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ABSTRACT

Protein–protein interactions (PPIs) are ubiquitous
in Biology, and thus offer an enormous potential
for the discovery of novel therapeutics. Although
protein interfaces are large and lack defining
physiochemical traits, is well established that only
a small portion of interface residues, the so-called
hot spot residues, contribute the most to the
binding energy of the protein complex. Moreover,
recent successes in development of novel drugs
aimed at disrupting PPIs rely on targeting such
residues. Experimental methods for describing
critical residues are lengthy and costly; therefore,
there is a need for computational tools that can
complement experimental efforts. Here, we
describe a new computational approach to predict
hot spot residues in protein interfaces. The method,
called Presaging Critical Residues in Protein inter-
faces (PCRPi), depends on the integration of
diverse metrics into a unique probabilistic measure
by using Bayesian Networks. We have benchmarked
our method using a large set of experimentally
verified hot spot residues and on a blind prediction
on the protein complex formed by HRAS protein and
a single domain antibody. Under both scenarios,
PCRPi delivered consistent and accurate predic-
tions. Finally, PCRPi is able to handle cases where
some of the input data is either missing or not
reliable (e.g. evolutionary information).

INTRODUCTION

In order to fulfill their function, proteins must interact
with one another and with other biomolecules, thus
offering an enormous potential for the discovery of
novel therapeutic agents able to act either as antagonist

or agonist of protein–protein interactions (PPIs).
Crystallographic studies have shown that proteins
interact through large, typically 150–300 nm2 (1,2)
[60 nm2 is the minimum area required to make a
water-tight seal around a critical set of energetically favor-
able interactions (3)], and relatively featurelessness
surfaces. Given these large interfacial areas, one school
of thought considers that small-molecule inhibitors
require binding-pockets or ‘clefts’ at the protein–protein
interface, in order to attain the required affinities (4).
However, as discussed by Wells and McLendon (5), this
and a number of other objections to target the disrup-
tion of protein–protein interfaces have recently been
challenged by new data [reviewed by Yin and Hamilton
(6) and Wells and McLendon (5)].
Many of these successes have been aided by the realiza-

tion, following the pioneering work of Clackson and Wells
(7), that the binding energy for many protein–protein
associations can be ascribed to a small and complemen-
tary set of interfacial residues—a hot spot—of binding
energy surrounded by weaker interactions providing
specificity. Protein interaction interfaces include many
intermolecular contacts, involving 10–30 side chains on
average from each protein. However, a typical hot spot
accounts for less that half of the contact surface (5). The
experimental detection of residues located in hot spots can
be achieved by Alanine scanning mutagenesis (8), Alanine
shaving (9) and residue grafting (9). These techniques are
very time consuming, labor-intensive and involve a high
economic cost. Therefore, there is a great interest in
computational tools that can predict critical residues
with high accuracy and thus, be used to aid and comple-
ment experimental efforts.
Several computational tools have been described in the

past. These can be categorized in three groups depending
on the information used for the prediction. Thus,
methods that estimated the energetic contribution of
each individual residue to the global binding energy,
so called computational Alanine scanning (10–12), or by
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free-energy decomposition (13), have been proposed.
Other methods exploit the structural features that are
characteristic of hot spots such as solvent accessibility
(14–16), atomic contacts (17), structural conservation
(18), restricted mobility (19), and location in the interac-
tion patch (20). Finally, a third type of method accounts
for evolutionary information such as sequence con-
servation (15,21–23), sequence environment and evolu-
tionary profile (24), and pattern mining (25). While
theses attributes are informative, it has been found that
individually they cannot unambiguously define hot spots
(26).
In this article, we present a novel probabilistic method,

Presaging Critical Residues in Protein interfaces (PCRPi),
that combines these three main sources of information,
namely energetic, structural and evolutionary determi-
nants by using Bayesian Networks (BNs) (27,28). Many
applications in Bioinformatics and Computational
Biology use BNs (29–35) offering several clear advantages
over alternative modeling approaches as it has been
described elsewhere (36). We have developed and
extensively benchmarked several BNs in a dataset of
experimentally confirmed hot spots residues. Results
show that PCRPi delivers robust and reliable predictions
with a high accuracy even in cases where evolutionary
information is missing or highly noisy. In addition, we
have tested our prediction method with experimental
Gly–Ala scanning analysis of a protein complex formed
by HRAS and a single domain antibody (37). PCRPi pre-
dictions were highly accurate with the exception of one
residue that was predicted as a critical but it was not
confirmed by the mutagenesis analysis. Finally,
when comparing with previously published methods
(10,11,16,38), PCRPi showed a higher performance when
the same dataset was analyzed.

