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Conclusions
 One-step further computational effort over the initial manual curation towards a
gapless network reconstruction model.
 We can systematically decrease the inconsistency of the model and potentially
improve the accuracy of the model simulation.
 This approach can generate hypotheses (suggesting good candidate reactions)
for manual verification or further robot experimental tests.
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136 blocked
metabolites of
interests non-
producible,
117 (86.0%)
can be
restored

     Introduction
Motivation
 An automated procedure of identifying and filling of reaction gaps in

genome-scale metabolic networks within the framework of flux
balance analysis.

 To identify the non-producible metabolites in the network
 constraint-based optimisation techniques
 graph traverse algorithm

 Search for reactions to add into the model to restore the reachability
of the metabolites or clusters of metabolites

 This is part of an iterative process of converting a genome-scale
reconstruction into an executable computational model:
 representing the reactions in mathematical form,
 validating and refining the mathematical model.

Consensus network reconstruction for yeast metabolism
 Yeastnet1.0: community driven, rigorously evidenced and well

annotated [1] http://www.comp-sys-bio.org/yeastnet/

 Yeastnet2.0: a recent expanded network reconstruction that includes
a detailed and evidence description of lipid metabolism.

 Yeastnet2.0: 1834 unique chemical reactions, 886 ORFs and 1418
metabolites located in 15 different compartments.

 Need for automated procedure for network validation.

     Method
Background
 Flux Balance Analysis (FBA)
 Structural Gaps in metabolic networks

Reaction gaps, orphan enzymes, …
 Mechanisms to rescue reaction gaps in the networks

=> reversibility; transportation; cell consumption
=> adding missing reactions from reference model
=> metabolite exchange (uptake or secretion)

 Focus on bridging gaps that block the cell from producing some
metabolites: assuming all metabolites are all consumable, all reactions
reversible.

Procedure
 Gap identification: flux range analysis
 Blocked metabolite clustering:

 Check metabolite reachability with blockage network
 Blockage network: formed by blocked reactions.

 Finding pseudo root blocked metabolites: graph traverse.
 Gap filling: mixed integer linear programming, principle of minimum

metabolic model modification.

Gap
identification:

flux range analysis

#Meta- #Blocked- Metabolite #Reac- #Blocked Reaction

Compartment bolites Metabolites BlockRate tion Reactions BlockRate

Cytoplasm 1319 75 0.057 1064 73 0.069

Mitochondrion 458 75 0.164 317 60 0.189

Nucleus 346 5 0.014 51 6 0.118

Extracellular 184 2 0.011 177 2 0.011

Endoplasmic reticulum170 54 0.318 186 35 0.188

Cell envelope 155 6 0.039 99 6 0.061

Peroxisome 110 1 0.009 103 3 0.029

Mitochondrial membrane95 8 0.084 4 4 1.000

Lipid particle 76 1 0.013 209 2 0.010

Vacuolar membrane 50 10 0.200 5 5 1.000

Vacuole 26 0 0.000 34 1 0.029

Golgi membrane 20 3 0.150 2 2 1.000

Golgi 20 12 0.600 7 6 0.857

Endoplasmic reticulum membrane7 5 0.714 3 3 1.000

Nuclear membrane 7 0 0.000 0 0 NA

Peroxisomal membrane 6 0 0.000 0 0 NA

Total 3049 257 0.084

Pseudo
root

metaboli
te
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Search for pseudo
root blocked

metabolite(s):
Graph traverse algorithm

YEASTNET

Putative reactions:
transportation, reaction
from other organisms
(KEGG, MetaCyc …)

Reference yeast
Models:iIN800, iND750…

Hypothesis
evaluation:
Manual test:

literature/bioinf
omratics
evidence,

experiments

MetaboliteName Compartment

Cluste

rSize

#Res

cued 

Cum

Reaction 

source Comments Rescue reactions

octadecadienoate (n-

C18:2)

Endoplasmic 

reticulum 27 27

putative 

transport

Transporter 

reaction Trasnport from cytoplasm_to_Endoplasmic reticulum

3-Hexaprenyl-4-

hydroxybenzoate Mitochondrion 19 18 KEGG

Cluster restored 

except for s_186

[R06865: 3-Hexaprenyl-4-hydroxybenzoate + Oxygen <=> 3-Hexaprenyl-4,5-

dihydroxybenzoate]

beta-D-

Mannosyldiacetylchito

biosyldiphosphodolicho

l Golgi 12 2 iIN800

Whole cluster 

restored after 

recovering 3 

blocked 

metabolites

[Uridine kinase: GTP +  uridine => GDP + UMP; Probable mannosyltransferase KTR4: beta-D-

mannosyldiacetylchitobiosyldiphosphodolichol

+  2 GDP-mannose=> 2 GDP + alpha-D-mannosyl-beta-D-mannosyl-

diacetylchitobiosyldiphosphodolichol; Mannose-1-phosphate guan

1-phosphatidyl-1D-

myo-inositols Golgi 12 10

putative 

transport Cytoplasm_to_Golgi

1-phosphatidyl-1D-

myo-inositol 4-

phosphates Golgi 12 12

putative 

transport Cytoplasm_to_Golgi

cardiolipin Mitochondrion 10 10 KEGG

[R02687: 1,2-diacyl-sn-glycerol acylhydrolase; R00851: acyl-CoA:sn-glycerol-3-phosphate 1-

