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Are large perimeter-minimizing two-dimensional
clusters of equal-area bubbles hexagonal or circular?

S.J. Cox
Institute of Mathematics and Physics, Aberystwyth University, SY23 3B8Z, U

F. Morgan
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Williamstown, MA 01267, USA

F. Graner
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Abstract

A computer study of clusters of up to 200,000 equal-area bubbles sloowseffirst time
that partially rounding conjectured optimal hexagonal planar soap bubldéers reduces
perimeter. Different methods of creating optimal clusters are comparéddyem candidate
minimizers for severaN are given.

Keywords: soap bubble clusters; perimeter minimization; Surface Evolver

1 Introduction

Soap bubbles are practical realisations of minimal susfaneboth two and three dimensions
(Weaire and Hutzler, 1999; Cantat et al., 2010). They are usecxtinguishing fires, extract-
ing oil from underground, and in ore separation (Weaire antzldr, 1999), and have inspired
architectural structures, including the Water Cube at th@r8eDlympics and the latest art at the
New York Met (Morgan, 2012).

The principle that governs the shape of a cluster of soapleshihat is of a foam, is minimiza-
tion of surface area. Yet even for planar (2D) monodispelisgers of N bubbles, such as can be
made between two closely-spaced parallel glass platepettmmeter-minimizing shape has been
proved only forN < 3 (Foisy et al., 1993; Wichiramala, 2004) and numerically paied only
for N < 42 (and a few other values d¥) (Cox et al., 2003; Cox, 2012). This paper addresses the
asymptotic shape of such clustersMs— oc.

Determining the optimal structure of a cluster of soap beblohay confer on it benefits in the
applications described above. The optimal arrangemeatsate describe here also suggest the
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Figure 1: Perfect hexagonal clusters with=7 (i = 1), N = 19 (: = 2), andN = 37 (i = 3)
bubbles. AsV increases these clusters appear increasingly hexagostahpe.

way in which deformable objects (not necessarily bubblesykl be packed so as to minimize
the amount of material used to separate them. In 2D, theaagements can be thought of as
cross-sections through a cylindrical packing, such aslyigtundled wires, so that we give below
the packing that minimizes the amount of coating necessasgarate each element.

Although the terms “bubble” and “cell” are often used inteangeably in describing the el-
ements of the packings that we explore here, this hides aortant distinction: soap bubbles
surrounded by thin liquid films minimize their perimetert baveral living epithelial cell types, on
the other hand, minimize a more complicated function ofrpeter and elastic terms &fer et al.,
2007; Hilgenfeldt et al., 2008). Performing a similar ogsation for aggregates of biological cells
is a related problem that may offer the possibility to enlearertain properties of tissues, but this
is a task that we leave for future work.

When two bubbles meet, they can reduce the total (internalerre) perimeter of this nascent
cluster by sharing an edge. The least-perimeter way to éljplane with bubbles of equal area is
to tile it with regular hexagons (Hales, 2001). Thus we ekpee least-perimeter arrangement of
a finite cluster ofN bubbles to consist of hexagons close to the centre, with anyhexagonal
bubbles (defects) close to the periphery. Cox and GraneBjfithjectured, on the basis of the
Wulff construction (Wulff, 1901; Taylor, 1994; Fortes and$292001) and computer experiments
on “perfect” clusters withV a hexagonal number (of the forsa* + 3i + 1, for i up to 60) and a
few other cases, that the shape of the periphery itself dhadab be hexagonal (see figure 1). In-
deed, inside a hexagonal tiling, perimeter-minimizingstdus are hexagonal (Heppes and Morgan,
2005).

Morgan (2008, Figure 13.1.4), on the other hand, predi¢tatireducing the exterior perimeter
of a cluster by rounding it would eventually more than congage for distortions to the hexagonal
structure.

Here we provide numerical evidence that partial roundingroves even perfect hexagonal
clusters forN > 600, although we find no evidence that complete rounding to maioelar
clusters will ever be optimal.