MATERIAL AND METHODS

Dataset

The protein complexes used in this study were taken from
four different sources: Alanine Scanning Energetics
(ASEdb) (39) and Binding Interface (BID) (40) databases,
and Kortemme and Baker’s (11) and Guerois et al.’s (10)
works. We worked with 25 complexes (Table 1, Supple-
mentary Data) summing up a total of 636 interface
residues, 300 of which have been experimentally validated
(78 experimentally confirmed hot spot residues, see next).
We defined a residue as being critical or hot spot residue, if
when mutated the difference in binding energy between the
mutant and wild-type, unmutated complex is equal or
larger than 2Kcalmol�1. Finally, we derived two different
datasets: Ab+, containing all 25 protein complexes and
Ab� that does not include non-evolutionary related
protein complexes (e.g. antigen–antibody). Both dataset,
Ab+ and Ab�, were used for training and testing under
cross-validation conditions. Additionally, the BID derived
set used in Darnell et al. (38) and Tuncbag et al. works
(16) was used for comparing PCRPi with previously
described methods. The protein complexes 1dfj (K7;
chain E), 1dzi (N154, Y157, Q215, D219, L220, T221,

E256, H258; chain A), and 2nmb (Y2, I3; chain B) were
excluded because the corresponding experimental data
associated to the residues shown between parentheses
could not be found in the BID database (40).

Defining interface residues

A given residue is part of a protein interaction surface if it
has atomic contacts with a residue(s) that belong to any
other protein in the complex. The atomic interactions
between residues were described using the CSU program
(41) and includes any type of non-bonded interactions (i.e.
polar, hydrogen bonds and hydrophobic interactions).
Two types of interface residues were considered: first,
residues that have been experimental validated either as
critical or non-critical, i.e. ddGbinding� 2.0Kcalmol�1 or
ddGbinding< 2.0Kcalmol�1 when mutated, that are part of
the training and testing datasets, plainly referred as inter-
face residues; and second, mirror residues, residues that are
part of the interface but belong to other protein in the
complex.

Bayesian network attributes

Interaction engagement index. The interaction engage-
ment (IE) index gauges the proportion of side chain
atoms (including the main chain amino nitrogen and
carboxyl oxygen) of a given interface residue i that have
non-bonded interactions with mirror residues. Non-
bonded atomic interactions were described using CSU.
IE values range between 0 and 1 and were calculated
using the following formula (1):

IEðiÞ ¼
#ðatomic contactsÞ

#ðatomsÞ
: 1

An IE index of 1.0 indicates that all atoms in the residue
are actively engaged in atomic interactions with other
proteins in the complex.

Topographical index (TOP). The Topographical (TOP)
index estimates the structural microenvironment of a
given interface residue i and was calculated as the ratio
between structurally neighbor residues and the average
number of residues that a given residue type (e.g. Ala)
interacts with when located at a protein interface (2):

TOPðiÞ ¼
#ðneighbour residuesÞ residueðiÞ

ðav # neighbour residuesÞ residueðiÞ
: 2

By structurally neighbor residues is understood any mirror
residues whose carbon alpha is enclosed in a sphere of
10 Å of radius centered on the carbon alpha of the given
residue. The average number of contacts by residue type is
shown in Table 2 (Supplementary Data), and it was
calculated as follow: a non-redundant dataset of protein
complexes was downloaded from the PiQSi database (42).
Atomic contacts between protein subunits were assigned
as shown in previous section. Interacting residues were
grouped by residue type and statistical parameters were
derived.

