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Abstract

A computer study of clusters of up to 200,000 equal-area bubbles shows for the first time
that partially rounding conjectured optimal hexagonal planar soap bubbleclusters reduces
perimeter. Different methods of creating optimal clusters are compared, and new candidate
minimizers for severalN are given.

Keywords: soap bubble clusters; perimeter minimization; Surface Evolver

1 Introduction

Soap bubbles are practical realisations of minimal surfaces in both two and three dimensions
(Weaire and Hutzler, 1999; Cantat et al., 2010). They are usedin extinguishing fires, extract-
ing oil from underground, and in ore separation (Weaire and Hutzler, 1999), and have inspired
architectural structures, including the Water Cube at the Beijing Olympics and the latest art at the
New York Met (Morgan, 2012).

The principle that governs the shape of a cluster of soap bubbles, that is of a foam, is minimiza-
tion of surface area. Yet even for planar (2D) monodisperse clusters ofN bubbles, such as can be
made between two closely-spaced parallel glass plates, theperimeter-minimizing shape has been
proved only forN ≤ 3 (Foisy et al., 1993; Wichiramala, 2004) and numerically computed only
for N ≤ 42 (and a few other values ofN ) (Cox et al., 2003; Cox, 2012). This paper addresses the
asymptotic shape of such clusters asN → ∞.

Determining the optimal structure of a cluster of soap bubbles may confer on it benefits in the
applications described above. The optimal arrangements that we describe here also suggest the
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Figure 1: Perfect hexagonal clusters withN = 7 (i = 1), N = 19 (i = 2), andN = 37 (i = 3)
bubbles. AsN increases these clusters appear increasingly hexagonal inshape.

way in which deformable objects (not necessarily bubbles) should be packed so as to minimize
the amount of material used to separate them. In 2D, these arrangements can be thought of as
cross-sections through a cylindrical packing, such as tightly bundled wires, so that we give below
the packing that minimizes the amount of coating necessary to separate each element.

Although the terms “bubble” and “cell” are often used interchangeably in describing the el-
ements of the packings that we explore here, this hides an important distinction: soap bubbles
surrounded by thin liquid films minimize their perimeter, but several living epithelial cell types, on
the other hand, minimize a more complicated function of perimeter and elastic terms (Käfer et al.,
2007; Hilgenfeldt et al., 2008). Performing a similar optimisation for aggregates of biological cells
is a related problem that may offer the possibility to enhance certain properties of tissues, but this
is a task that we leave for future work.

When two bubbles meet, they can reduce the total (internal + external) perimeter of this nascent
cluster by sharing an edge. The least-perimeter way to fill the plane with bubbles of equal area is
to tile it with regular hexagons (Hales, 2001). Thus we expect the least-perimeter arrangement of
a finite cluster ofN bubbles to consist of hexagons close to the centre, with any non-hexagonal
bubbles (defects) close to the periphery. Cox and Graner (2003) conjectured, on the basis of the
Wulff construction (Wulff, 1901; Taylor, 1994; Fortes and Rosa, 2001) and computer experiments
on “perfect” clusters withN a hexagonal number (of the form3i2 + 3i + 1, for i up to 60) and a
few other cases, that the shape of the periphery itself should also be hexagonal (see figure 1). In-
deed, inside a hexagonal tiling, perimeter-minimizing clusters are hexagonal (Heppes and Morgan,
2005).

Morgan (2008, Figure 13.1.4), on the other hand, predicted that reducing the exterior perimeter
of a cluster by rounding it would eventually more than compensate for distortions to the hexagonal
structure.

Here we provide numerical evidence that partial rounding improves even perfect hexagonal
clusters forN ≥ 600, although we find no evidence that complete rounding to make circular
clusters will ever be optimal.

2 Methods

There are a number of ways to tackle the problem of finding the least-perimeter arrangement of
N planar bubbles empirically. One is to devise an algorithm that progressively shuffles a cluster
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Figure 2: Different equal-area clusters ofN = 677 bubbles, with the penultimate shell of bubbles
shaded. (a) CircularPcirc = 2112.097. The circular hybrid cluster is the same for thisN , Phyb−ci =
Pcirc. (b) Spiral hexagonalPhex−sp = 2112.168. (c) Corner hexagonalPhex−co = 2112.455. (d)
Top-down hexagonalPhex−td = 2112.049. (e) Sideways hexagonalPhex−si = 2112.745. (f) Spiral
hybridPhyb−sp = 2111.481, which has least perimeter for thisN .

of N bubbles, perhaps using Monte Carlo techniques and/or simulated annealing. Another is to
enumerate all possible arrangements and calculate the perimeter of each; not only is this time-
consuming, but the memory requirements make this prohibitive for the cluster sizes we consider
here. Thirdly, as we describe here, it is possible to make an intuitive conjecture about the optimal
shape of a cluster for eachN , and then construct it and measure its perimeter.