2 Methods

There are a number of ways to tackle the problem of finding eéasttperimeter arrangement of
N planar bubbles empirically. One is to devise an algorithat grogressively shuffles a cluster
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Figure 2: Different equal-area clusters@f= 677 bubbles, with the penultimate shell of bubbles
shaded. (a) CirculaF,;,. = 2112.097. The circular hybrid cluster is the same for tiNs P, .; =
P,ir.. (b) Spiral hexagonab,.,_,, = 2112.168. (c) Corner hexagonab,,_., = 2112.455. (d)
Top-down hexagonab,.. 4 = 2112.049. (e) Sideways hexagon&},., ,; = 2112.745. (f) Spiral
hybrid P,,,—s, = 2111.481, which has least perimeter for thié.

of N bubbles, perhaps using Monte Carlo techniques and/or dietbémnnealing. Another is to

enumerate all possible arrangements and calculate thegteri of each; not only is this time-

consuming, but the memory requirements make this prowgbftr the cluster sizes we consider
here. Thirdly, as we describe here, it is possible to makatitive conjecture about the optimal
shape of a cluster for eac, and then construct it and measure its perimeter.

We consider circular clusters, hexagonal clusters andidthydbusters (defined below) oV
bubbles. Here we investigafé up to 1000, N a hexagonal number less thanh 000, and N =
170,647. That is, we construct a cluster with hexagons in the bulktbagberiphery of the required
shape in Surface Evolver (Brakke, 1992), set all bubble aoehs equal (tod, = 3v/3/2, so that
edge lengths are close to unity) and seek a local minimumeofdtal perimeter” in circular arc
mode. That is, we minimize the sum of the lengths of all theesdgparating bubbles, as described
by Cox and Graner (2003). In practice, we start from a hexdguster (e.g. withV = 721) and
eliminate one bubble at a time, using one of the protocolsrde=d below and illustrated in figure
2:

Circular cluster: The bubble whose centre (defined as the average of theqyesdf its vertices)

is farthest from the centre of the cluster (defined in the samg is eliminated.

Hexagonal cluster We takehexagonal to mean that all shells of hexagons except the outer one
must be complete. Th&" shell of a hexagonal cluster withi = 3i2 + 3i + 1 bubbles containé:
bubbles. We consider four processes of elimination:

(i) spiral hexagonal clusters, in which the outer shell is eroded sty in an anticlockwise
manner starting from the lowest point;

(ii) corner hexagonal clusters, in which the corners of the outer shelfiest removed and the
erosion proceeds from all of the six corners.



(i) top-down hexagonal clusters, in which the highest bubble in the altell is removed.

(iv) sideways hexagonal clusters, in which the bubble furthest to theitethe outer shell is
removed.

Hybrid clusters: To create clusters that are intermediate between a circlulster and a hexagonal
cluster, improving upon the method given by Cox and Graned320ve consider two protocols:

(i) circular hybrid, in which we start from a perfect hexagonal cluster and rentbe bubbles
farthest from the centre of the cluster. This process stdpsnvthe next hexagonal number is
reached. (A related procedure, which makes a dodecagarsaécby removing bubbles farthest
from the centre of the cluster parallel to a line joining ie@ch of the six apices of the hexagonal
cluster, gave similar results to the circular hybrid methmd with a slightly greater perimeter for
eachN.)

(i) spiral hybrid, in which we start from a perfect hexagonal cluster but, teefemoving the
bubbles farthest from the centre of the cluster, we firstiekte any complete rows of bubbles
from the outer shell (first + 1, then: bubbles for the next four sides), in the order given by the
procedure for a spiral hexagonal cluster.

3 Results

3.1 Comparison of methods forN < 1000

The perimeters increase approximatelyas 3N + k+v/N, with & ~ 3.1 (Cox et al., 2003). Note
that for each value ol they are all close (figures 2 and 3). So in figure 3 we insteadvbhse we
call thereduced perimeter,P = (P — 3N)/+/N. This quantity fluctuates in a saw-tooth fashion as
N varies, but within rather narrow limits.

Different asymptotic estimates &f ~ 3 are given by Cox et al. (2003) and Heppes and Morgan
(2005). The best proven general bounds on the reduced geritieppes and Morgan, 2005) are

\/wA0—1.5<]5<7r+\/3N, (1)

where the first expression is approximately 1.36, which rsseovative, while the upper bound is
precise and useful, as shown in figure 3(b).

Patterns in the reduced perimeter are difficult to see atNogigure 3(a)); the frequency is
high, and circular, corner hexagonal, and hybrid clustezoéen identical. Our new data agrees
with the candidate structures fof = 200 (top-down or spiral hexagonal, which are equivalent
here) given by Cox and Graner (2003). Fér= 50 and N = 100 the spiral hybrid procedure
suggests new candidates: fr = 50 a cluster which is two topological changes away from the
one given by Cox et al. (2003) reduces the perimeter slighti|fl71.8342 to 171.8337, and for
N = 100 the perimeter is reduced from the previous conjectur&30fs80 to 330.799; the result
is shown in figure 4.