e86 Nucleic Acids Research, 2010, Vol. 38, No. 6 PAGE 2 OF 11

 at U
niversity of W

ales A
berystw

yth on O
ctober 13, 2014

http://nar.oxfordjournals.org/
D

ow
nloaded from

 

http://nar.oxfordjournals.org/


Sequence conservation index (CON and ANCCON). The
CON index refers to the conservation of mirror residues
that are in contact with a given interface residue, whereas
ANCON index is the conservation of the interface residue.
To analyze the conservation, sequence profiles were
derived as described in our previous work (43). In short,
homologous sequences were culled from NR database of
NCBI (44) using five iterations of PSI-BLAST (45) with
an E-value of 0.0001. The homologous sequences were
then filtered using ParseBlast (46) with default parameters
to maximize the sequence sampling avoiding bias toward
overrepresented protein families. The resulting sequence
profile was given to al2co program (47) as an input and
the al2co sequence conservation score was assigned to
each residue.

For a given interface residue i, the CON index mea-
sure the ratio between mirror residues with an
al2co_score�1.0 and the total number of mirror residues
(#mirror_res) in contact with residue i (3).

CONðiÞ ¼
#ðmirror resÞ al2co score � 1:0

#ðmirror resÞ
: 3

The ANCCON index refers to the raw al2co sequence
conservation score applied to each individual interface
residue.

3D regional conservation index (3DCON and
ANC3DCON). The 3D regional conservation score was
calculated using the same sequence profiles but using the
normalized (Z-score) regional conservation score (CR) as
defined by Landgraf et al. (48) as a measure of conserva-
tion. For a given interface residue i, the 3D regional con-
servation index is the ratio between mirror residues with a
CR score�1.0 and the total number of mirror residues
(#mirror_res) in contact with the given interface residue
i (4).

3DCONðiÞ ¼
#ðmirror resÞ CRscore � 1:0

#ðmirror resÞ
: 4

The ANC3DCON index is the CR score of the given inter-
face residue as derived from the multiple sequence
alignment.

Computational alanine scanning (BE). The last attribute
used was the difference in estimated binding energy upon
mutation to Alanine, i.e. computational Alanine scanning.
Each interface residue was mutated to Alanine and the
effect of such mutation in the stability of the protein
complex was estimated using FoldX (10).
Crystallographic waters, if any, were kept during the
free energy calculations. For a given interface residue i,
BE reflects the difference in binding free energy between
the unmutated (wild-type) and mutated complex (5).

BEðiÞ ¼�Gðcomplex wildÞ ��Gðcomplex resðiÞ ! AlaÞ:

5

The use of Rosetta to estimate binding energy was also
explored during the developmental phases of the project.
There were however, in terms of performance, not big

differences between Rosetta and FoldX when used as
inputs to our BNs.

Bayesian Networks

The BNs were implemented using the Bayesian network
toolbox for Matlab (BNT) (49). Additionally, the R
package ‘Deal’ was used to learn the structure of expert
BNs (50).

Training phase

Naı̈ve and expert BNs were trained using the two datasets
considered in this study: Ab+ and Ab�. In a naı̈ve BN,
all input variables (or attributes) are assumed to be inde-
pendent and directly connected to the predictor, or class
node, whereas in an expert BN, attributes are not assumed
to be independent and conditional dependence between
attributes is allowed. The maximum likelihood estimation
(MLE) (51,52) and the expectation maximization (EM)
(53) were used to learn the parameters of the BNs.
Bayesian network structures (i.e. expert BNs) were learnt
using a score-based approach implemented in R package
(Deal) (50). The different BNs that were explored during
this study can be found in Tables 3 and 4 of the
Supplementary Data.

Prediction phase

Some of the most promising trained BNs were then used
as predictors. A 10-fold cross-validation experiment was
used to assess the accuracy of the predictions. Each of the
interface residues in our datasets was randomly assigned
to one to the 10 subsets, where one of the subsets was
selected as validation data while the remaining 9 subsets
were used as a training set. Additionally, a leave-one-out
cross-validation experiment was also performed. Each
individual protein complex was selected as validation
data, whereas the rest of protein complexes were used as
training set.

