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Order-of-Magnitude Based Link Analysis for False Identity Detection

Tossapon Boongoen and Qiang Shen
Department of Computer Science, Aberystwyth University, UK

Abstract
Combating identity fraud is crucial and urgent as false iden-
tity has become the common denominator of all serious
crime, including mafia trafficking and terrorism. Typical ap-
proaches to detecting the use of false identity rely on the
similarity measure of textual and other content-based char-
acteristics, which are usually not applicable in the case of de-
ceptive and erroneous description. This barrier can be over-
come through link information presented in communication
behaviors, financial interactions and social networks. Quan-
titative link-based similarity measures have proven effective
for identifying similar problems in the Internet and publica-
tion domains. However, these numerical methods only con-
centrate on link structures, and fail to achieve accurate and
coherent interpretation of the information. Inspired by this
observation, this paper presents a novel qualitative similar-
ity measure that makes use of multiple link properties to re-
fine the underlying similarity estimation process and conse-
quently derive semantic-rich similarity descriptors. The ap-
proach is based on order-of-magnitude reasoning. Its appli-
cability and performance are experimentally evaluated over a
terrorism-related dataset, and further generalized with publi-
cation data.

Introduction
False identity has become the common denominator of all
serious crime such as mafia trafficking, fraud and money
laundering. Particularly in the UK, financial losses due to
such cause are reported to be around 1.3 billion pounds each
year (Wang et al. 2006). Holders of false identity are deter-
mined to avoid accountability and traces for law enforce-
ment authority. In essence, such offence is intentionally
committed with a view to perpetrating another crime from
the most trivial to the most dreadful imaginable. Organized
criminals make use of counterfeit identity to cover up il-
licit activities and illicitly gained capital. Especially in the
case of terrorism, it is widely utilized to provide financial
and logistical support to terrorist networks that have set up
and encourage criminal activities to undermine civil soci-
ety. Tracking and preventing terrorist activities undoubtedly
requires authentic identification of criminals and terrorists
who typically possess multiple fraud and deceptive names,
addresses, telephone numbers and email accounts.

Copyright c© 2009, Association for the Advancement of Artificial
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With present high-quality off-the-shelf equipment, it is
almost effortless to obtain false identity documents. Con-
versely, it requires a great deal of time and experience to
distinguish between genuine and forged copies. However, a
successful detection can prevent the revolting consequence
like that of shocking September-11 terrorist attacks. In par-
ticular to this tragedy, US authorities seriously failed to dis-
cover the use of false identities by nineteen terrorists, who
were all able to enter the United States without any problem,
in the very morning of the attacks. Most of them typically
possess several dates of birth and multiple aliases (Boon-
goen & Shen 2008). For instance, Mohamed Atta, alleged
ringleader of the September 11 attacks, has exploited sev-
eral different aliases of Mehan Atta, Mohammad El Amir,
Muhammad Atta and Muhammad Al Amir Awad Al Sayad.
Identity verification and name variation detection systems
(Wang et al. 2006) that rely solely on the inexact search
of textual attributes may be effective in some cases. How-
ever, these methods would fail drastically to disclose uncon-
ventional truth of highly deceptive identity like that between
Osamabin Laden and The Prince (Hsiung et al. 2005).

The aforementioned dilemma may be overcome through
link analysis, which seeks to discover knowledge based on
the relationships in data about people, places, things, and
events. Intuitively, despite using distinct false identities,
each terrorist normally exhibits unique relations with other
entities involving in legitimate activities found in any open
or modern society, making use of mobile phones, public
transportation and financial systems. Link analysis tech-
niques have proven effective for identity problems (Badia
& Kantardzic 2005), (Hsiung et al. 2005) by exploiting link
information instead of content-based information, which is
typically unreliable due to intentional deception, translation
and data-entry errors (Wang et al. 2005). Recently, link
analysis is also employed by Argentine intelligence orga-
nizations to analyzing Iranian-Embassy telephone records
in such a way to make a circumstantial case that the Ira-
nian Embassy had been involved in the July 18, 1994, terror
bombing of a Jewish community centre (Porter 2008).

Essentially, to justify the similarity between entities (e.g.
names, publications and web pages) in a link network, many
well-known algorithms like SimRank (Jeh & Widom 2002),
PageSim (Lin, King, & Lyu 2006) and Connected-Triple
(Klink et al. 2006) analogously concentrate only on the car-



dinality of joint neighbors to which they are directly linked,
without taking into account the characteristics of a link it-
self. As such, the quality of the similarity evaluation may be
enhanced by including uniqueness measure of links (Boon-
goen & Shen 2008) within the overlapping neighbor context.
However, a definite precaution to combining multiple mea-
sures is the inaccuracy of quantitative descriptions, which
are usually caused by a few link patterns with unduly high
values. As a result, the measures of other patterns are very
small and their interpretations become rather misleading.