For largerN (figure 3(b)), the reduced perimeter of a circular clustewmshthe greatest fluc-
tuation asN increases, with sharp upward jumps that occur roughly mydvesween hexagonal
numbers and then a slower decay. So we should expect thatdacicluster might have the low-
est perimeter only far from hexagonal numbers, e.g.Noe 868, which is midway between the
hexagonal numbe&l 7 and919 (figure 5), although even here it does not minimize perimeter
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Figure 3: Reduced perimeters for differe¥it The hexagonal numbers are marked with vertical
lines. (2)50 < N < 217. (b) 721 < N < 1027, with the upper bound from eqg. (1).

(b) (d)

Figure 4: New candidate minimal clusters (&)= 50 bubbles with perimetepP,;_, = 171.834.
(b) N = 100 bubbles with perimetep;,,;,_,, = 330.799. (c) N = 1000 bubbles with perimeter
Pryp—sp = 3097.880. (d) N = 10,000 bubbles with perimeteF,,;,_.; = 30310.532.
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Figure 5: Different clusters oV = 868 bubbles, cf. figure 2, with the penultimate shell of bubbles
shaded. (a) Circular and circular hybrid clusters are thees&ty.. = P, = 2695.758. (b)
Spiral and sideways hexagonal are the same (with the laflected in a vertical line through the
centre of the cluster),c,—si = Pres—sp = 2695.941. (c) Corner hexagondb,.,_., = 2696.230.

(d) Top-down hexagonaPb,.,_.s = 2695.868. (e) Spiral hybridP;,,_,, = 2695.173, which again
has least perimeter.

The spiral hexagonal cluster shows six cycled’ibetween hexagonal numbers, making this
the hexagonal cluster that is most likely to be best, sinslaivs the smallest deviations from a
line joining the perimeters of the perfect hexagonal chsst&he spiral hybrid cluster is generally
better for largeV (figure 3(b)).

The top-down hexagonal cluster shows three cycles betweraglnal numbers with twice
the height of the spiral hexagonal cluster, and turns ouetbditer than a spiral hexagonal cluster
half the time. The sideways hexagonal cluster shows the pabern, but shifted by the number
of bubbles along one side of the hexaggnr{ our notation). This cluster becomes expensive when
there is a half row of hexagons along one side of the clustegbservation that also applies to
the corner hexagonal cluster. A corner hexagonal cludéajreed by removing a small number of
bubbles from all six corners of the outer shell of a hexagchater, is good forV slightly below
a hexagonal number, but this cluster becomes more expessithee number removed increases,
because of the number of partial lines of hexagons in ther @ltell. The reduced perimeter is
similar to that of the circular cluster, in that it shows joste cycle between hexagonal numbers,
but here the upward jump occurs fdrjust above a hexagonal number.

A circular hybrid cluster is very similar to a circular clestfor N less than abou00, and
to a corner hexagonal cluster (figure 6) fgrjust below a hexagonal number and less than a few
hundred. The difference is that after removing a few bubbles each apex of the hexagonal
cluster, the hybrid procedure allows us to remove a bubbla the next shell in. FalVv far from a
hexagonal number this method is heavily penalised, for éineesreasons as for a circular cluster.
As N increases towards a hexagonal number, there is a shosahiewhich a hybrid cluster can
become marginallpetter than a hexagonal cluster, before the perimeter is again egjtree value
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Figure 6: Different clusters oV = 995 bubbles, showing that falv not far below a hexagonal
number, the corner hexagonal and the circular hybrid alsstee very similar, but that this is

a sufficiently large value ofV that bubbles can be removed from the penultimate layer of the
hexagon, reducing the perimeter. The latter is also trueeo$piral hybrid in this case, reducing the
perimeter even further. (&c;—co = 3082.891. (D) Pryp—c; = 3082.799. (C) Pryp—sp = 3082.633.