O-acyltransferase; R02029: Phosphatidylglycerophosphate phosphohydrolase; R03755: Acyl-

CoA:2-acylglycerol O-acyltransferase; R02757: ATP:acylglycerol 3-phosphotransf

phosphatidylserine

Golgi 

membrane 3 3 iIN800

[Phosphatidate cytidylyltransferase:  phosphatidate + CTP <=> CDP-diacylglycerol

+  diphosphate; CDP-diacylglycerol--serine O-phosphatidyltransferase:CDP-diacylglycerol + L-

serine <=> phosphatidylserine + CMP; Transport of phosphatidate, mitochondrial]

4-Hydroxy-L-threonine Cytoplasm 3 3 KEGG

YER081W for 

1.1.1.290, 

YJR009C or 

YGR192C for 

1.2.1.72

[R04210: 4-Phospho-D-erythronate + NAD+ <=>2-Oxo-3-hydroxy-4-phosphobutanoate + 

NADH + H+ ; R01825: D-Erythrose 4-phosphate + NAD+ + H2O <=> 4-Phospho-D-

erythronate + NADH + H+ ]

phosphatidylserine

Vacuolar 

membrane 3 3 KEGG [R07376: Phosphatidylethanolamine + L-Serine <=> Phosphatidylserine + Ethanolamine]

Acetyl-ACP Mitochondrion 3 3 KEGG [R08157: Octanoyl-[acp] + H2O <=> Acyl-carrier protein + Octanoic acid]

4-Guanidinobutanoate Cytoplasm 2 2 KEGG

YPL111W for 

3.5.3.7 R01990 R00559: L-Arginine + Oxygen <=> 4-Guanidinobutanamide + CO2 + H2

phosphatidylethanola

mine Cytoplasm 2 2 KEGG R02051: Phosphatidylethanolamine + H2O <=> Ethanolamine + Phosphatidate

2-Deoxy-D-ribose 5-

phosphate Cytoplasm 2 2 KEGG

YDR496C for 

5.4.2.7 e2.6 R02749: 2-Deoxy-D-ribose 1-phosphate <=> 2-Deoxy-D-ribose 5-phosphate

1-phosphatidyl-1D-

myo-inositol 3,5-

bisphosphates Cytoplasm 2 2 KEGG

R05802 exist in 

CE VM but not 

cytosol

R05802: ATP + 1-Phosphatidyl-1D-myo-inositol 3-phosphate <=> ADP + 1-Phosphatidyl-1D-

myo-inositol 3,5-bisphosphate

phosphatidylserine Mitochondrion 2 2 KEGG R07376: Phosphatidylethanolamine + L-Serine <=> Phosphatidylserine + Ethanolamine

5-

Methyltetrahydroptero

yltri-L-glutamate Cytoplasm 2 2 iIN800

[5-methyltetrahydropteroyltriglutamate--homocysteine methyltransferase; O-acetylserine 

sulfhydrylase]

IDP Mitochondrion 2 2 iIN800 [R00727: ITP + Succinate + CoA <=> IDP + Orthophosphate + Succinyl-CoA]

2',3'-Cyclic AMP Cytoplasm 2 2 KEGG

YHR202W for 

3.1.4.16 3.1.3.6 

[R03537: 2',3'-Cyclic AMP + H2O <=> 3'-AMP; R01562: 3'-AMP + H2O <=> Adenosine + 

Orthophosphate]

Acetyl-ACP Cytoplasm 1 1 KEGG

R04536', 'R04429', 'R04537', 'R04355', 'R04954', 'R04957', 'R04958', 'R04533', 'R04724', 

'R08157'

Blockage network
clustering:

metabolite reachability
based

For each
blocked
cluster

Gene
annot.:
KEGG,
SGD,
 …

! 

Minimize a"
s.t. Sv +Uy = 0, 

vmin,i # vi # vmax,i,$i % R in current model

a j ymin, j # y j # a j ymax, j ,$j % R in database

vk & ' (M(1( bk ),  $k % R with metabolite m as product 

vl # (' + M(1( bl ),$l % R with metabolite m as reactant and reversible

b > 0," a,b% {0,1}

where ',M > 0, ' ) 0, M )*;

S and U are stoichiometric matrices for model and database, respectively.

  Computational tools implemented in python, LP solver lpsolve5.

Table: YEASTNET2.0 blocked metabolites/reactions

Sequentially fill in metabolite gaps
till whole cluster restored or all

metabolites have been checked:
Finding minimal list of missing reactions to

be added to the network in order to make the
metabolites producible.