In light of such shortcoming, this paper presents a novel
link-based similarity measure that derives a qualitative simi-
larity description from multiple link characteristics each ex-
pressed using the absolute order-of-magnitude model (Piera
1995). In essence, these properties are perceived at different
precision levels, and hence being gauged in accordance to
distinct orders of magnitude spaces. With different sets of
measurement labels (i.e. landmarks), these scales differ by
at least one qualitatively important order of magnitude. Par-
ticularly, a semi-supervised method is introduced to select
data-driven landmarks, which are more reliable than those
human-directed ones. In order to combine measures of mul-
tiple link properties, the homogenization of such references
(Agell, Rovira, & Ansotegui 2000) is required to realize the
ultimate similarity description, where relevance of proper-
ties is proficiently blended within the aggregation process.

The rest of this paper is organized as follows. Section
2 introduces the absolute order-of-magnitude model upon
which the present research is developed. Following that,
Section 3 describes link properties and order-of-magnitude
based similarity evaluation. Section 4 presents the semi-
supervised method for designing landmarks, which is data-
driven and more robust than the human-directed counterpart.
The experimental evaluation of this qualitative link-based
similarity measure to detecting the use of false identity is
detailed in Section 5. The paper is concluded in Section 6,
with the perspective of further work.

Absolute Order of Magnitude Model
The absolute order of magnitude (AOM) model (Piera 1995)
operates on a finite set of ordered labels or qualitative de-
scriptors achieved via a partition of the real number line R.
Each element of the partition represents a basic qualitative
class to which a label is associated. The number of labels
selected to express each variable of a real problem is subject
to both the characteristics and the precision level required
to support comprehension and communication. In practice,
multiple label sets with dissimilar granularities are typically
utilized to define domain attributes qualitatively.

Despite the intuition that the number of labels is not fixed,
the most conventional partitions are symmetric. That is,
the partition of the underlying domain typically has n posi-
tive and n negative labels, which is formally represented by
OM(n), and referred to as the AOM model of granularity n.
The real-line partition into 2n + 1 labels is dictated by the
set of 2n− 1 landmarks. In essence, landmarks are domain
dependent and determined by either subjective justification
of human experts or learning from data. For instance, the
OM(3) model is built on the following set of landmarks:

{−β,−α, 0, α, β}. Figure 1 illustrates the resulting parti-
tion into seven qualitatively distinct order-of-magnitude la-
bels, which are the most commonly used: Negative Large
(NL), Negative Medium (NM), Negative Small (NS), Zero
(0), Positive Small (PS), Positive Medium (PM) and Positive
Large (PL) (Olmo et al. 2007).

Figure 1: The OM(3) absolute partition.

Order of Magnitude Space
An order of magnitude (OM) space S defined for a qualita-
tive variable is the combination of the ordered label set Sl

and the interval-like treatment of such labels. For instance,
the value of one variable is expressed by the set of basic la-
bels Sl = {B1, . . . , Bn} with B1 < . . . < Bn denoting
its qualitative order, meaning that α < β,∀α ∈ Bi, β ∈
Bj , i < j. The corresponding OM space S is formally de-
scribed as S = Sl∪{[Bi, Bj ]|Bi, Bj ∈ Sl, i < j}. In effect,
the label [Bi, Bj ] with i < j is defined as the union of the
elements within the set {Bi, Bi+1, . . . , Bj}. In addition, the
order in Sl induces the partial order ≤p in S, which repre-
sents being more precise than or being less general than:

[Bi, Bj ] ≤p [Bp, Bq] ⇐⇒ [Bi, Bj ] ⊂ [Bp, Bq] (1)

where [Bi, Bi] = {Bi}. According to Figure 2, the least
precise label is [B1, Bn], denoted by ?. This manipulation
of ordered labels allows reasoning and analysis with single
or combined labels that may reflect uncertainty of one agent
on another agent’s judgement.

Figure 2: The graphical illustration of the partial order rela-
tion ≤p in an order-of-magnitude space S.



It is possible to define qualitative equality, termed q-equal,
in an OM(n) space S. Given O, P ∈ S, O and P are q-
equal or O ≈ P , if there is a Q ∈ S such that Q ≤p O and
Q ≤p P . This effectively implies that O and P encompass,
in part or in full, common basic elements. In addition, for
presentational simplicity, ∀O ∈ S, the sets BO = {B ∈
Sl − {0}, B ≤p O} and B∗

O = {B ∈ Sl, B ≤p O} are
termed the base of O and the enlarged base of O, respec-
tively.