(b) (d)

Figure 7: Different clusters oN = 1015 bubbles, showing that removing 12 bubbles to make
a corner hexagonal cluster leads to a lower perimeter if d@yenmetrically. (a) Removing two
bubbles from each vertex yields perimeter= 3143.700. (b) Removing three bubbles from
each of four vertices yields perimetér = 3143.643. (c) Removing three bubbles from a pair
of vertices, two from another pair, and one from the third gélds perimeter? = 3143.613.

(d) Removing three bubbles from three vertices and one fraother three yields the lowest
perimeterP = 3143.569.

in the corner hexagonal case.

In the range ofN shown in figure 3(b), the reduced perimeter of the spiral idybluster
fluctuates very little; it is between 3.09 and 3.10. This eadlowly rises, which is evident only for
N > 1000 (see§3.3). Spiral hybrid clusters almost always have the leagiy@ter in this range,
beaten only by circular hybrid and corner hexagonal clgspest below a hexagonal number;
this variation is due to asymmetry in the way that the diffierelusters are formed, described
below. Most significantly, even for hexagonal numbers, thieas hybrid cluster can beat the
perfect hexagonal cluster for> 14 (N > 631). We have thus disproved the conjecture of Cox
and Graner (2003) that perfect hexagonal clusters minipezeneter.



3.2 Influence of asymmetry

There is also a small discrepancy in the data, visible in 8d{b), that turns out to be significant.
For N just below a hexagonal number, the corner hexagonal chuatet the two hybrid clusters are
slightly different, although the methods described abdwvrikl give exactly the same answer. The
discrepancy is due to the way in which the “furthest” bublalessremoved: a small difference in the
cluster “centre” (either because of small shifts in the fiosiof the whole cluster in the numerical
procedure, or because there is a difference in the averag@opacalculated on three-fold vertices
or on bubbles) means that not all apices are treated eqé&aiiyre 7 shows four different clusters
of N = 1015 bubbles, which is twelve less than the hexagonal number.102#%&ad of removing
two bubbles from each corner, the asymmetric cluster adelayeremoving three bubbles from
three corners and one from the other three corners turne twatve lower perimeter.

It is therefore clear that for each there are still many possible small changes to the rounded
clusters that could be tried in seeking a better minimum. tAeopossibility would be to extend
our definition of hexagonal to allow more than one layer oftidab to be shaved off any one of the
six sides of the cluster.

In particular, our new candidate configuration for the optirtiuster of N = 1000 bubbles,
shown in figure 4(c), has a different number of bubbles remdvem each corner. It is a spi-
ral hybrid cluster, improving upon the sideways hexagohater suggested by Cox and Graner
(2003). So even folN = 1000 a little rounding of the corners of a hexagonal cluster reditbe
total perimeter. Can we expect that &sincreases further rounding reduces the perimeter even
further? ForN = 10,000 we find that a circular hybrid cluster constructed by remgubbles
from the hexagonal cluster @f = 10, 267 does beat all other candidates made with the processes
described here: this candidate f§r = 10, 000 hasF,,;,—.; = 30310.532 (figure 4(d)) compared
to the best hexagonal case (top-down hexagonal) ®ith_;, = 30312.589 and the spiral hybrid
with P, = 30311.208. Yet this is far from a circular cluster, suggesting thattakie of V at
which the optimal cluster might beund is much larger tham03.

3.3 WhenN is a large hexagonal number

It is clear from figure 3 that fo’V a hexagonal number the two hybrid methods give clusters that
are not hexagonal but have lower perimeter that the perts@donal cluster for sufficiently large
N.

We extend the data to highéf, using the two hybrid methods to reduce each hexagonal clus-
ter until V reaches the next hexagonal number of the faitn+ 3i + 1, and compare the reduced
perimeters with a perfect hexagonal one. Figure 8 showsfdinat sufficiently large hexagonal
numberV: (i) although the reduced perimeter of both a spiral hybludgter and a hexagonal clus-
ter are increasing functions offor N > 631 a spiral hybrid cluster has lower reduced perimeter
than a hexagonal cluster; (ii) the reduced perimeter of @utar hybrid cluster is a decreasing
function of i, and for N > 4447 the reduced perimeter is lower than a hexagonal clustéy; (ii
for N > 9919 a circular hybrid cluster has lower reduced perimeter thapieal hybrid cluster;
and (iv) the circular clusters follow a similar saw-toothtpan as a function of as for a function
of IV, and there is no evidence that the reduced perimeter desraasincreases, as it would if
Morgan’s conjecture were correct and for sufficiently lafgehe optimal cluster were circular.
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Figure 8: Reduced perimeter of a circular cluster, the twaikdydlusters, and a perfect hexagonal
cluster for N a hexagonal number of the forti? + 3i + 1, wherei is the number of shells of
hexagons in the perfect cluster. Starting at 14 (N = 631) the rounded spiral hybrid cluster
has lowest perimeter; from= 57 (N = 9919), the rounded circular hybrid cluster has lower
perimeter. In this range a circular cluster never beats admxal cluster, although they are the
same for small.