Assessing the performance of the BNs

The datasets contain positives (P; i.e. experimentally con-
firmed critical residue) and negatives (N; i.e. experimen-
tally confirmed non-critical residue) cases. The BNs assign
a probability score between 0.0 and 1.0 to each residue
under test. Consequently, classification performance
depends on the probability threshold (any value between
0.0 and 1.0) above which a residue is predicted as critical
and below is predicted as non-critical. The performances
of the BNs were evaluated in terms of sensitivity,
specificity, precision, F1 score and accuracy. A more
extensive explanation of these statistical metrics is given
in the Supplementary Data.
Using sensitivity and specificity values, the receiver

operating characteristic (ROC) curves were plotted and
subsequently the area under ROC curves (AUC) was cal-
culate to evaluate model performance. A ROC curve plots
sensitivity versus (1-specificity) across a range from 0.0 to
1.0 of probability thresholds. The AUC represents the
area beneath the ROC curve, where a value 1.0 being
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indicative of a perfect classifier and of 0.5 as a classifier
that is no better than random.

Gly–Ala mutagenesis analysis of anti-RAS
VH–HRAS complex

A detailed explanation of reagents and site-directed
mutagenesis procedure can be found at the
Supplementary Data. The effect of mutations in the
ability of anti-RAS VH single domain antibody to bind
HRAS was estimated using a mammalian two-hybrid
luciferase assay as follow. Chinese hamster ovary (CHO)
cells were grown in DMEM medium with 10% fetal calf
serum containing penicillin and streptomycin. A Firefly
luciferase reporter CHO cell line was established by
co-transfecting CHO cells with linearized pG5-Fluc (a
plasmid with a minimal promoter linked to five copies of
the GAL4 DNA binding sequence) (Promega) and
pPGK-puro (54) plasmids using Lipofectamine 2000
(Invitrogen). Stably transfected cells were selected for 7
days using 10 mg/ml puromycin (Sigma). The CHO-Luc
stable clone 15 (CHO-Luc15) was chosen for further
assays. For luciferase assays, the CHO-Luc15 were
seeded in 12-well culture plates the day before transfection
and grown until more than 90% confluent. One
microgram triplex vector was transfected to obtain
co-expression of a mutant form of VH#6-VP16 fusion
(prey) with GAL4DBD-HRASG12V (or control) bait
and the Renilla luciferase for normalising transfection
efficiencies using 2 ml Lipofectamine 2000 according to
the manufacturer’s instructions. After 48 h, the cells were
harvested, lysed and assayed using the Dual-Luciferase
Reporter Assay System (Promega) according to the man-
ufacturer’s instructions. The data represent a minimum of
three experiments for each point and each of which was
performed in duplicate. Values are normalised for
stimulated Firefly luciferase levels compared with levels
for transfected Renilla luciferase.

RESULTS

Rationale behind individual measurement and
Ab+Ab� dataset

PCRPi exploits seven measures of different nature to
predict whether a given residue is going to be critical in
a specific PPI. Two of the measures, IE and TOP, utilize
structural information. IE is a simple measure that
gauges the fraction of atoms of a given residue that are
actively engaged in atomic contacts with the other pro-
teins in the complex, whereas the TOP index quantifies
whether an interface residue is interacting intimately
with partner proteins or is located in a more flat or
unprotected region. The second group of variables
account for evolutionary information. The CON and
3DCON reveal conservation in mirror residues and there-
fore reward interface residues that interact with conserved
mirror residues (CON) or conserved patches (3DCON),
whereas ANCCON and ANC3DCON gauge the conser-
vation of the individual interface residues. Finally, BE
determines the predicted energetic contribution of each
individual interface residue to the strength of the

interaction. Whether mutations in specific residues
would result in a less stable complex is estimated by this
last metric.

Overall, all but evolutionary-based measures are good
discriminating between critical and non-critical residues
(Figure 1). It is clear that as TOP, IE and BE values
increase (Figure 1E–G; solid line), the difference between
experimentally critical and non-critical residues becomes
more positive, i.e. critical residues show a distribution of
TOP, IE and BE values skewed toward high values as
compared with non-critical residues. This trend is not
observed in evolutionary-based variables (Figure 1A–D;
solid line). A careful analysis of the protein complexes in
the dataset revealed the presence of what we are going to
term non-evolutionary related protein complexes. By
non-evolutionary related protein complexes it is under-
stood protein complexes that do not have a common evo-
lutionary history. The best example of non-evolutionary
related protein complexes is the antigen–antibody.
Antibodies undergo an accelerate evolution adjusting the
amino acid composition at the complementarity
determining regions (CDRs) to improve the binding to a
given antigen. On the other hand, protein complexes that
have a common evolutionary history, mutually adjust
changes in the protein sequence in order to preserve the
interaction (55).