Qualitative Algebra of AOM
At the outset, the mathematical structure of the AOM model,
called Qualitative Algebra or Q-algebra, was initially de-
fined as the unification of sign and interval algebra over a
continuum of qualitative partitions of the real line (Travé-
Massuyès & Piera 1989). However, although being superior
to the sign algebra, such qualitative operators usually pro-
duce ambiguous and indeterminate outcomes. Accordingly,
this barrier has been tackled via the notion of qualitative
expression of a real operator (Agell, Rovira, & Ansotegui
2000). In particular, qualitative operators are considered as
multidimensional functions defined in an AOM space. The
Cartesian product of S1, S2, . . . , Sk (where k is the number
of variables of a given problem domain, Si is an OM(n)
space, i = 1 . . . k) is adopted to express the outcome of a
real operator in Rk qualitatively, which is reflected onto the
resulting qualitative space S

′
.

Given a real operator ω defined on Rk involving k real
variables with each taking values in R, the corresponding
qualitative abstraction of ω, denoted as [ω], is specified on
Sk with values in S

′
as follows:

[ω](X1, X2, . . . , Xk) = [ω(X1, X2, . . . , Xk)]S′ (2)

where Xi ∈ Si, i = 1 . . . k and ω(X1, X2, . . . , Xk) =
{ω(x1, x2, . . . , xk), xi ∈ Xi}. Inherently, [ω] assigns to
each k-tuple element of (X1, X2, . . . , Xk) a qualitative de-
scription of the subset enclosing all underlying numerical
results of applying ω over all real values in X1, X2, . . . , Xk.

To simplify this, it is feasible to generate the qualitative
operator, [ω], from the basic ordered labels of an OM space,
S, Si = S,∀i = 1 . . . k. For any [ω] and X1, X2, . . . , Xk ∈
S:

[ω](X1, X2, . . . , Xk) =
⋃

Bi∈B∗
Xi

[ω](B1, B2, . . . , Bk) (3)

According to Equation 2, the qualitative operator [ω] can
be generalized as follows:

[ω](X1, . . . , Xk) =
⋃

Bi∈B∗
Xi

[ω(B1, . . . , Bk)]S′ (4)

It is noteworthy that the [ω] operator presented above is
compatible only to variables specified in the same order of

magnitude space. To enhance the applicability of this ter-
minology, the utilization of this qualitative operator is fur-
ther introduced to multi-granularity domains via the homog-
enization of references, which has been successfully ap-
plied to realistic problems like credit risk prediction (Ag-
ell, Rovira, & Ansotegui 2000) and marketing segmentation
(Olmo et al. 2007). This intuitive technique is extensively
used in the current research, which will be thoroughly dis-
cussed below.

Order-of-Magnitude Based Link Analysis
This section introduces a novel order-of-magnitude based
link analysis in which multiple link properties are combined
to improve the quality of estimated link-based similarity
measures.

Link Properties
Link analysis is based on examining relation patterns
amongst references of real-world entities, which can be for-
mally specified as an undirected graph G(V,E). It is com-
posed of two sets, the set of vertices V and that of edges E,
respectively. Let X and R be the sets of all references and
their relations in the dataset. Then, vertex vi ∈ V denotes
reference xi ∈ X and each edge eij ∈ E linking vertices
vi ∈ V and vj ∈ V corresponds to a relation rij ∈ R be-
tween references xi ∈ X and xj ∈ X . Each edge eij ∈ E
possess statistical information fij ∈ {1, . . . ,∞}, represent-
ing the frequency of any relation occurring between refer-
ences xi and xj within the underlying dataset. With this
terminology, several methods have been introduced to eval-
uate the similarity between information objects: SimRank
(Jeh & Widom 2002), Connected-Triple (Klink et al. 2006),
PageSim (Lin, King, & Lyu 2006) and a variety of random
walk methods (Minkov, Cohen, & Ng 2006) (see more de-
tails in (Getoor & Diehl 2005) and (Liben-Nowell & Klein-
berg 2007)).

Cardinality Property (CT) In essence, existing tech-
niques, such as SimRank and Connected-Triple, have con-
centrated exclusively on the numerical count of shared
neighboring objects. Let vi ∈ V be an entity of interest
(e.g. a terrorist name in intelligence data or a paper in a
publication database) and Nvi ⊂ V be a set of entities di-
rectly linked to vi, called neighbors of vi. The similarity
between entities vi and vj is then determined by the cardi-
nality of Nvi

∩ Nvj
, the set of shared neighbors where Nvi

and Nvj
are sets of neighbors of entities vi and vj , respec-

tively. Effectively, the higher the cardinality is, the greater
the similarity of these entities becomes.