We consider circular clusters, hexagonal clusters and hybrid clusters (defined below) ofN
bubbles. Here we investigateN up to1000, N a hexagonal number less than11, 000, andN =
170, 647. That is, we construct a cluster with hexagons in the bulk andthe periphery of the required
shape in Surface Evolver (Brakke, 1992), set all bubble areasto be equal (toA0 = 3

√
3/2, so that

edge lengths are close to unity) and seek a local minimum of the total perimeterP in circular arc
mode. That is, we minimize the sum of the lengths of all the edges separating bubbles, as described
by Cox and Graner (2003). In practice, we start from a hexagonal cluster (e.g. withN = 721) and
eliminate one bubble at a time, using one of the protocols described below and illustrated in figure
2:
Circular cluster : The bubble whose centre (defined as the average of the positions of its vertices)
is farthest from the centre of the cluster (defined in the sameway) is eliminated.
Hexagonal cluster: We takehexagonal to mean that all shells of hexagons except the outer one
must be complete. Theith shell of a hexagonal cluster withN = 3i2 + 3i + 1 bubbles contains6i
bubbles. We consider four processes of elimination:

(i) spiral hexagonal clusters, in which the outer shell is eroded sequentially in an anticlockwise
manner starting from the lowest point;

(ii) corner hexagonal clusters, in which the corners of the outer shell are first removed and the
erosion proceeds from all of the six corners.
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(iii) top-down hexagonal clusters, in which the highest bubble in the outershell is removed.
(iv) sideways hexagonal clusters, in which the bubble furthest to the leftin the outer shell is

removed.
Hybrid clusters: To create clusters that are intermediate between a circular cluster and a hexagonal
cluster, improving upon the method given by Cox and Graner (2003), we consider two protocols:

(i) circular hybrid, in which we start from a perfect hexagonal cluster and remove the bubbles
farthest from the centre of the cluster. This process stops when the next hexagonal number is
reached. (A related procedure, which makes a dodecagonal cluster by removing bubbles farthest
from the centre of the cluster parallel to a line joining it toeach of the six apices of the hexagonal
cluster, gave similar results to the circular hybrid method, but with a slightly greater perimeter for
eachN .)

(ii) spiral hybrid, in which we start from a perfect hexagonal cluster but, before removing the
bubbles farthest from the centre of the cluster, we first eliminate any complete rows of bubbles
from the outer shell (firsti + 1, theni bubbles for the next four sides), in the order given by the
procedure for a spiral hexagonal cluster.

3 Results

3.1 Comparison of methods forN < 1000

The perimeters increase approximately asP ∼ 3N + k
√

N , with k ≈ 3.1 (Cox et al., 2003). Note
that for each value ofN they are all close (figures 2 and 3). So in figure 3 we instead usewhat we
call thereduced perimeter,P̂ = (P − 3N)/

√
N . This quantity fluctuates in a saw-tooth fashion as

N varies, but within rather narrow limits.
Different asymptotic estimates of̂P ≈ 3 are given by Cox et al. (2003) and Heppes and Morgan

(2005). The best proven general bounds on the reduced perimeter (Heppes and Morgan, 2005) are
√

πA0 − 1.5 < P̂ < π +
3√
N

, (1)

where the first expression is approximately 1.36, which is conservative, while the upper bound is
precise and useful, as shown in figure 3(b).

Patterns in the reduced perimeter are difficult to see at lowN (figure 3(a)); the frequency is
high, and circular, corner hexagonal, and hybrid clusters are often identical. Our new data agrees
with the candidate structures forN = 200 (top-down or spiral hexagonal, which are equivalent
here) given by Cox and Graner (2003). ForN = 50 andN = 100 the spiral hybrid procedure
suggests new candidates: forN = 50 a cluster which is two topological changes away from the
one given by Cox et al. (2003) reduces the perimeter slightly from 171.8342 to 171.8337, and for
N = 100 the perimeter is reduced from the previous conjecture of330.880 to 330.799; the result
is shown in figure 4.

For largerN (figure 3(b)), the reduced perimeter of a circular cluster shows the greatest fluc-
tuation asN increases, with sharp upward jumps that occur roughly midway between hexagonal
numbers and then a slower decay. So we should expect that a circular cluster might have the low-
est perimeter only far from hexagonal numbers, e.g. forN = 868, which is midway between the
hexagonal numbers817 and919 (figure 5), although even here it does not minimize perimeter.
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Figure 3: Reduced perimeters for differentN . The hexagonal numbers are marked with vertical
lines. (a)50 ≤ N ≤ 217. (b) 721 ≤ N ≤ 1027, with the upper bound from eq. (1).