Based on the previous observation, the initial dataset
was divided in two: Ab+ (effectively the initial set) and
Ab� dataset. The difference between Ab+ and Ab�
datasets is the presence or absence of non-evolutionary
related complexes, respectively (Table 1, Supplementary
Data). Using the Ab+ dataset, CON, ANCCON,
3DCON and ANC3DCON measures are unable to distin-
guish between critical and non-critical residues. Even at
very high scores (i.e. high sequence conservation) the dif-
ference between frequency of critical and non-critical
residues was close to 0; thus, critical and non-critical
residues were indistinguishable (Figure 1A–D; solid line).
However, when scores were re-calculated and plotted using
the Ab� dataset a clear improvement was observed:
evolutionary-based metrics were able to distinguish
between critical and non-critical residues (Figure 1A–D;
dashed line). Furthermore, the attributes that are
sequence conservation-independent behave similarly
regardless of the dataset used (Figure 1E–G; solid and
dashed line). Ab+ dataset was still used both during the
training and testing phases to emulate cases where BNs
have to deal with noisy or missing input data (meaningless
evolutionary-based data in this particular case).

Training phase

Both the Ab+ and Ab� datasets were used to train 60
naı̈ve and 25 expert BNs originating from the combination
of one, two, three, four, five, six and seven attributes. The
performance of the BNs was assessed in terms of area
under the ROC curves (AUC) values. The summary of
BNs that were trained and their respective performances
are shown in Tables 3 and 4 (Supplementary Data).

Using naı̈ve BNs, the largest AUC correspond to the
BN that combines TOP, BE, 3DCON and ANC3DCON
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Figure 1. (A–G) Discriminative power of each individual measure used as inputs to the BNs. Y-axis shows the difference between the frequency
of critical and non-critical residue at a given score point (X-axis). Negatives values indicate that the frequency of non-critical residues is higher than
the frequency of critical residues for the given score of the particular measure: CON (A), 3DCON (B), ANCCON (C), ANC3DCON (D), TOP, (E),
BE (F) and IE (G) on Ab+ dataset (solid line) and Ab� dataset (dashed line). For frequency calculations, IE, CON and 3DCON scores were binned
by increments of 0.2, whereas TOP, BE, ANCCON and ANC3DCON scores, a 1.0 bins were used.
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measures (Table 3, Supplementary Data). More complex
BNs (i.e. use more input variables) showed marginal
differences when compare with top performer BN. There
was however a clear improvement when comparing with
BNs with only one attribute. Thus, individual measures
alone showed a reasonable prediction power but when
combined the performance was much improved. In the
case of expert BNs, the largest AUC is observed when
all the measures are combined (Table 4, Supplementary
Data). AUC values were higher than the top naı̈ve BN.
In addition, expert BNs seemed more robust, since the
difference in AUC using Ab+ and Ab� databases were
smaller (i.e. more similar AUC values).
Given the differences observed between naı̈ve and

expert BNs and the better performance of expert BNs
under both Ab+ and Ab� datasets; two expert BNs
(tailored for the Ab+, Ab� datasets) that combine all
seven measures were selected as default predictors
(Figure 2A for schematic representation of the BNs’ archi-
tectures), and used in all subsequent analyses.

Prediction phase

The expert BNs that were explored and selected during
the training phase were taken forward to the prediction

phase (Figure 2A). In addition, the naı̈ve version of
default BNs (i.e. seven attributes directly connected to
the class node and without connections between them)
and single attributes BNs were used as control. The
predictive performance of the BNs was evaluated in a
10-fold and in a leave-one-out cross-validation experiments
reporting AUC and accuracy. Eight and two naı̈ve and
expert BNs, respectively were examined during the cross-
validation experiments.