Uniqueness Property (UQ) Despite their simplicity, car-
dinality based methods are greatly sensitive to noise and of-
ten generate a large proportion of false positives (Klink et
al. 2006). This shortcoming emerges because these meth-
ods exclusively concern with the cardinality property of link
patterns without taking into account the underlying charac-
teristics of a link itself. As the first attempt to extend this
approach by addressing such characteristics, the uniqueness
measure of link patterns has been suggested as the additional



criterion to CT to refine the estimation of similarity values
(Boongoen & Shen 2008).

Given a graph G(V,E) in which objects and their rela-
tions are represented with members of the sets of vertices V
and edges E, respectively, a uniqueness measure UQk

ij of
any two objects i and j (denoted by vertices vi, vj ∈ V ) can
be approximated from each joint neighbor k (denoted by the
vertex vk ∈ V ) as follows:

UQk
ij =

fik + fjk∑
m fmk

(5)

where fik is the frequency of the link between objects i and
k occurring in data, fjk is the frequency of the link between
objects j and k, and fmk is the frequency of the link between
object k and any object m.

To summarize the uniqueness of joint link patterns UQij

between objects i and j, the ratios estimated for each shared
neighbor are aggregated as

UQij =
1
n

n∑
k=1

UQk
ij (6)

where n is the number of overlapping neighbor objects that
objects i and j are commonly linked to.

Link Based Similarity Evaluation
A common drawback of those numerical measures previ-
ously presented is the inability to achieve coherent and nat-
ural interpretation through existing seemingly fine-grained
scales. Exploring a link network with crisp numerically-
valued criteria is typically considered inflexible comparing
to the use of interval and linguistic descriptors. Specifically,
a wrong interpretation of a property measure may occur if
there exists a unduly high property value within a link net-
work. A more accurate and naturally expressive measure is
to exploit qualitative labels like highly, moderately or poorly
certain.

In order to overcome this important shortcoming, mea-
sures of link properties like cardinality and uniqueness
are gauged in accordance with property-specific order-of-
magnitude (OM) spaces. Subsequently, the link-based sim-
ilarity value is derived by combining these qualitative de-
scriptors each assigned with a possibly different degree of
relevance. Homogenizing of references in multi-granularity
OM spaces (Agell, Rovira, & Ansotegui 2000) is applied to
this aggregation process in such a way that values measured
in distinct scales can be analogously manipulated.

OM Spaces for Link Properties At the outset, measures
of link properties, originally in quantitative terms, are trans-
lated into elements of ordered label sets. Formally, let P i

and Li be the set of intervals partitioned on the real line
and that of the corresponding qualitative labels, defined for
measures of the link property i on the discourse U i. That
is, P i = {pi

1, . . . , p
i
ni} and Li = {li1 . . . lini}, where ni

is the number of intervals/labels and li1 < . . . < lini de-
notes the qualitative orders of magnitude specified for prop-
erty i. Without causing confusion, for simplicity, intervals
partitioned on real number line are termed partitions. They

are non-overlapped over the discourse U i, and their crisp
boundaries are determined by one or two members of the
landmark set M i = {mi

1, . . . ,m
i
ni−1}. Each partition pi

j is
qualitatively expressed by the label lij ,∀j = 1 . . . ni, and its
interval is defined by lower bound αi

j and/or upper bound βi
j

such that αi
j , β

i
j ∈ M i and αi

j ≤ βi
j .

Intuitively, the number of labels should be small enough
so as not to impose useless precision onto analysts, but it
must be rich enough to allow meaningful assessment and
discrimination of measurement (Herrera & Herrera-Viedma
2000). In fact, average human beings can reasonably man-
age to bear in mind seven or so items/labels (Miller 1956).

For the current research with i ∈ {CT,UQ}, as a sim-
ple example, measures of the cardinality property over the
discourse UCT = [0,∞) may be described using a mem-
ber of the label set of three qualitative labels (nCT = 3),
LCT = {lCT

1 = Small, lCT
2 = Medium, lCT

3 = Large}.
In particular, if the landmark set MCT = {mCT

1 =
2,mCT

2 = 6}, members of the partition set are speci-
fied as PCT = {pCT

1 = [0, 2], pCT
2 = (2, 6], pCT

3 =
(6,∞)}. Likewise, the uniqueness measure, whose val-
ues can be defined on the universe of discourse UUQ =
[0, 1], which may be expressed using the ordered set of
five qualitative descriptors (nUQ = 5), LUQ = {lUQ

1 =
V eryLow, lUQ

2 = Low, lUQ
3 = Moderate, lUQ

4 =
High, lUQ

5 = V eryHigh}. Using the set of landmarks
(MUQ = {mUQ

1 = 0.1,mUQ
2 = 0.3,mUQ

3 = 0.6,mUQ
4 =

0.8}), the corresponding partition set can be defined as
PUQ = {pUQ

1 = [0, 0.1], pUQ
2 = (0.1, 0.3], pUQ

3 =
(0.3, 0.6], pUQ

4 = (0.6, 0.8], pUQ
5 = (0.8, 1]}.

