially integrate [45–47].

Discussion

General comments
Computational models of working brain systems are an

extremely important methodological tool in fully understanding

the putative functional roles of individual brain regions. Whilst

neurophysiological and scanning studies in combination with

specific paradigm testing are extremely useful in linking brain

regions with certain types of processes, the actual nature of

information transfer within these processes is often lacking.

Extending the computational model to implementation in

hardware has the advantage, as demonstrated within this study,

of a) fully validating the system as functional within a bottom-up

and top-down framework and b) provoking additional questions

about computational requirement associated with embodiment not

necessarily considered during the first stage of assessment. Four

initial computational requirements were identified during model

construction:

1. transforming retinotopic to egocentric mappings (ICR 1);

2. spatial memory for the purposes of medium term inhibition of

return (ICR 2);

3. synchronizing ‘where’ and ‘what’ information from the two

visual streams (ICR 3);

4. converging top-down and bottom-up information to a

centralized point of information processing and (ICR 4).

Three additional computational requirements were identified

during the second (implementation) stage of the investigative

process:

1. a threshold function, T ;

2. a function representing task relevance as a ratio of excitation

and inhibition;

3. deriving E and H values from object-associated feature classes.

These three additional computational requirements provoke

new questions about how the biological system may be working.

For example, what is the exact relationship between the threshold

function T and the underlying action selection process for eye

saccades and secondly, is there a linear relationship between task

relevance r and its modulation of the visual attention system. Also,

and in relation to the third additional computational requirement

(derivation of the r value), the model requires further validation to

assess if this framework accommodates additional feature combi-

nations such as tactile feedback during object manipulation.

Preliminary studies have generated interesting data [48] but

require further analysis and comparison with human data in order

to provide scientific insight about multi-modal visual attention

mechanisms in biological systems.

The central role of LIP
The representation of LIP as an egocentric map and a point of

information convergence within a bottom-up top-down framework

was found to have several computational and implementation

advantages. In essence, it allowed objects, held in precise spatial

coordinates, to be continually modulated over time by any number

of excitatory or inhibitory factors (e.g. IOR, task relevance). This

interpretation sits very comfortably with the biological data where

LIP activation is gain-modulated dependent on the relevance of

incoming visual stimuli to the context of the task [34].

Fundamental to the practical implementation of the system and

for the purposes of stimuli eliciting sub- sequent action, was the

threshold function (T): As previously discussed, this function also

has strong biological grounding [25] where data generated from

IOR paradigms using human subjects closely fitted the threshold-

based Linear Ballistic Accumulator model. The point at which

motor threshold is reached has often been interpreted as the point

at which a ‘‘conscious’’ decision is made to act [49]. This is an

attractive interpretation of how LIP may work, as a site of terminal

processing and ultimately decision making about motor action.

Gottlieb et al., however, have challenged this notion based on

their data that have demonstrated LIP activation outside of motor

planning or execution [34]. They postulate, in return, that whilst

LIP may be convincingly identified as an internal priority map

responsible for covert spatial attention, it is not the final stage of

eliciting motor action.

The computational advantage of two visual pathways
The evolutionary and thus functional basis for the bifurcation of

visual data into the dorsal and ventral stream has somewhat

remained an enigma. However, on implementation of the visual

attention system, it became apparent that functionally dividing

accurate spatial location data of an object from its task relevance,

and to then have the latter modulate the former may be

computationally advantageous [13]. In particular, the egocentric

reference frame (gaze space), facilitated easy synchronisation of the

‘‘what’’ and ‘‘where’’ information on eye-saccades.

Top-down modulation
One of the issues that occurred in constructing the visual system

within this study, was deciding at what point within the process of

visually assessing a naive scene (viewed for the first time) does top-

down modulation occur. The review of visual attention systems by

Theeuwes [47] suggests that a number of discrete processing stages

take place from the start of input of visual information through to

the point of saccade. Initially, during the pre-attentive stage, a

feed-forward sweep of visual information results in a first stage

allocation of attention based solely on the intrinsic saliency

characteristics of stimuli within the visual scene. This visual

information originates from foveal and non-foveal regions of the

retina and thus contains both high and low resolution data. The

second stage of processing involves recurrent feedback processing

to allow top-down modulation of this incoming visual information.

Although this is considered to be the attentive phase of visual

attention, it should be noted that this is still modulation of low

resolution peripheral retinal data prior to saccade. This system

differs from the visual system constructed here in that top-down

modulation of incoming stimulus-based salience data can only

occur once objects have previously been saccaded to. Within the

‘naive visual scene’ scenario, at the start of image processing within

this system, top-down modulation cannot occur because no

saccades have yet occurred, compared with task relevance and

thus stored in the LIP region. However, once several cycles of

image processing and saccades have taken place, then top-down
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modulation of incoming peripheral visual data is continually

occurring. Thus, in the non-naive scenario, the system adheres to

the recurrent top-down modulation theory of the incoming visual

information. One other difference compared to the biological

system can be demonstrated in the work of [47] whereby

distractors of high intrinsic salience have the ability to delay

reaction times in what is referred to as the additional singleton

search task. Within our system, such a test would result in the

generation of an overriding saccade away from the correct fixation

response as opposed to simply a delay in the correct response. This

suggests that within the biological system there is an additional

ability of peri-foveal data analysis and subsequent dampening of

stimulus if the latter is not relevant to the task. Indeed, recent work

by [50] where inversion of a visual image (thus reducing top-down

object relevance but maintaining bottom-up object saliency)

increased fixation latency, also suggests some analysis of peripheral

data in the context of task relevance. Further development of the

computational model would need to take this in account.

Lastly, generating the task relevance value for individual objects

was achieved through modulation of object feature vectors. In this

instance, the model was limited to one object feature (colour) but

could have easily been extended. Recent work by [51] proposed a

biologically plausible model whereby only task relevant features

are extracted (and thus modulated) from the object, reducing the

overall computational requirement of the system. This may be a

very useful way to extend the current architecture to deal with

more complex object tasks.

Conclusion

The primary objective of this study was to identify the

computational pre-requisites of visual attention within an active

vision system through model development, implementation and

validation within robotic hardware and, in particular, to critically

assess how bottom-up and top-down biases could be integrated

within one system. The study was successful in this respect, with

several computational requirements being identified and with the

system behaving and generating fixation data considered reliably

representative of the primary characteristics of its biological

counterpart. The proposed model therefore provides further

insight into the nature of data representation and transfer between

brain regions relevant to the vertebrate ‘active’ visual attention

system. In particular, the model lends strong support to the

functional role of the lateral intraparietal region of the brain as a

primary area of information consolidation within egocentric co-

ordinates and the idea that it operates within the brain as a priority

map in relation to putative action [34].

Furthermore, the model provoked further questions about the

functional nature of the biological system, for example, when

intrinsic salience of objects are fixed, does task relevance of objects

affect attention in a linear fashion? Further psychobiological

research has the ability to answer such questions and, through an

iterative process of changing the model based on data generated,

the opportunity to build a very complete and accurate picture of

how integrated bottom-up and top-down modulations may be

working within an active visual attention system.
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