As observed during the training phase, the combination
of attributes resulted in a better performance, and the best
predictions, in terms of accuracy and AUC values, were
achieved with default BNs (Table 1). A slightly decrease in
performance is observed in those cases were sequence con-
servation measures are used on the Ab+ set, again high-
lighting the robustness of the BNs. This property is
specific of BNs and it is difficult to emulate with other
learning methods. Figure 2B shows the ROC curves
based on the probabilities calculated with the default
BNs. The AUC and accuracy of prediction of default
BNs in the case of the Ab+ and Ab� datasets were
0.83, 0.89, 0.81 and 0.84, respectively (Table 1).
Comparing with the AUC values with the best individual
measure: BE, default BNs achieved higher sensitivity
for similar a range of false negative rate values, both in

Figure 2. Predictive performances of default BNs combining IE, TOP, CON, ANCCON, 3DCON, ANC3DCON and BE measures. (A) Schematic
representation of the default BNs’ architectures. Nodes represent each of the variables and the arrows represent conditional dependence relationships.
The predictor or class node is shown as a solid node. (B) ROC curves default BNs during 10-fold cross-validation prediction on the Ab+ (red solid
line) and the Ab� (blue dashed line) datasets. Resulting ROC curves using only BE are also shown: solid and empty squares for Ab+ and Ab�
datasets respectively. Inset shows the distribution of prediction probabilities obtained using the default BN in the Ab� dataset as a function of
nature of interface residues, i.e. critical (red) and non-critical (blue).
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Ab+ and Ab� datasets (Figure 2B). Finally, when the
distribution of prediction probabilities is plotted as
function of the importance of the interface residue, i.e.
critical or non-critical, a clear correlation can be
observed, i.e. residues that are predicted with high proba-
bility are more likely to be important in the interaction,
i.e. critical (Figure 2B, inset).

A leave-one-out cross-validation was also performed to
evaluate the predictive performance of the method. Given
the large differences in mutational information that is
available for each of the protein complexes and in order
to avoid the bias that would be introduced by these
complexes contributing the most to the statistical
analysis, the performance of the method was assessed in
terms of the ability of recover critical residues as a
function of screened residues. A critical residue was con-
sidered to be ‘recovered’ if the prediction probability
was equal or higher than 0.8. Figure 1 (Supplementary
Data) shows the percentage of recovered critical residues
upon prediction by using the default expert BN
(Figure 2A, Ab+) and the naı̈ve version. On average,
default BN was able to recover up to 75% of critical
residues, i.e. 75% of the actual critical residues were pre-
dicted with a probability equal or higher than 0.8 (using a
naı̈ve BN the percentage of recovery was 68%).

Prediction examples

The protein complex formed by interleukin 4 and receptor
alpha (PDB identification code 1iar) is one of the
complexes that was analyzed (56). Two out of 20
residues that mediate the interaction between interleukin
4 and the receptor alpha have been experimentally verified
as critical residues. PCRPi prediction was highly accurate
when compared with the available experimental data (10)
(Figure 3A). Arg85 (following the PDB numbering) was
also predicted as a critical residue, although the decrease
in binding energy according to the available mutational
data is only 0.41Kcalmol�1. As it is shown in Figure 3A,
Arg85 is located in the center of the interaction patch,
flanked by two important residues Arg88 and Glu9.
Arg88 is a polar residue with a long side chain that pro-
trudes the surface and makes extensive atomic contacts

with the receptor alpha, hence a priori a clear candidate
to be an important residue in the interaction.
A second example is the protein complex formed by

chymotrysin and the basic pancreatic trypsin inhibitor
(BPTI) (PDB identification code 1cbw) (57). BPTI inter-
acts with chymotrypsin through an interface that includes
15 residues, one of which, Lys15, was proved to be critical
for BPTI binding (57). As it is shown in Figure 3B, PCRPi
prediction was 100% accurate, since all validated critical
and non-critical residues were predicted as such.