Similarity Measure via Aggregation of Properties Re-
lying on one particular link property, as with existing link-
based methods, for justifying the similarity between any two
objects in a link network may lead to false interpretation and
perhaps revolting consequences. The more rational alterna-
tive is to integrate all available link properties in order to re-
fine the similarity measure. Fortunately, the link-based sim-
ilarity between any two vertices va, vb ∈ V in the link net-
work can be estimated through the aggregation of qualitative
descriptors each corresponding to a particular link property
i. In particular, each property i can be assigned with a dif-
ferent degree of relevance (e.g. importance) RV i, which
may be given by domain experts in according with their past
experiences or estimated from past data if such expertise is
not readily available. Similar to measures of link proper-
ties previously emphasized, relevance can be naturally ex-
pressed using the order-of-magnitude label set LRV , such
as LRV = {None,+,++,+ + +} or LRV = {0, 1, 2, 3}.
In the discussion above, the relevance degrees of cardinality
RV CT ∈ LRV and uniqueness properties RV UQ ∈ LRV

are subjectively set to 2 and 1, respectively.

However, since label sets defined for different properties
are usually of unequal granularity, they have to be homoge-
nized onto a common scale on which references of distinct
label sets can be uniformly manipulated and integrated. Fol-
lowing the work of (Agell, Rovira, & Ansotegui 2000), the



Table 1: Homogenized landmarks.

Landmarks CT UQ

Original 2, 6 0.1, 0.3, 0.6, 0.8
Step1 0, 4 -0.2, 0, 0.3, 0.5
Step2 -4, 0, 4 -0.5, -0.3, -0.2, 0, 0.2, 0.3, 0.5
Step3 -4, -2, -1, 0, 1, 2, 4 -0.5, -0.3, -0.2, 0, 0.2, 0.3, 0.5
Homogenized -3, -2, -1, 0, 1, 2, 3 -3, -2, -1, 0, 1, 2, 3
Irrelevant -3, -2, -1, 1, 2 -3, -2, 1

procedure below will be used here:

• Step1: Convert each set of landmarks M i into a symmet-
ric arrangement. Given a central landmark mi

c ∈ M i,
translate each landmark mi

t, t = 1 . . . ni − 1 to the new
landmark smi

t in the symmetric scale using smi
t = mi

t −
mi

c. Note that the central landmark is now 0 in the new
scale.

• Step2: Landmarks appearing on both positive and nega-
tive sides may be dissimilar in general. A fully symmetric
pattern can be achieved by adding missing landmarks, so
that one absolute landmark can be found on both positive
and negative sides of 0. Obviously, these newly added el-
ements are of balancing purpose only, therefore they will
not be used to represent values and will be deliberately
marked as irrelevant.

• Step3: The landmark sets for each property are further
modified by adding new landmarks on both side of 0, in
such a way that all landmark sets have the same cardinal-
ity. Similar to Step 2, new elements are irrelevant with
respect to each particular property and are simply to sup-
port the unification mechanism.

In accordance to the landmarks of two link properties
given earlier, Table 1 summarizes the results achieved at
each step of the homogenization process.

Following the terminology of AOM algebra, with the
property-specific relevance degrees previously clarified,
order-of-magnitude based similarity measure (OMS) can be
estimated from measures of any n properties using the qual-
itative expression of a real weighted summation [ω]:

OMS = [ω](X1, . . . , Xn, RV1, . . . , RVn)
= [ω(X1, . . . , Xn, RV1, . . . , RVn)]SSum (7)

where Xi ∈ SH is the qualitative measure of link property
i, i = 1 . . . n, expressed on the homogenized scale SH , RVi

is its corresponding relevance degree, SSum is the result-
ing order-of-magnitude space of this summarization and ω
is defined as

ω(X1, . . . , Xn, RV1, . . . , RVn) = ω(x1, . . . , xn, rv1, . . . , rvn)
= x1rv1 + . . . + xnrvn

(8)

where xi ∈ Xi, rvi ∈ RVi, i = 1 . . . n.
Specific to the two link property measures used herein:

CT and UQ, with their relevance degrees being RV CT and
RV UQ and the homogenized scale SH being {-3, -2, -1, 0,
1, 2, 3}, the previous equations can be employed as follows:

OMS = [ω](CT,UQ,RV CT , RV UQ)