(a) (b) (c) (d)

Figure 4: New candidate minimal clusters (a)N = 50 bubbles with perimeterPhyb−sp = 171.834.
(b) N = 100 bubbles with perimeterPhyb−sp = 330.799. (c) N = 1000 bubbles with perimeter
Phyb−sp = 3097.880. (d) N = 10, 000 bubbles with perimeterPhyb−ci = 30310.532.
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(d) (e)

Figure 5: Different clusters ofN = 868 bubbles, cf. figure 2, with the penultimate shell of bubbles
shaded. (a) Circular and circular hybrid clusters are the same, Pcirc = Phyb−ci = 2695.758. (b)
Spiral and sideways hexagonal are the same (with the latter reflected in a vertical line through the
centre of the cluster),Phex−si = Phex−sp = 2695.941. (c) Corner hexagonalPhex−co = 2696.230.
(d) Top-down hexagonalPhex−td = 2695.868. (e) Spiral hybridPhyb−sp = 2695.173, which again
has least perimeter.

The spiral hexagonal cluster shows six cycles inP̂ between hexagonal numbers, making this
the hexagonal cluster that is most likely to be best, since itshows the smallest deviations from a
line joining the perimeters of the perfect hexagonal clusters. The spiral hybrid cluster is generally
better for largeN (figure 3(b)).

The top-down hexagonal cluster shows three cycles between hexagonal numbers with twice
the height of the spiral hexagonal cluster, and turns out to be better than a spiral hexagonal cluster
half the time. The sideways hexagonal cluster shows the samepattern, but shifted by the number
of bubbles along one side of the hexagon (i, in our notation). This cluster becomes expensive when
there is a half row of hexagons along one side of the cluster, an observation that also applies to
the corner hexagonal cluster. A corner hexagonal cluster, obtained by removing a small number of
bubbles from all six corners of the outer shell of a hexagonalcluster, is good forN slightly below
a hexagonal number, but this cluster becomes more expensiveas the number removed increases,
because of the number of partial lines of hexagons in the outer shell. The reduced perimeter is
similar to that of the circular cluster, in that it shows justone cycle between hexagonal numbers,
but here the upward jump occurs forN just above a hexagonal number.

A circular hybrid cluster is very similar to a circular cluster for N less than about200, and
to a corner hexagonal cluster (figure 6) forN just below a hexagonal number and less than a few
hundred. The difference is that after removing a few bubblesfrom each apex of the hexagonal
cluster, the hybrid procedure allows us to remove a bubble from the next shell in. ForN far from a
hexagonal number this method is heavily penalised, for the same reasons as for a circular cluster.
As N increases towards a hexagonal number, there is a short interval in which a hybrid cluster can
become marginallybetter than a hexagonal cluster, before the perimeter is again equal to the value
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(a) (b) (c)

Figure 6: Different clusters ofN = 995 bubbles, showing that forN not far below a hexagonal
number, the corner hexagonal and the circular hybrid clusters are very similar, but that this is
a sufficiently large value ofN that bubbles can be removed from the penultimate layer of the
hexagon, reducing the perimeter. The latter is also true of the spiral hybrid in this case, reducing the
perimeter even further. (a)Phex−co = 3082.891. (b) Phyb−ci = 3082.799. (c) Phyb−sp = 3082.633.

(a) (b) (c) (d)

Figure 7: Different clusters ofN = 1015 bubbles, showing that removing 12 bubbles to make
a corner hexagonal cluster leads to a lower perimeter if doneasymmetrically. (a) Removing two
bubbles from each vertex yields perimeterP = 3143.700. (b) Removing three bubbles from
each of four vertices yields perimeterP = 3143.643. (c) Removing three bubbles from a pair
of vertices, two from another pair, and one from the third pair yields perimeterP = 3143.613.
(d) Removing three bubbles from three vertices and one from the other three yields the lowest
perimeterP = 3143.569.

in the corner hexagonal case.
In the range ofN shown in figure 3(b), the reduced perimeter of the spiral hybrid cluster

fluctuates very little; it is between 3.09 and 3.10. This value slowly rises, which is evident only for
N > 1000 (see§3.3). Spiral hybrid clusters almost always have the least perimeter in this range,
beaten only by circular hybrid and corner hexagonal clusters just below a hexagonal number;
this variation is due to asymmetry in the way that the different clusters are formed, described
below. Most significantly, even for hexagonal numbers, the spiral hybrid cluster can beat the
perfect hexagonal cluster fori ≥ 14 (N ≥ 631). We have thus disproved the conjecture of Cox
and Graner (2003) that perfect hexagonal clusters minimizeperimeter.
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3.2 Influence of asymmetry