Validating the PCPRi predictions in the
VH–Anti-RAS–HRAS complex

PCRPi was also used to predict the critical residues
mediating the interaction between the VH domain of an
Fv antibody fragment that binds to mutant HRAS with

Table 1. Accuracy and AUC values for different BNs (naı̈ve and expert) tested during 10-fold cross validation process on Ab+

and Ab� datasets

Naı̈ve BNs Expert BNs

Measuresa AUC Accuracy AUC Accuracy

Ab+ Ab� Ab+ Ab� Ab+ Ab� Ab+ Ab�

IE 0.75 0.72 0.76 0.74 – – – –
TOP 0.74 0.72 0.71 0.77 – – – –
BE 0.72 0.76 0.71 0.85 – – – –
CON 0.52 0.69 0.72 0.76 – – – –
3DCON 0.51 0.66 0.68 0.71 – – – –
ANCCON 0.44 0.49 0.51 0.56 – – – –
ANC3DCON 0.58 0.61 0.71 0.77 – – – –
IE, TOP, BE, CON, 3DCON, ANCCON, ANC3DCON 0.82 0.88 0.79 0.86 0.83 0.89 0.81 0.84

aBN attributes as described in the ‘Material and Methods’ section.

Figure 3. Comparison between experimentally determined and pre-
dicted critical residues. (A and B) The surface representation of the
interaction surface of the human interleukin 4 (PDB code 1iar, chain
A), and the bovine basic pancreatic trypsin inhibitor (BPTI) (PDB code
1cbw, chain D), respectively. Residues depicted in red were either
experimentally determined (ddGbinding� 2.0Kcalmol�1 when mutated)
(i) or predicted (prediction probability� 0.8) as critical residues (ii).
Conversely, residues depicted in blue are either non-critical according
to experimental data (i) or were predicted as non-critical (ii).
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high affinity and specificity (37). This was a blind predic-
tion and not just validated data compiled from the scien-
tific literature, and a likely application for the
computational tool that is presented here. HRAS and
anti-RAS VH interact through a large surface of
�800 Å2 that comprises residues located across all three
CDR loops of the VH domain.
PCRPi predicted eight residues as forming a critical

cluster around the central region of the interface
(Figure 4A). As an approach to verify the PCPRi predic-
tions, residues in the VH CDR loops were mutated indi-
vidually into Gly/Ala and the effect of mutations were
determined in a mammalian cell transfection assay using
luciferase production as a reporter of interaction of the
anti-RAS VH with HRAS. The effects of these mutations
on the ability of the VH to interact with HRAS are
shown in Figure 4B, where for example R53G/A, T54G/
A and K56G/A mutations proved ablative of binding.
Considering a residue as critical to the interaction if
when mutated the percentage of luciferase induction fell
below 60% of that seen with unmutated anti-RAS VH, the
PCRPi method was able to predict all critical and
non-critical residues shown by mutation with the excep-
tion of Arg100 that was predicted as critical when in fact
its mutation showed no effect in luciferase induction
(Figure 4B and C).

DISCUSSION

The PCRPi method

In the present work, we have devised a novel method,
PCRPi, to predict critical residues in protein interfaces.
We have characterized residues located in protein inter-
faces using seven different measures or attributes. Each of
the attributes account for a different aspect of the nature
of interface residues. We have trained a number of BNs to
distinguish between experimentally verified critical and
non-critical residues from a benchmark dataset of 25
protein complexes. The results have shown that the pre-
diction accuracy improves as the number of measures that
are combined increases. Also, expert BNs showed better
performance than naı̈ve BNs.

PCRPi is also able to handle situations where some data
are missing and/or not reliable as in these the overall per-
formance was comparable to that of those where full
reliable data is given. This fact is portrayed in the study
of the Ab+/Ab� datasets. As explained before, some of
the protein complexes included in Ab+ are
non-evolutionary related, such as antigen–antibody
complexes (Table 1, Supplementary Data). For seven of
these complexes, mutational data comes from residues
changes in the antigen, therefore, the CON and 3DCON
data refers to sequence conservation in antibodies; in the