= [ω(CT,UQ,RV CT , RV UQ)]SSum (9)
Following that

OMS = [ω(2ct + uq)]SSum (10)
where ct ∈ MCT , and MCT is the set of relevant landmarks
of CT in the homogenized scale SH : MCT = {0, 3}. Like-
wise, uq is a member of MUQ, with MUQ = {-1, 0, 2, 3}.
Effectively, the resulting order-of-magnitude space SSum is
established upon landmark values of this qualitative opera-
tion, which are {−1, 0, 2, 3, 5, 6, 8, 9}. To obtain a coherent
interpretation of similarity measures within the SSum space,
a set of qualitative labels LOMS , as partitions of SSum, is
chosen to express the different orders of magnitude of the
similarity values. For instance, LOMS = {Low (OMS <
2),Medium (2 ≤ OMS ≤ 6),High (OMS > 6)}. Note
that a more or less refined label sets can be used depending
on the precision level required.

Semi-Supervised Method to Designing
Landmarks

Designing an appropriate set of landmarks M i for a link
property i is non-trivial and proves to be critical towards the
quality of generated similarity measures. A simple approach
is to rely on human experts, who select suitable landmark
values in accordance with their personal intuition and judg-
ment. This is not usually effective regarding the availability
of experts and the diverse nature of different problem do-
mains. Besides, human input may be rather subjective and
inconsistent. As a result, a data-driven mechanism that can
be used to obtain an appropriate M i is specifically discussed
herein.

For a link property i, a density graph is formulated to rep-
resent the proportion of entity pairs (i.e. (vx, vy), vx, vy ∈
V ), each with different property measure ixy . Let D :
[0, imax] → [0, 1] be the density function (where imax de-
notes the maximum value of ixy), which is formally defined
as



D(t) =
N(t)∑

∀r∈[0,imax]

N(r)
(11)

where N(t) denotes a number of entity pairs (vx, vy) whose
property measure ixy ≥ t, t ∈ [0, imax]. Figure 3 presents
the density function of cardinality property (i.e. i = CT )
derived from the Terrorist dataset (Hsiung et al. 2005),
where CTmax = 113 (and the magnified presentation of
D(t), t ∈ {7, 113} is included for better interpretation).

Figure 3: Example of density function derived from Terror-
ist dataset.

With this function, the following set of heuristics can be
articulated especially to help data analysts to assess a proper
set of landmarks M i for link property i:

• Let M i = {mi
1,m

i
2, . . . ,m

i
ni} be an appropriate land-

mark set for property i, where mi
g ≤ imax,∀g ∈

{1 . . . ni} and mi
h ≤ mi

h+1,∀h ∈ {1 . . . ni − 1}.

• Each pair of adjacent landmarks (i.e. mi
h and mi

h+1) en-
capsulates all property values ixy ∈ [mi

h,mi
h+1) whose

density D(ixy) can be perceived at a particular order of
magnitude. Note that orders of magnitude utilized in this
research are of α × 10z , where z ∈ {−1,−2, . . . ,−∞}
and α ∈ (0, 10). According to Figure 3, MCT of the
Terrorist dataset is {4, 7, 10, 23} such that D(CTxy) is
expressed at five different orders of magnitude of

– 10−1 where CTxy < 4
– 10−2 where 4 ≤ CTxy < 7
– 10−3 where 7 ≤ CTxy < 10
– 10−4 where 10 ≤ CTxy < 23
– 10−5 where CTxy ≥ 23

This semi-supervised method is effective to assist ana-
lysts to design appropriate landmarks and descriptive labels,
based on quality measures of the particular link network be-
ing studied. Unlike human-directed alternatives, it is data
oriented and capable of being adapted to a variety of prob-
lems.

Application to False Identity Detection
This section presents the application of the order-of-
magnitude link-based similarity evaluation to detecting the
use of false identities. Particularly, its performance is empir-
ically evaluated over the terrorism-related dataset, and fur-
ther generalized with a publication data collection.

False Identity Detection
To battle false identity, an exact-match query to a law en-
forcement computer system is simply ineffective. A better
approach extensively studied in (Bilenko & Mooney 2003)
and (Wang et al. 2006) is to exploit the similarity measure
of names obtained from one or several string-matching tech-
niques. Despite their reported success, these content-based
methods can not handle cases where completely different
names are deployed. For instance, they would fail to recog-
nize the association between these pairs of terrorists’ name,
whose overlapping text content is void.