There is also a small discrepancy in the data, visible in figure 3(b), that turns out to be significant.
ForN just below a hexagonal number, the corner hexagonal clusters and the two hybrid clusters are
slightly different, although the methods described above should give exactly the same answer. The
discrepancy is due to the way in which the “furthest” bubblesare removed: a small difference in the
cluster “centre” (either because of small shifts in the position of the whole cluster in the numerical
procedure, or because there is a difference in the average position calculated on three-fold vertices
or on bubbles) means that not all apices are treated equally.Figure 7 shows four different clusters
of N = 1015 bubbles, which is twelve less than the hexagonal number 1027. Instead of removing
two bubbles from each corner, the asymmetric cluster created by removing three bubbles from
three corners and one from the other three corners turns out to have lower perimeter.

It is therefore clear that for eachN there are still many possible small changes to the rounded
clusters that could be tried in seeking a better minimum. Another possibility would be to extend
our definition of hexagonal to allow more than one layer of bubbles to be shaved off any one of the
six sides of the cluster.

In particular, our new candidate configuration for the optimal cluster ofN = 1000 bubbles,
shown in figure 4(c), has a different number of bubbles removed from each corner. It is a spi-
ral hybrid cluster, improving upon the sideways hexagonal cluster suggested by Cox and Graner
(2003). So even forN = 1000 a little rounding of the corners of a hexagonal cluster reduces the
total perimeter. Can we expect that asN increases further rounding reduces the perimeter even
further? ForN = 10, 000 we find that a circular hybrid cluster constructed by removing bubbles
from the hexagonal cluster ofN = 10, 267 does beat all other candidates made with the processes
described here: this candidate forN = 10, 000 hasPhyb−ci = 30310.532 (figure 4(d)) compared
to the best hexagonal case (top-down hexagonal) withPhex−td = 30312.589 and the spiral hybrid
with Phyb−sp = 30311.208. Yet this is far from a circular cluster, suggesting that thevalue ofN at
which the optimal cluster might beround is much larger than103.

3.3 WhenN is a large hexagonal number

It is clear from figure 3 that forN a hexagonal number the two hybrid methods give clusters that
are not hexagonal but have lower perimeter that the perfect hexagonal cluster for sufficiently large
N .

We extend the data to higherN , using the two hybrid methods to reduce each hexagonal clus-
ter untilN reaches the next hexagonal number of the form3i2 + 3i + 1, and compare the reduced
perimeters with a perfect hexagonal one. Figure 8 shows thatfor a sufficiently large hexagonal
numberN : (i) although the reduced perimeter of both a spiral hybrid cluster and a hexagonal clus-
ter are increasing functions ofi, for N ≥ 631 a spiral hybrid cluster has lower reduced perimeter
than a hexagonal cluster; (ii) the reduced perimeter of a circular hybrid cluster is a decreasing
function of i, and forN ≥ 4447 the reduced perimeter is lower than a hexagonal cluster; (iii)
for N ≥ 9919 a circular hybrid cluster has lower reduced perimeter than aspiral hybrid cluster;
and (iv) the circular clusters follow a similar saw-tooth pattern as a function ofi as for a function
of N , and there is no evidence that the reduced perimeter decreases asi increases, as it would if
Morgan’s conjecture were correct and for sufficiently largeN the optimal cluster were circular.
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Figure 8: Reduced perimeter of a circular cluster, the two hybrid clusters, and a perfect hexagonal
cluster forN a hexagonal number of the form3i2 + 3i + 1, wherei is the number of shells of
hexagons in the perfect cluster. Starting ati = 14 (N = 631) the rounded spiral hybrid cluster
has lowest perimeter; fromi = 57 (N = 9919), the rounded circular hybrid cluster has lower
perimeter. In this range a circular cluster never beats a hexagonal cluster, although they are the
same for smalli.

Indeed, Heppes and Morgan (2005, Rmks. 3.2) suggest an asymptotic reduced perimeter of about
2.99. The resulting conjectured best perimeters are recorded in Table 1. In summary, it appears
that asN increases above 10,000 there is a transition to the least-perimeter cluster being produced
by the circular hybrid method.