Indeed, Heppes and Morgan (2005, Rmks. 3.2) suggest an astyerrptluced perimeter of about
2.99. The resulting conjectured best perimeters are redardTable 1. In summary, it appears
that asN increases above 10,000 there is a transition to the leaistgter cluster being produced
by the circular hybrid method.

3.3.1 Extending the circular hybrid method

Recall that we can use the circular hybrid method describéf? ito eliminate bubbles from a
hexagonal cluster to arrive at a slightly rounded clustéhwinumber of bubbles that is the next
lowest hexagonal number of the forh¥ + 3i + 1. For sufficiently largeV this procedure may be
repeated, to arrive at a more rounded cluster for the next¢dbwexagonal number. In the limit,
we reach the circular case.

To illustrate this, we choose the valdeé= 170, 647 (: = 238) to compare the effect of starting
the hybrid procedure from different hexagonal clustersr thes N, the hexagonal cluster has
P = 513,236.338 and a circular cluster has greater perimekgy,. = 513, 240.830. A circular
hybrid cluster created fronV = 172,081 has even lower perimeteF},,,_.; = 513, 226.522, but
starting from/N = 176, 419 and removing the furthest 5772 bubbles from the centre gi\edsster
with an even lower perimeteF),,;,_..» = 513,224.982. This result is shown in figure 9, suggesting
that the global minimum is found when the procedure stacifa hexagonal cluster that is two
shells larger than required (so the minimum in the numbeayeils removed presumably increases
very slowly with NV). Note that the difference in perimeter is a small fractibthe total. Note also
that for such large clusters, the energy minimisation (gretddescent) in Surface Evolver takes



N P N P N P

721 | 2246.135| 2791 | 8536.852| 6211 | 18877.741
817 | 2539.476| 2977| 9100.258 | 6487 | 19711.151
919 | 2850.861|| 3169| 9681.654 | 6769 | 20562.559
1027 | 3180.205| 3367 | 10281.057| 7057 | 21431.968
1141 | 3527.593| 3571 | 10898.457| 7351 | 22319.377
1261 | 3892.938| 3781 | 11533.862| 7651 | 23224.802
1387 | 4276.331| 3997 | 12187.279| 7957 | 24148.211
1519 | 4677.693| 4219 | 12858.699| 8269 | 25089.621
1657 | 5097.087| 4447 | 13548.102| 8587 | 26049.047
1801 | 5534.451| 4681 | 14255.472| 8911 | 27026.456
1951 | 5989.852| 4921 | 14980.843| 9241 | 28021.866
2107 | 6463.253| 5167 | 15724.213| 9577 | 29035.277
2269 | 6954.654| 5419 | 16485.584|| 9919 | 30066.610
2437 | 7464.055| 5677 | 17264.958
2611 | 7991.453| 5941 | 18062.332

Table 1: Perimeter of candidate clusters to the least p&imagrangement oV bubbles of area
3v/3/2 for N a hexagonal number between 721 and 9919, generated fromitakhybrid method
except for the last, which is from the circular hybrid constion. BelowN = 721 we conjecture
that the perfect hexagonal cluster is optimal /& hexagonal number.

around three days on a 3.10GHz PC for each cluster.

4 Conclusions

We have shown that fav between about 600 and 11,000 the perimeter is lowest wheaustecl
has the shape of a hexagon with rounded corners. The corgdaiptimal cluster is a spiral hybrid
cluster, except for just below a hexagonal number wheregmidipg on the asymmetry, it may also
be either a top-down hexagonal or circular hybrid clusteverEfor N a hexagonal number, if
N > 631 this rounding gives better candidates. Nonetheless, th@@indication in our data that
a circular cluster will ever be optimal, and it remains to leéetimined if the limiting behaviour of
a perimeter-minimizing cluster @f equal-area bubbles @& approaches infinity is circular.
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