• (ashraf refaat nabith henin, salem ali)

• (bin laden, the prince)

• (bin laden, the emir)

• (abu mohammed nur al-deen, the doctor)

Accordingly, the link-based approach, which has proven
effective for similar problems in a wide range of domains
(e.g. publication (Klink et al. 2006), online resources (Hou
& Zhang 2003), (Lin, King, & Lyu 2006), email (Minkov,
Cohen, & Ng 2006) and intelligence data analysis (Hsiung
et al. 2005)), has been put forward to underpin the account-
ability for unstructured information.

Let O be the set of real-world entities each being referred
to by at least one member of another set X , which is a col-
lection of names or references. A pair of names (xi, xj) are
aliases when both names correspond to the same real-world
entity: (xi ≡ ok) ∧ (xj ≡ ok), ok ∈ O. In practice, disclos-
ing an alias pair in graph G is to find a couple of vertices
(vi, vj), whose similarity s(vi, vj) is significantly high. In-
tuitively, the higher s(vi, vj) the greater the possibility that
vertices vi and vj , and hence corresponding names xi and
xj , constitute the actual alias pair.

Datasets
The performance and applicability of the proposed approach
is evaluated over the following distinct datasets: Terrorist
(Hsiung et al. 2005) and DBLP (Klink et al. 2006). Terror-
ist is a link dataset manually extracted from web pages and
news stories related to terrorism. Each node presented in
this link network is a name of person, place or organization,
while a link denotes a co-occurrence association between
objects through reported events. Figure 4 presents an ex-
ample of this link network where names Bin laden and Abu
abdallah refer to the same real-world person.

DBLP (Digital Bibliography and Library Project) is the
dataset containing co-authoring information extracted from
different bibliographical databases. In this link network,
each node represents a reference name of an author and a
link denotes the fact that two names appear as the co-authors



Figure 4: An example of Terrorist dataset.

of a paper (or papers). Table 2 summarizes the number of
links, objects and alias pairs included in these datasets.

Table 2: Dataset details (number of objects, links and alias
pairs).

Dataset Objects Links Alias Pairs

Terrorist 4088 5581 919
DBLP 2796 8157 23

Performance Evaluation
Efficiency of Semi-Supervised Method Initially, it is im-
portant to examine the effectiveness of the proposed semi-
supervised method for modeling a landmark set. By follow-
ing the heuristics previously prescribed, appropriate land-
mark values are:

• For Terrorist dataset, MCT = {4, 7, 10, 23} and MUQ =
{0.05, 0.12, 0.27, 0.43, 1}.

• For DBLP dataset, MCT = {2, 5, 9, 15} and MUQ =
{0.008, 0.04, 0.17, 0.31, 1}.

With these data-oriented landmarks, Table 3 compares the
number of disclosed alias pairs successfully detected by dif-
ferent methods, where K denotes the number of entity pairs
with highest similarity measures (details of homogenization
for semi-supervised landmarks are not included due to space
limitation). Note that OMS and OMSH represent order-of-
magnitude based similarity measures, with semi-supervised
and human-directed landmarks, respectively. In addition,
QT denotes a simple integration of numerical CT and UQ
measures, where relevance degrees RV CT and RV UQ (2
and 1, respectively) similar to those of OMS and OMSH

are employed.
These results indicate that the OMS measure with semi-

supervised landmarks usually outperforms both human-
directed landmarks OMSH and the quantitative evaluation
QT , especially over Terrorist dataset.

Comparison with Alternative Link-Based Methods
The performance of the OMS method is further general-
ized by evaluating against the following two state-of-the-art
link-based measures: SimRank (SR) and PageSim (PS), re-
spectively.

Table 3: Number of alias pairs disclosed by each method.

K OMS OMSH QT

Terrorist
200 43 9 8
400 80 57 41
600 115 91 60
800 146 110 75
1000 180 138 102
DBLP
100 4 1 1
200 5 2 1
300 5 3 2
400 6 5 4
500 10 6 5

• Principally, with the objective of finding similar publica-
tions given their citation relations, SimRank relies on the
cardinality of shared neighbors that are iteratively refined
to a fixed point (Jeh & Widom 2002). In each iteration,
the similarity of any pair of vertices vi, vj ∈ V , s(vi, vj),
is approximated as

s(vi, vj) =
C

|Nvi
|∑

p=1

|Nvj
|∑

q=1
s(Np

vi
, Nq

vj
)

|Nvi ||Nvj |
(12)

where Nvi
, Nvj

⊂ V are sets of neighboring vertices to
which vertices vi and vj are linked, respectively. Indi-
vidual neighbors of both vertices are denoted as Np

vi
and

Nq
vj

, for 1 ≤ p ≤ |Nvi | and 1 ≤ q ≤ |Nvj |. The constant
C ∈ [0, 1] is a decay factor that represents the confidence
level of accepting two non-identical entities to be similar.
Note that s(vi, vj) = 0 when Nvi = ∅ or Nvj = ∅.