Figure 4. Analysis of PCRPi predictions and experimental verification on the anti-RAS VH-HRAS complex (36). (A) Surface representation of the
interaction surface of the anti-RAS VH. Depicted in red and in blue respectively, residues predicted as critical and non-critical by PCRPi (at
prediction probability cut-off of 0.8). (B) Fold luciferase induction in CHO-luc cells transfected with DBD-HRASG12V and VH#6-VP16 in which
the mutation of the indicated VH amino acids was done. Anti-LMO2 VH#576 (T.T. and T.H.R., manuscript in preparation) is presented as negative
control as it does not interact with HRAS. Error bars represent SD. (C) Comparison of the average change in luciferase induction: Luc (standard
deviation shown in brackets), and prediction probability: Pr using default BNs trained in Ab+ and Ab� datasets. Mutated residues that resulted in a
drop in luciferase induction below 60% were considered as critical for the interaction.
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remaining complexes the available mutational data comes
from mutations in the antibody. In either way,
evolutionary-based measures were showing not conserva-
tion for critical residues, either themselves (ANCCON and
ANC3DCON) or in the mirror residues (CON and
3DCON). However, as data shows, PCRPi is a robust
predictor that compensate for the lack of evolutionary
information, as the performance achieved was comparable
to that of Ab� dataset.

Besides the benchmark of PCRPi using a validated set,
PCRPi has been also applied to the study of the protein
complex formed by HRAS and a single domain antibody
(37) to which we have direct access. As it is shown in
Figure 4, all residues predicted as critical (with the excep-
tion of one) and non-critical were subsequently experi-
mentally confirmed, again proving the usefulness of the
proposed method as a complement and guidance to
experimentally driven research.

Comparison of PCPRi with existing approaches

Comparing with previously published works is difficult
mainly because the heterogeneity of the datasets
employed to benchmark the methods and sometimes the
difficulty to access the methods themselves. However, we
compared our results with related works that employs a
predictive model based in decision trees (38) and a recently
published method (16), plus two energy-based methods:
Robetta-Ala (11) and FoldX (10) that are freely available,
using a comparable dataset: the BID derived database.

In terms of sensitivity and specificity PCRPi delivers a
higher recall and precision that the top ranking
method (Table 2) with an overall accuracy of 0.75
(comparing to an accuracy of 0.63, 0.64, and 0.70 on
Robetta-Ala, FoldX and Tuncbag et al. (16), respectively).
Regarding the F1 scores, PCRPi predictions have the best
balance between precision and recall rates (Table 2). The
F1 score is a robust metric that gauges the relationship
between precision and the recall rates, hence high F1 score
means an equilibrate balance between precision and recall
rates.

CONCLUSION

In this work, we developed a novel method, PCRPi, to
predict critical residues in protein interfaces. PCRPi
relies in the integration of seven different types of
sources of information by using BNs. Each individual
measure provides a different type of information, i.e. ener-
getic, structure-based and sequence-based features. We
trained a number of BNs to distinguish between critical
and non-critical residues taken from a benchmark dataset
of 25 protein complexes. We found that by adding new
information to the BN and also by adding new connec-
tions between attributes, i.e. expert BNs, the prediction
accuracy was improved. PCRPi delivers very consistent
predictions both under benchmarking and real cases sce-
narios (anti-RAS VH–HRAS complex). We also emulated
and tested the robustness of the method by incorporating
noisy data (i.e. evolutionary-based information). The
overall performance of the BN when handling missing
or noisy evolutionary information (Ab+ dataset) was
comparable to that of evolutionary information is
reliable (Ab� dataset). Comparing to current methods,
PCRPi delivers better predictions both in terms of preci-
sion and recall and also in terms of F1 scores that measure
the balance between precision and recall.
Finally, PCRPi will be a great help in the study of

protein complexes and understanding the individual
residue contribution to the global interaction, as well as
a tool to select candidate residues for mutagenesis
studies and as a complement to experimental studies.
Our approach can also contribute to protein design exper-
iments by predicting not only the important residues (i.e.
‘untouchable’) but also those that play a less important
role and therefore can be selected to improve and enhance
the binding between proteins. Lastly, our approach can be
invoked in the process of drug discovery of novel thera-
peutic agents to target PPI because it allows the highlight-
ing of the important residues that are mediating such
interactions to facilitate further computational manipula-
tion of chemical mimics.
The PCRPi algorithm and datasets used in this study

are available upon request to the corresponding author.
A web-server is currently being developed to allow a
remote access to the method.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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