3.3.1 Extending the circular hybrid method

Recall that we can use the circular hybrid method described in§2 to eliminate bubbles from a
hexagonal cluster to arrive at a slightly rounded cluster with a number of bubbles that is the next
lowest hexagonal number of the form3i2 + 3i + 1. For sufficiently largeN this procedure may be
repeated, to arrive at a more rounded cluster for the next lowest hexagonal number. In the limit,
we reach the circular case.

To illustrate this, we choose the valueN = 170, 647 (i = 238) to compare the effect of starting
the hybrid procedure from different hexagonal clusters. For this N , the hexagonal cluster has
Phex = 513, 236.338 and a circular cluster has greater perimeter,Pcirc = 513, 240.830. A circular
hybrid cluster created fromN = 172, 081 has even lower perimeter,Phyb−ci = 513, 226.522, but
starting fromN = 176, 419 and removing the furthest 5772 bubbles from the centre givesa cluster
with an even lower perimeter,Phyb−ci2 = 513, 224.982. This result is shown in figure 9, suggesting
that the global minimum is found when the procedure starts from a hexagonal cluster that is two
shells larger than required (so the minimum in the number of layers removed presumably increases
very slowly withN ). Note that the difference in perimeter is a small fraction of the total. Note also
that for such large clusters, the energy minimisation (gradient descent) in Surface Evolver takes
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N P N P N P
721 2246.135 2791 8536.852 6211 18877.741
817 2539.476 2977 9100.258 6487 19711.151
919 2850.861 3169 9681.654 6769 20562.559
1027 3180.205 3367 10281.057 7057 21431.968
1141 3527.593 3571 10898.457 7351 22319.377
1261 3892.938 3781 11533.862 7651 23224.802
1387 4276.331 3997 12187.279 7957 24148.211
1519 4677.693 4219 12858.699 8269 25089.621
1657 5097.087 4447 13548.102 8587 26049.047
1801 5534.451 4681 14255.472 8911 27026.456
1951 5989.852 4921 14980.843 9241 28021.866
2107 6463.253 5167 15724.213 9577 29035.277
2269 6954.654 5419 16485.584 9919 30066.610
2437 7464.055 5677 17264.958
2611 7991.453 5941 18062.332

Table 1: Perimeter of candidate clusters to the least perimeter arrangement ofN bubbles of area
3
√

3/2 for N a hexagonal number between 721 and 9919, generated from the spiral hybrid method
except for the last, which is from the circular hybrid construction. BelowN = 721 we conjecture
that the perfect hexagonal cluster is optimal forN a hexagonal number.

around three days on a 3.10GHz PC for each cluster.

4 Conclusions

We have shown that forN between about 600 and 11,000 the perimeter is lowest when a cluster
has the shape of a hexagon with rounded corners. The conjectured optimal cluster is a spiral hybrid
cluster, except for just below a hexagonal number where, depending on the asymmetry, it may also
be either a top-down hexagonal or circular hybrid cluster. Even for N a hexagonal number, if
N ≥ 631 this rounding gives better candidates. Nonetheless, thereis no indication in our data that
a circular cluster will ever be optimal, and it remains to be determined if the limiting behaviour of
a perimeter-minimizing cluster ofN equal-area bubbles asN approaches infinity is circular.
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J. Käfer, T. Hayashi, A.F.M. Marée, R.W. Carthew, and F. Graner. Cell adhesion and cortex
contractility determine cell patterning in the Drosophilaretina.PNAS, 104:18549–18554, 2007.

T.C. Hales. The honeycomb conjecture.Discrete Comput. Geom., 25:1–22, 2001.

A. Heppes and F. Morgan. Planar Clusters and Perimeter Bounds.Phil. Mag., 85:1333–1345,
2005.

11



S. Hilgenfeldt, S. Erisken and R. Carthew. Physical modeling of cell geometric order in an epithe-
lial tissue.PNAS, 105:907–911, 2008.

F. Morgan. Geometric Measure Theory: A Beginner’s Guide. Academic Press, San Diego, 4th
edition, 2008.

F. Morgan. http://sites.williams.edu/Morgan/2012/05/29/soap-bubbles-on-the-roof-of-the-met/
Accessed 21st September 2012.

J.E. Taylor. Book review of Wulff construction, A Global Shape from Local Interaction by R.
Dobrushin, R. Kotecky and S. Shlosman.Bull. Am. Math. Soc., 31, 291–296, 1994.

D. Weaire and S. Hutzler.The Physics of Foams. Clarendon Press, Oxford, 1999.

W. Wichiramala. Proof of the planar triple bubble conjecture. J. reine. angew. Math., 567:1–50,
2004.

G. Wulff. Zur Frage der Geschwindigkeit des Wachsthums und der Auflösung der Krystallflachen.
Z. Kristall. Mineral., 34:449–530, 1901.

12