• Within a different domain, PageSim (Lin, King, & Lyu
2006) was developed to capture similar web pages based
on associations implied by their hyperlinks. In essence,
the similarity measure ps(vi, vj) between vertices vi and
vj is dictated by the coherence of ranking scores R(vg, vi)
and R(vg, vj) propagated to them from any other vertex
vg ∈ V . It is noteworthy that ranking scores are explic-
itly generated using the page ranking scheme, PageRank
(Brin & Page 1998), of the most developed Google search
engine (with detailed computational mechanism for the
ranking scores omitted here). Formally, PageSim can be
defined as

ps(vi, vj) =
∑

∀vg∈V,vg 6∈{vi,vj}

min(R(vg, vi), R(vg, vj))2

max(R(vg, vi), R(vg, vj))

(13)

According to Table 4, the OMS measure consistently out-
performs other link-based methods over both datasets. In
spite of its low performance, the SimRank measure, which



has been recognized as a benchmark link analysis technique
for publication (Getoor & Diehl 2005) and Internet (Calado
et al. 2006) domains, is included in this evaluation as to re-
flect the difficulty of this task. Based on the results presented
in Tables 3-4, the proposed method does encounter the prob-
lem of false positives. However, its performance with re-
spect to this difficulty has been substantially improved as
compared to other link-based similarity methods.

Table 4: Number of alias pairs disclosed by each method.

K OMS SR PS

Terrorist
200 43 0 7
400 80 0 36
600 115 1 63
800 146 1 79
1000 180 2 92
DBLP
100 4 0 1
200 5 1 1
300 5 2 1
400 6 2 2
500 10 3 4

Computational Complexity In addition to evaluating
these methods in terms of discovered alias pairs, it is impor-
tant to investigate the computational complexity that would
determine or even limit their actual real-world applications.
Let a link network consist of n distinct entities, each aver-
agely linked to other m entities. The time complexity for
the OMS approach to generate all pair-wise similarity val-
ues is O(n2m2). With f iterations of similarity refinement,
the time complexity of SimRank is O(n2m2f). Note that
the results shown in Table 4 are obtained using f = 3 (with
its usual range being 3-5).

In contrast, the PageSim is rather complex compared to
the others as it begins with ranking all entities using the
PageRank technique, whose time complexity is O(nmt)
where t is the number of iterations for refining the rank-
ing values (with t being 3 in this experiment). Having ac-
complished the ranking process, the similarity of two en-
tities is estimated on the ranking values propagated from
their shared neighbors, with the maximum connecting-path
length of r (r set to 3 for the results given in Table 4). As
a result, the overall time complexity of PageSim method is
O(n2m2r + nmt).

Hence, the OMS method introduced in this paper not only
performs well in terms of precision, but also proves to be
practical for alias detection, with efficient time consumption.

Conclusion
This paper has presented a novel qualitative link-based sim-
ilarity measure, which can be efficiently employed for in-

telligence data analysis and disclosing the use of false iden-
tity typically appearing in terrorists and criminals’ activities.
Unlike initial numerical similarity estimation that concen-
trates solely on the link structures, the qualitative method
also includes underlying link properties such as uniqueness
in order to purify the similarity description. In addition,
qualitatively distinct order-of-magnitude labels incorporate
semantics towards similarity justification and allow coher-
ent interpretation and reasoning that is hardly feasible with
pure numerical terms.

Technically, measures of link properties are gauged in ac-
cordance with property-specific order of magnitude spaces,
whose dissimilar scales are subsequently homogenized to
permit the unification of their values. In essence, the simi-
larity descriptor is achieved via aggregating property values
regarding to their relative degrees of relevance. Empirically,
this qualitative approach consistently outperforms numerical
similarity measures over terrorism-related and publication
datasets. However, in order to generalize its performance
and applicability, it is crucial to evaluate this method with
more relevant data. Also, relevance degrees allocated for
distinct link properties may be better learned from data, in-
stead of relying on human-directed ones.
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Travé-Massuyès, L., and Piera, N. 1989. The orders of
magnitude models as qualitative algebras. In Proceedings
of 11th International Joint Conference on Artificial Intelli-
gence, 1261–1266.
Wang, A. G.; Atabakhsh, H.; Petersen, T.; and Chen, H.
2005. Discovering identity problems: A case study. In
Proceedings of IEEE International Conference on Intelli-
gence and Security Informatics, Atlanta, 368–373.
Wang, G. A.; Chen, H.; Xu, J. J.; and Atabakhsh, H. 2006.
Automatically detecting criminal identity deception: an
adaptive detection algorithm. IEEE Transactions on Sys-
tems, Man and Cybernetics, Part A 36(5):988–999.


